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0 Introduction

The cohomology theory of modular Lie algebras has received considerable attention in

the last decades. As to the cohomology of graded Lie algebras of Cartan type, Qiu and Shen[1]

computed some low-dimensional cohomology groups with coefficients in the mixed product mod-

ules. Shu[2] studied generalized restricted cohomology of the graded Cartan type Lie algbras.

Since Farnsteiner and Strade[3] builded the affinity between induced and coinduced modules and

proved that those mixed product modules defined by Shen[4] coincide with coinduced modules[5],

those results in [1] can be re-derived by Farnsteiner’s results.

In this note, we first prove that the previous work[6−8] of Shu, Zhang and Yao on irreducible

modules for graded Lie algebras of Cartan types W, S, H can be interpreted as coinduced

modules. Then we apply Farnsteiner’s general results to study cohomology of those Lie algebras

of Cartan types W, S and H and extensions of their simple modules.

1 Preliminaries

In this paper, we always assume that the ground field F is of characteristic p > 3, and

that all vector spaces are over F.

1.1 Graded Lie algebras of Cartan type

Fix a positive integer m and an m-tuple n = (n1, · · · , nm) of positive integers. Denote

by A(m;n) the index set {α = (α1, · · · , αm) | 0 6 αi 6 pni−1, i = 1, 2, · · · , m}, denote

(pn1 − 1, pn2 − 1, · · · , pnm − 1) by τ for brevity. There are natural partial orders “�” and “≺”

in A(m;n): α � β, α, β ∈ A(m;n) if and only if αi 6 βi for all i = 1, 2, · · · , m, and α ≺ β

if and only if α � β and α 6= β. In this setting, we can rewrite A(m;n) as A(m;n) = {α =

(α1, α2, · · · , αm) | 0 � α � τ}. We use componentwise operators in A(m;n): For any α, β ∈

A(m;n), put α+β := (α1 +β1, α2 +β2, · · · , αm +βm), α−β := (α1−β1, α2−β2, · · · , αm−βm),

α! :=
m
∏

i=1

αi! ,
(

α
β

)

:=
m
∏

i=1

(

αi

βi

)

, |α| :=
m
∑

i=1

αi.

We have a divided power algebra A(m;n) which is by definition a commutative associative

algebra with a basis {xα | α ∈ A(m;n)}, and multiplication subject to the following rule

xαxβ =

(

α + β

α

)

xα+β , ∀α, β ∈ A(m;n). (1.1)

We make some conventions that

xα = 0 if α /∈ A(m;n); xi := xεi for εi = (δ1,i, · · · , δm,i).

With multiplication rule (1.1), we know A(m;n) is a graded algebra: A(m;n) =
s

⊕

i=0

A(m;n)[i],

where A(m;n)[i] = F-span{xα | |α| = i} and s =
m
∑

i=1

(pni − 1).

Let Di(1 6 i 6 m) be the linear partial derivation of A(m;n) with respect to the i-th

invariant xi such that Di(x
α) = xα−εi , ∀α ∈ A(m;n). In the following, we will recall the three

classes of graded Cartan type Lie algebras of types W, S, H , drawing most of notations and

results from [9].
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(i) Let D ∈ Der A(m;n). D is called a special derivation if D(xα) =
∑m

i=1 xα−εiD(xi).

Then by definition, the generalized Jacobson-Witt algebra W (m;n) is the collection of all

special derivations of the divided power algebra A(m;n). Then by [9, Proposition 2.2, Chapter

4], W (m;n) is a free module over A(m;n) of rank m with a free basis {D1, · · · , Dm}, i.e.

W (m;n) = F-span{xαDi | α ∈ A(m;n), 1 6 i 6 m}. In the following sequel the standard

basis of W (m;n) is always referred to {xαDi | α ∈ A(m;n), 1 6 i 6 m} denoted by {EW
i | i =

1, 2, · · · , tW } such that EW
i = Di for 1 6 i 6 m, where tW = dim W (m;n) = mp

P

ni . The

structure of Lie algebra on W (m;n) is defined via

[fDi, gDj] = fDi(g)Dj − gDj(f)Di

for f, g ∈ A(m;n) and i, j ∈ {1, · · · , m}.

