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0 Introduction

Let G = (V, E) be a simple and undirected graph with vertex set V = {v1, · · · , vn} and

edge set E. Let A(G) = (aij) be the adjacency matrix of G whose entry

aij =

{
1 if vi ∼ vj ,

0 otherwise.

Let di =
∑

j aij be the degree of the vertex vi. Thus D = diag(d1, · · · , dn) is called the

degree diagonal matrix of G. The Laplacian matrix of a graph G is then defined by

L(G) = D − A.
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Moreover, the eigenvalues of L(G) are denoted by 0 = λ0(G) 6 λ1(G) · · · 6 λn−1(G). Fiedler[1]

proved that λ0(G) = 0 is a simple eigenvalue if and only if G is connected and called λ1 as

the algebraic connectivity of graph G, which is denoted by µ(G). So the eigenvector of G

corresponding to λ1(G) is called Fiedler vector (for example, see [2]).

On one hand, the algebraic connectivity is relevant to the vertex and edge connectivity[1,3],

the diameter of graphs[4], the expanding properties of graphs[5], the combinatorial optimization

problems[6]. On the other hands, the algebraic connectivity also plays an important role in many

applications; for example, the algebraic connectivity of graphs can be regarded as the measure-

ment of convergence speed of solving the consensus problems in the analysis of convergence

speed for the consensus problem (see [7,8]). Therefore, the algebraic connectivity has received

more and more attention. Recently, there is an excellent survey on algebraic connectivity of

graphs written by de Abreu[9]. By the way, the eigenvectors of weighted graphs corresponding

to the second smallest Laplacian eigenvalue have been investigated[2,10−15]. Also there are some

results on the third smallest and fourth smallest Laplacian eigenvalue and corresponding[16−18]

as well as the largest eigenvalue of Laplacian[19−24].

In this paper, we consider the algebraic connectivity of trees with the maximum degree

given. Let T (n, ∆) be the set of all trees with n vertices and the maximum degree ∆. Denote

by T ∗(n, ∆) the tree of order n obtained by identifying a pendent vertex of the star K1,∆ and

a pendent vertex of a path Pn−∆ of order n−∆. Clearly, T ∗(n, ∆) ∈ T (n, ∆) and its diameter

is n − ∆ + 1. The main result in this paper is as follows:

Theorem 0.1 T ∗(n, ∆) is the only extremal tree in T (n, ∆) with the smallest algebraic

connectivity.

Theorem 0.2 Let T be a tree of order n with the maximum degree ∆ and µ(T ) be its

algebraic connectivity. Then

µ(T ) >
1

1 + (∆ − 1)(k∗ − 1) + k∗(k∗−1)
2

,

where k∗ = (n−∆)2+n+∆−4
2(n−1) .

The rest of this paper is organized as follows: In Section 1, the three types of tree trans-

formation are introduced and some Lemmas are presented. In Section 2, proofs of Theorems

0.1 and 0.2 are given.

1 Preliminary

First we introduce the notion bottleneck matrix developed by Kirkland and Neumann[2].

Let T be a tree of order n. A branch at a vertex v of T is one of the connected components

in the graph obtained from T by deleting v and all edges incident with v. For a branch B at

v (vertices labelled 1, . . . , k) the bottleneck matrix for B based at v, Mv(B), is a k × k matrix

such that for 1 6 i, j 6 k, the entry in position (i, j) is the number of edges in T which are

on both the path from i to v and the path from j to v. Denote by ρ(B) the spectral radius

of a nonnegative matrix Mv(B). Thus, ρ(B) is the Perron eigenvalue. A branch B at v of

T is called a Perron branch if the Perron eigenvalue of B is the largest amongst all branches
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at v (note that there may be several Perron branches at a particular vertex). In the following

passages, J denote the all one matrix. Let y be a Fiedler eigenvector of T . Then exact one of

the following two cases occurs (see [2]).

(a) No entry of y is 0. In this case, there is a unique pair of vertices i and j such that

they are adjacent in T with yi > 0 and yj < 0. Furthermore, let M1 be the bottleneck matrix

for the branch at j containing i and M2 be the bottleneck matrix for the branch at i containing

j. Then there exists a 0 < γ < 1 such that

1

µ(T )
= ρ(M1 − γJ) = ρ(M2 − (1 − γ)J).

This case is called a type II tree. Moreover, the special vertices i, j are called the characteristic

vertices of T .

(b) Some entry of y is 0. Then there is a unique vertex k that yk = 0, and there are two

or more Perron branches of T at k. Moreover µ(T ) = 1/ρ(B), where B is a Perron branch at

k. This is called a type I tree. Moreover, the special vertex k is called the characteristic vertex

of T .

Clearly, if T is a type II tree, there are exactly two adjacent characteristic vertices; while

if T is a type I tree, there is only one characteristic vertex. Let T (k, l, d) be the tree of order

n = k+ l+d−1 by identifying the center of stars K1,k and one pendent vertex of a path Pd−1 of

order d and by identifying the center of K1,l, and the other pendent vertex of Pd−1. Kirkland

and Neumann[2] proved that for all trees on n vertices with fixed diameter d, the algebraic

connectivity is minimized by T (k, l, d), for some 0 6 k 6 n − d. Further, Fallat and Kirland

(see [13] p60) proved that

Lemma 1.1
[13] (1) Let µ(T (k, l, d)) denote the algebraic connectivity of tree T (k, l, d).