The gradation and filtration of A(m;n) induce the corresponding ones on W (m;n):

W (m;n) =

s−1
⊕

i=−1

W (m;n)[i], and W (m;n) = W (m;n)−1 ⊃ W (m;n)0 ⊃ · · · · · ·

where W (m;n)[i] = F-span{xαDj | α ∈ A(m;n), |α| = i + 1, 1 6 j 6 m}, W (m;n)i =
⊕

j>i

W (m;n)[j], s =
m
∑

i=1

(pni − 1).

It’s specially worth mentioning that W (m;n)0 = F-span{xαDj | |α| > 1, j = 1, 2, · · · , m}

admits a structure of restricted Lie algebra with [p ]-mapping defined just as the p-th power as

usual derivations. W (m;n)[0] ∼= gl(m) under ϕW : W (m;n)[0] −→ gl(m), xiDj 7−→ Eij for all

1 6 i, j 6 m. HW := F-span{HW
i := xiDi | i = 1, 2, · · ·m} is a canonical torus of W (m;n)[0].

(ii) Here in this case we assume m > 3. Define the divergence map div from the gener-

alized Jacobson-Witt algebra W (m;n) to the divided power algebra A(m;n)

div : W (m;n) −→ A(m;n)

m
∑

i=1

fiDi 7−→

m
∑

i=1

Di(fi).

Set ˜S(m;n) = {D ∈ W (m;n) | divD = 0}. Then by definition, the derived algebra of

˜S(m;n) is called the special algebra S(m;n), i.e. S(m;n) = ˜S(m;n)
′

= [ ˜S(m;n), ˜S(m;n)]. By

[9, Proposition 3.3, Chapter 4], S(m;n) = F-span{Dij(x
α) | α ∈ A(m;n), 1 6 i < j 6 m},

where Dij is a linear map from A(m;n) to W (m;n) defined as follows,

Dij : A(m;n) −→ W (m;n)

xα 7−→ Dij(x
α) = xα−εj Di − xα−εiDj.

A standard basis of S(m;n) is the one taken from the following set:

{Dij(x
α) | α ∈ A(m;n), 1 6 i < j 6 m},

denoted by {ES
i | i = 1, 2, · · · , tS} such that ES

i = Di for 1 6 i 6 m, where tS = dim S(m;n) =

(m − 1)(p
P

ni − 1).
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It is obvious that S(m;n) is a graded subalgebra of W (m;n). The gradation and filtration

of S(m;n) inherit from W (m;n), i.e.

S(m;n) =

s−2
⊕

i=−1

S(m;n)[i], and S(m;n) = S(m;n)−1 ⊃ S(m;n)0 ⊃ · · · · · ·

where S(m;n)[i] = S(m;n)
⋂

W (m;n)[i] = F-span{Dkl(x
α) | α ∈ A(m;n), |α| = i + 2, 1 6 k <

l 6 m}, S(m;n)i = S(m;n)
⋂

W (m;n)i =
⊕

j>i

S(m;n)[j], s =
m
∑

i=1

(pni − 1).

It’s specially worth mentioning that S(m;n)0 = F-span{Dij(x
α) | |α| > 2, 1 6 i < j 6 m}

admits a structure of restricted Lie algebra with [p ]-mapping defined just as the p-th power

as usual derivations. S(m;n)[0] ∼= sl(m) under ϕS : S(m;n)[0] −→ sl(m), xεiDj 7−→ Eij for

all 1 6 i 6= j 6 m, and xεiDi − xεj Dj 7−→ Eii − Ejj for all 1 6 i, j 6 m. HS := F-

span{HS
i := xiDi − xi+1Di+1 | i = 1, 2, · · ·m − 1} is a canonical torus of S(m;n)[0].

(3) Here in this case we assume m = 2r is even. Define the Hamiltonian operator DH

from A(2r;n) to W (2r;n) as follows

DH : A(2r;n) −→ W (2r;n)

f 7−→ DH(f) =
2r
∑

i=1

σ(i)Di(f)Di′

where σ(i) :=

{

1, if 1 6 i 6 r,

−1, if r + 1 6 i 6 2r,
and i′ :=

{

i + r, if 1 6 i 6 r,

i − r, if r + 1 6 i 6 2r.

Then by definition H(2r;n) = F-span{DH(xα) | 0 ≺ α ≺ τ} is the Hamiltonian algebra.

The standard basis is always referred to {DH(xα) | α ∈ A(2r;n)} denoted by {EH
i | i =

1, 2, · · · , tH} such that EH
i = Di for 1 6 i 6 2r, where tH = dim H(m;n) = p

P

ni − 2.