Then

µ(T (k, l, d)) < µ(T (k − 1, l + 1, d)), 1 6 k < l + 1.

(2) Let T ′ be any tree of order n with diameter d + 1. Then the algebraic connectivity

µ(T ′) of T ′ has

µ(T ′) > µ(T (
⌈n − d + 1

2

⌉
,
⌊n − d + 1

2

⌋
, d))

with equality if and only if T ′ is T (⌈n−d+1
2 ⌉, ⌊n−d+1

2 ⌋, d).

We also need the following Lemmas which are from [2,15].

Lemma 1.2
[2] Let T be a tree of order n. Then T is a type I tree if and only if there

exists a vertex, which is called the characteristic vertex of T , at which there are two or more

Perron branches. T is a type II one if and only if T has adjacent vertices i and j, which are

called the characteristic vertices of T , such that the branch at vertex i containing vertex j is

the unique Perron branch at i, which the branch at vertex j containing vertex i is the unique

Perron branch at j.

Lemma 1.3
[15] Let T be a tree of order n and vm is not a characteristic vertex of T .

Then the unique Perron branch of T at vm is the branch which contains the characteristic vertex

(or vertices) of T .



32 uÀ���ÆÆ�(g,�Æ�) 2011 c

2 Proofs of Theorems 0.1 and 0.2

In order to prove the main results, we also need the following lemma.

Lemma 2.1 Let T be a tree of order n with the maximum degree ∆. If T is not the

type T (k, l, d), then there exists a tree T (k, l, d) of order n such that µ(T ) > µ(T (k, l, d)) and

max{k, l} > ∆ − 1.

Proof If ∆ = n− 1 and ∆ = 2, then the assertion clearly holds. Hence assume 3 6 ∆ 6

n − 2. We consider the following two cases.

Case 1 T is a type I tree. By Lemma 1.2, there is a characteristic vertex v such that

there are s > 2 Perron branches B1, · · · , Bs. If there are two Perron branches, let us say

B1 = B2 = T (k1, 1, d1), in B1, · · · , Bs, and v is adjacent to the pendent vertex of B1 and

B2 whose neighbor vertex with degree 2; let T1 be the tree from T by deleting the branches

B3, · · · , Bs. Then by Theorem 2 in [15], µ(T ) = µ(T1). Further, let T2 be the tree of order n

from T1 by adding n − |V (T1)| > 0 pendent vertices to a vertex with degree k1 + 1. Then by

Corollary 1.1 and its proof in [2], µ(T1) > µ(T2). Similarly for an arbitrary type I tree one can

make the vertices in B3, · · · , Bs become pendant vertices of B1. Now without loss of generality,

there are only two branches at v and exists a Perron branch B1 6= T (k1, 1, d1) of order r1 > 2

with diameter d1 at vertex v. Let Mv(B1) be the bottleneck matrix of branch B1 at v. Let

T̂ be the tree of order n obtained from T replacing the branch B1 by the branch B̂1 which is

the tree T (r1 − d1, 1, d1) and joining both v and the pendent vertex of T (r1 − d1, 1, d1) whose

neighbor vertex with degree 2. It is easy to see that Mv(B̂1) ≫ Mv(B1) (see [2], pp.199) with

equality if and only if B̂1 = B1. Moreover, the maximum degree of T̂ is at least ∆. By Theorem

1 and its proof in [2], we have µ(T̂ ) < µ(T ). Now we consider the following two subcases.

Subcase 1.1 v is a characteristic vertex of T̂ . By the construction of T̂ , it is easy to

see that B̂1 is the unique Perron branch of T̂ at vertex v. Hence by Lemma 1.2, T̂ is a type

II tree. Moreover, let u be the other characteristic vertex with adjacent to v. By Lemma 1.2,

u must belong to the branch B̂1. Let B̂2 be the unique branch of T̂ at vertex u containing v.

Let T ′ be the tree of order n obtained from T̂ replacing the branch B̂2 of order r2 > 2 with

diameter d2 by the branch B′

2 which is the tree T (r2 − d2, 1, d2) and joining both u and the

pendent vertex of T (r2 − d2, 1, d2) whose neighbor vertex with degree 2. It is easy to see that

the maximum degree of T ′ at least ∆ and T ′ is the type T (k, l, d) with max{k, l} > ∆ − 1.

Further by Theorem 1 in [2], µ(T ′) 6 µ(T̂ ) < µ(T ). The assertion holds.

Subcase 1.2 v is not a characteristic vertex of T̂ . Since B̂1 is the unique Perron branch

of T̂ at vertex v. Hence by Lemma 1.3, B̂1 contains the characteristic vertex (or vertices) of T̂ .