It is obvious that H(2r;n) is a graded subalgebra of W (2r;n). The gradation and filtration

of H(2r;n) inherit from W (2r;n), i.e.

H(2r;n) =

s−3
⊕

i=−1

H(2r;n)[i], and H(2r;n) = H(2r;n)−1 ⊃ H(2r;n)0 ⊃ · · · · · ·

where H(2r;n)[i] = H(2r;n)
⋂

W (2r;n)[i] = F-span{DH(xα) | 0 ≺ α ≺ τ, |α| = i +

2}, H(2r;n)i = H(2r;n)
⋂

W (2r;n)i =
⊕

j>i

H(2r;n)[j], s =
2r
∑

i=1

(pni − 1).

It’s specially worth mentioning that H(2r;n)0 = F-span{DH(xα) | |α| > 2} admits a

structure of restricted Lie algebra with [p ]-mapping defined just as the p-th power as usual

derivations. H(2r;n)[0] ∼= sp(2r) under ϕH : H(2r;n)[0] → sp(2r), DH(x2εi ) 7→ σ(i)Eii′ and

DH(xεi+εj ) 7→ σ(j)Eij′ + σ(i)Eji′ . HH := F-span{HH
i := xiDi − xi+rDi+r | i = 1, 2, · · · r} is

a canonical torus of H(2r;n)[0].

1.2 Generalized restricted Lie algebras and their generalized reduced enveloping

algebras

As is well known that not all of Cartan type Lie algebras are restricted Lie algebras, but

those algebras are generalized restricted Lie algebras in the following sense.
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Definition 1.1[10] A generalized restricted Lie algebra L is a Lie algebra associated with

an ordered basis E = (ei) i∈I and a so-called generalized restricted map ϕs : E → L sending

ei 7−→ eϕs

i with s = (si) i∈I, si ∈ Z+ such that adeϕs

i = (adei)
psi

for all i ∈ I.

Let us demonstrate how the three graded Cartan type Lie algebras X(m;n), X ∈

{W, S, H}, are endowed with generalized restricted structures.

Example 1.2 (i) For any restricted Lie algebra (g, [p]), g is obviously a generalized

restricted Lie algebra associated with an arbitrary given basis E, s = 1 := (1, · · · , 1) and

ϕs = [p]|E . Conversely, if a generalized restricted Lie algebra (g, ϕs) is associated with a basis

E and s = 1, then g is a restricted Lie algebra in usual sense by a Jacobson’s result (cf.

[9](2.2.3)), with p-mapping [p] coinciding with ϕs on E.

(ii) In L = X(m;n), X ∈ {W, S, H}, there is a standard basis {ei := EX
i | i = 1, 2, · · · tX}

of L (see 1.1). Then, associated with this basis and s := (n1, n2, · · · , nm, 1, 1, · · · , 1), L is a

generalized restricted Lie algebra with a generalized restricted mapping ϕs: eϕs

i = 0 if i =

1, · · · , m and eϕs

i = e
[p]
i . This is because L0 is a restricted Lie algebra with [p]-mapping defined

just as the p-th power as usual derivations, as well as ad (ei)
pni

= 0 for i = 1, · · · , m.

For restricted Lie algebras and generalized restricted Lie algebras over an algebraically

closed field, we have the following basic fact directly by Schur lemma.

Lemma 1.3 Let F be an algebraically closed field of characteristic p > 0.

(i) Let (g, [p]) be a restricted Lie algebra over F and (V, ρ) is an irreducible representation

of g, then there exists a unique χ ∈ g∗ such that

ρ(x)p − ρ(x[p]) = χ(x)p idV , ∀ x ∈ g. (1.2)

Here the function χ is called a p-character of V . A g-representation (V, ρ) (module V ) satisfying

(1.2) is called a χ-reduced representation (module).

(ii) Let (L, ϕs) be a generalized restricted Lie algebra over F associated with a basis

E = (ei) i∈I and ϕs with s = (si) i∈I . If (V, ρ) is an irreducible representation of L, then there

exists a unique χ ∈ L∗ such that

ρ(ei)
psi

− ρ(eϕs

i ) = χ(ei)
psi

idV , ∀ x ∈ L. (1.3)

Here the function χ is also called a (generalized) p-character of V . A representation

(module) of L satisfying (1.3) is called a generalized χ-reduced representation (module), all of

which constitute a full subcategory of the Lie algebra representation category.

Let’s continue to recall some facts. Assume as above, that g is a restricted Lie algebra

and that L is a generalized restricted Lie algebra. For χ ∈ g∗ or χ ∈ L∗, we define U(g, χ) :=

U(g)/〈xp−x[p]−χ(x)p | x ∈ g〉, Ups(L, χ) := U(L)/〈epsi

i −eϕs

i −χ(ei)
psi

| i ∈ I〉 where 〈xp−x[p]−

χ(x)p | x ∈ g〉 means the ideal in U(g) generated by these central elements xp −x[p] −χ(x)p for

x ∈ g, and where 〈epsi

i −eϕs

i −χ(ei)
psi

| i ∈ I〉 means the ideal in U(L) generated by those central

elements epsi

i −eϕs

i −χ(ei)
psi

for all ei ∈ E. Call U(g, χ) and Ups(L, χ) the χ-reduced enveloping

algebra of g and the generalized χ-reduced enveloping algebra of L respectively. A χ-reduced

module category of g coincides with the unitary U(g, χ)-module category; and a generalized χ-

reduced module category of L coincides with the unitary Ups(L, χ)-module category. Especially,
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in the case when χ = 0 we have the restricted enveloping algebra Up(g) := U(g, 0) and the

generalized restricted enveloping algebra Ups(L) := Ups(L, 0) respectively(cf. 10, 11).

Remark 1.4 (i) In Example 1.2, we know that a restricted Lie algebra (g, [p]) can

be a generalized restricted Lie algebra associated with an arbitrary given basis E and s = 1.

Furthermore, it’s easily seen that in this sense, a generalized χ-reduced module category and

a generalized χ-reduced enveloping algebra coincide with the ones arising from a restricted Lie

algebra.

(ii) The invariance of filtration for L = X(m;n) under Aut(L), X ∈ {W, S, H}, enables

us to define the height of a nonzero χ ∈ L∗ via ht(χ) := max{i | χ(Li−1) 6= 0}, and ht(0) := −1.

Then the height function on L∗ is invariant under the action of Aut(L) defined by σ ·χ = χ◦σ−1

for σ ∈ Aut(L) and χ ∈ L∗.

1.3 Induced and coinduced modules

Let L = X(m;n), X ∈ {W, S, H}, χ ∈ L∗. Set zi = Dpmi

i − χ(Di)
pmi

∈ C(U(L)), 1 6 i 6

m. Denote by O(L, L0) the subalgebra of U(L) generated by L0 and those central elements

zi, 1 6 i 6 m. Then by PBW Theorem, U(L) is a free O(L, L0)-module with basis {Eα :=

Dα1
1 Dα2

2 · · ·Dαm
m | 0 � α � τ}.

Let σ : L0 −→ F be the Lie algebra homomorphism given by σ(x) := tr(adL/L0
(x)), ∀x ∈

L0. Note that the correspondence x 7−→ x + σ(x) is a homomorphism from L0 to U(L0)
−,

then it extends uniquely to an algebra homomorphism Ψ : U(L0) −→ U(L0). Ψ is in-

deed an isomorphism with inverse Ψ−1 : x 7−→ x − σ(x), ∀x ∈ L0. Note that O(L, L0) ∼=

F [z1, z2, · · · , zm]
⊗

U(L0), then ρ = 1
⊗

Ψ defines an isomorphism of O(L, L0).

For any L0-module V , the action of U(L0) can be extended to O(L, L0) by letting the

polynomial algebra F [z1, z2, · · · , zm] operate via canonical supplementation. Henceforth all L0-

modules will be considered as O(L, L0)-modules in this fashion. A twisted action on V can

be introduced by setting x ◦ v = x · v + σ(x)v, ∀x ∈ L0, v ∈ V . This new L0-module will be

denoted as Vσ. One can easily see that x ◦ v = ρ(x)v, ∀x ∈ L1, v ∈ V .

Definition 1.5 The induced L-module from a module V of the subalgebra L0 denoted

by IndL0(V ) is by definition U(L)
⊗

O(L,L0)
V with L-action defined by left multiplication.

The coinduced module from a module V of the subalgebra L0 denoted by CoindL0(V ) is by

definition HomO(L,L0)(U(L), V ) with L-action given by (x · f)(u) = f(ux), ∀u ∈ U(L), x ∈ L.

The following theorem is from [5, Theorem 1.4] which gives the relationship between

induced modules and coinduced modules.

Theorem 1.6[5] Let V be an L0-module, then IndL0(Vσ) ∼= CoindL0(V ) as L-modules.