Let u ∈ V (B̂1) is adjacent to v. Then there are exactly two branches C1 which contains vertex

v and C2 of T̂ at vertex u, here C2 is the same branch correspondent to B2 in T . Let T ′ be

the tree of order n from T̂ replacing C1 of order r3 with diameter d3 by T (r3 − d3, 1, d3) and

joining both vertex u and the pendent vertex of T (r3 − d3, 1, d3) whose neighbor vertex with

degree 2. Clearly, the maximum degree of T ′ at least ∆. Therefore max{k, l} > ∆− 1. Further

by Theorem 1 in [2], µ(T ′) 6 µ(T̂ ) < µ(T ). The assertion holds.

Case 2 T is a type II tree. There exist two adjacent characteristic vertices u and v.
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By Lemma 1.2, the branch B1 of tree T at vertex u containing vertex v is the unique Perron

branch at u. Let T̂ be the tree of order n from T replacing B1 of order r1 > 2 with diameter d1

by B̂1 = T (r1 − d1, 1, d1) and joining both vertex u and the pendent vertex of T (r1 − d1, 1, d1)

the degree of whose neighbor vertex is 2. It is easy to see that Mu(B̂1) ≫ Mu(B1) (see [2],

pp.199) with equality if and only if B̂1 = B1. By Theorem 1 in [2] and its proof, µ(T̂ ) < µ(T ).

Clearly, the maximum degree of T̂ is at least ∆. Now we consider the following two subcases.

Subcase 2.1 u is a characteristic vertex of T̂ . Then B̂1 is the unique Perron branch of

T̂ at vertex u. Hence by Lemma 1.2, T̂ is a type II tree and the other characteristic vertex

w is in branch B̂1. Clearly the degree of vertex w in T̂ is 2. Moreover, let Ĉ1 be the unique

Perron branch of T̂ at vertex w containing vertex u. Let T ′ be the tree from T̂ replacing Ĉ1

by T (r1 − d1, 1, d1) and joining both vertex w and the pendent vertex whose neighbor vertex

with degree 2, where Ĉ1 is the branch of order r1 with diameter d1. Hence by Theorem 1 in [2],

µ(T ) > µ(T̂ ) > µ(T ′). Moreover the maximum degree of T ′ is at least ∆ and T ′ is already the

type T (k, l, d). The assertion holds.

Subcase 2.2 u is not a characteristic vertex of T̂ . By Lemma 1.3, it is easy to show

that the assertion holds by the method of similar to Subcase 1.2. Therefore we finish our proof.

Now we are ready to prove Theorem 0.1.

Proof of Theorem 0.1 Let T be any tree of order n with the maximum degree ∆. If T is

not the type T (k, l, d), then by Lemma 2.1, there exists a tree T (k, l, d) such that µ(T (k, l, d)) <

µ(T ) and k > ∆ − 1, where k > l. By Example 2.6 in [13], µ(T (k, l, d)) > µ(T (k, 1, d + l − 1))

with equality if and only if l = 1. By the above method together with the part (1) of Lemma

1.1, it is easy to prove that

µ(T (k, 1, d + l − 1)) > µ(T (k − 1, 1, d + l)) · · · > µ(T (∆ − 1, 1, n− ∆ + 1)) = µ(T ∗(n, ∆)).

Hence µ(T ) > µ(T ∗(n, ∆)) with equality if and only if T is T ∗(n, ∆).

Proof of Theorem 0.2 Let Ak−1,∆−1 be the bottleneck matrix for the branch of

T ∗(n, ∆) at vertex k containing k − 1 which is a path of length k − 1 and ∆ − 1 vertices

pendant to one end of the path. Let Bn−∆−k be the bottleneck matrix for the branch of

T ∗(n, ∆) at k containing k + 1 with a path of order n − ∆ − k. Then by the argument in

Theorem 6 in [2], we have
1

µ(T ∗(n, ∆))
6 min{ρ(Ak−1,∆−1), ρ(Bn−∆−k)}.

Since f(k) = k(k−1)
2 + (∆− 1)(k − 1) + 1 and g(k) = (n−∆−k)(n−∆−k+1)

2 are the maximum row

sum of matrix Ak−1,∆−1 and Bn−∆−k respectively, we have

1

µ(T ∗(n, ∆))
6 max

k
min{f(k), g(k)}.

Moreover, let k∗ = (n−∆)2+n+∆−4
2(n−1) . Then f(k∗) = g(k∗), and for k > k∗, we have f(k) > g(k)

while for k < k∗, f(k) < g(k). Then by direct computation f(k) 6 f(k∗) for all k 6 k∗, while

g(k) 6 g(k∗) for all k > k∗. Hence it follows that for all k > k∗,

1

µ(T ∗(n, ∆))
6 min{f(k), g(k)} = g(k) 6 g(k∗) = f(k∗),
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and for all k < k∗,
1

µ(T ∗(n, ∆))
6 min{f(k), g(k)} = f(k) 6 f(k∗).

Therefore
1

µ(T ∗(n, ∆))
6 max

k
min{f(k), g(k)} 6 f(k∗).

So we finish our proof.
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