2 Irreducible modules of graded Cartan type Lie algebras

In the sequel, let L = X(m;n), X ∈ {W, S, H}. Any irreducible L-module is a generalized

χ-reduced L-module for some χ ∈ L∗.

Definition 2.1 An irreducible L-module M with generalized p-character χ ∈ L∗ is

called an exceptional module if ht(χ) 6 0 and M contains an irreducible L[0]-module which
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is a highest weight module with a fundamental weight as the highest weight. Any irreducible

L-module which is not exceptional is called non-exceptional.

We first have the following key observation.

Proposition 2.2 Let L = X(m;n), X ∈ {W, S, H}, and χ ∈ L∗. Assume V is a

χ|L0-reduced L0-module. Let M = Ups(L, χ)
⊗

Ups (L0,χ|L0) V , which is a generalized χ-reduced

L-module. Denote by Ind the induced module structure on M . Define another L-module

structure ρ
L

on M by ρ
L

= Ind − ρ
R
◦ div, where ρ

R
(xα)(Eβ ⊗ v) = (−1)|α|

(

β
α

)

Eβ−α ⊗ v,

0 � α, β � τ, v ∈ V, Eβ =
∏m

i=1 Dβi

i . Then (M, ρL) ∼= Ind
L
L0

(Vσ).

Proof Let L = W (m;n). Take xαDi ∈ L, then ρ
L
(xαDi) = (Ind−ρ

R
◦div)(xαDi). So,

for any Eβ ⊗ v ∈ M , we have

ρ
L
(xαDi)(E

β ⊗ v) =(xαDi)E
β ⊗ v − ρ

R
(xα−εi )(Eβ ⊗ v)

=
∑

γ

(−1)|γ|
(

β

γ

)

Eβ−γ(xα−γDi) ⊗ v − (−1)|α|−1

(

β

α − εi

)

Eβ−α+εi ⊗ v

=
∑

0�γ≺α

(−1)|γ|
(

β

γ

)

Eβ−γ ⊗ xα−γDi · v + (−1)|α|

(

β

α

)

Eβ−α+εi ⊗ v

− (−1)|α|−1

(

β

α − εi

)

Eβ−α+εi ⊗ v

=
∑

0�γ≺α

(−1)|γ|
(

β

γ

)

Eβ−γ ⊗ xα−γDi · v + (−1)|α|

(

β + εi

α

)

Eβ−α+εi ⊗ v.

On the other hand, the action of xαDi on Eβ ⊗ v in the module IndL
L0

Vσ is computed as

follows:

xαDi · (E
β ⊗ v) =(xαDi)E

β ⊗ v

=
∑

γ

(−1)|γ|
(

β

γ

)

Eβ−γ(xα−γDi) ⊗ v

=
∑

0�γ≺α

(−1)|γ|
(

β

γ

)

Eβ−γ ⊗ xα−γDi ◦ v + (−1)|α|

(

β

α

)

Eβ−α+εi ⊗ v

=
∑

0�γ≺α

(−1)|γ|
(

β

γ

)

Eβ−γ ⊗ xα−γDi · v − (−1)|α|−1

(

β

α − εi

)

Eβ−α+εi ⊗ v

+ (−1)|α|

(

β

α

)

Eβ−α+εi ⊗ v

=
∑

0�γ≺α

(−1)|γ|
(

β

γ

)

Eβ−γ ⊗ xα−γDi · v + (−1)|α|

(

β + εi

α

)

Eβ−α+εi ⊗ v.

as desired.

Let L = S(m;n) or H(m;n). Note that in this case, σ = 0. So M ∼= IndL
L0

(V ) ∼=

IndL
L0

(Vσ).

Summing up, we complete the proof.

Remark 2.3 Keep notations as in Proposition 2.2. Moreover assume ht(χ) < min{pni −

pni−1 | 1 6 i 6 m} − 1 + δXW . Then by [6-8], any non-exceptional irreducible L-module
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with generalized p-character χ ∈ L∗ is of the form (M, ρL). Furthermore, any two irreducible

L0-submodules of M are isomorphic. And any two irreducible non-exceptional generalized χ-

reduced L-modules are isomorphic if and only if their irreducible L0-submodules are isomorphic.

Combining this with the above theorem, any irreducible generalized χ-reduced non-exceptional

L-module with ht(χ) < min{pni−pni−1 | 1 6 i 6 m}−1+δXW is induced from some irreducible

χ|L0-reduced L0-module.

Theorem 2.4 Let χ ∈ L∗ and V be an L0-module with p-character χ|L0 , then there

exists isomorphism of U(L)-modules

ϕ : U(L)
⊗

O(L, L0)
V −→ Ups(L, χ)

⊗

Ups (L0, χ|L0)
V.

Proof Let π : U(L) −→ Ups(L, χ) be the canonical projection, then π maps U(L0) onto

Ups(L0, χ|L0). Consider now the following mapping

Γ : U(L) × V −→ Ups(L, χ)
⊗

Ups (L0, χ|L0 )
V

(u, v) 7−→ π(u) ⊗ v, ∀u ∈ U(L), v ∈ V.

Since Γ(uzi, v) = π(uzi) ⊗ v = π(u)π(zi) ⊗ v = 0 and zi · v = 0 (1 6 i 6 m), as well as

Γ(ux, v) = π(u)π(x) ⊗ v = π(u) ⊗ π(x)v = π(u) ⊗ x · v = Γ(u, x · v), ∀x ∈ L0.

Γ is O(L, L0)-balanced. Therefore, Γ induces an F -linear mapping

ϕ : U(L)
⊗

O(L, L0)
V −→ Ups(L, χ)

⊗

Ups (L0, χ|L0)
V

u ⊗ v 7−→ π(u) ⊗ v, ∀u ∈ U(L), v ∈ V.

ϕ is obvious a U(L)-module homomorphism. Assume that {vi | 1 6 i 6 t} is a basis of

V , then {Eβ ⊗ vi := Dβ1

1 Dβ2

2 · · ·Dβm
m ⊗ vi | 0 � β � τ, 1 6 i 6 t} and {π(Eβ ⊗ vi) :=

π(D1)
β1π(D2)

β2 · · ·π(Dm)βm ⊗ vi | 0 � β � τ, 1 6 i 6 t} are basis of U(L)
⊗

O(L, L0)
V and

Ups(L, χ)
⊗

Ups (L0, χ|L0 )V respectively. So ϕ is an isomorphism. We complete the proof.

Combining Theorem 1.6, Remark 2.3 and Theorem 2.4, we obtain the following.

Corollary 2.5 Let χ ∈ L∗ and V be an L0-module with p-character χ|L0 . Then

Ups(L, χ)
⊗

Ups (L0, χ|L0 )Vσ
∼= CoindL0(V ) as L-modules. In particular, all irreducible non-

exceptional L-modules with generalized p-character χ ∈ L∗ satisfying ht(χ) < min{pni −pni−1 |

1 6 i 6 m} − 1 + δXW are coinduced modules.

3 Extensions and cohomology

Let L = X(m;n), X ∈ {W, S, H}. We know in the previous section that all irreducible non-

exceptional L-modules with generalized p-character χ ∈ L∗ satisfying ht(χ) < min{pni −pni−1 |

1 6 i 6 m} − 1 + δXW are coinduced modules. Furthermore, in this section, we assume in

addition χ|L[−1]
= 0 so that we can apply some results of Rolf. Farnsteiner to our case to study

extensions between irreducible L-modules as well as cohomology of L.
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Theorem 3.1 Let L = X(m;n), X ∈ {W, S, H}. For any two irreducible non-

exceptional L-modules M = Ups(L, χ)
⊗

Ups (L0, χ|L0) V and N = Ups(L, χ′)
⊗

Ups (L0, χ ′|L0) W

with generalized p-characters χ, χ′ ∈ L∗ satisfying ht(χ), ht(χ ′) < min{pni − pni−1 | 1 6 i 6

m} − 1 + δXW , where V and W are irreducible L0-submodules of M and N respectively, we

have
Extn

U(L)(M, N) ∼=
⊕

p+q=n

∧p
(L/L0)

⊗

F
ExtqU(L0)(M, W )

∼=
⊕

p+q=n

∧p
(L/L0)

⊗

F
ExtqU(L0)(Vσ, N).

Proof Note that by Proposition 2.2 and Remark 2.3, M ∼= IndL0(Vσ), N ∼= IndL0(Wσ).

Let zi = Dpmi

i , 1 6 i 6 m, then zi · M = zi · N = 0, for all i. By [5, Corollary 3.3],

Extn
U(L)(M, N) =ExtnU(L)(IndL0(Vσ), IndL0(Wσ))

∼=
⊕

p+q=n

∧p
(L/L0)

⊗

F
ExtqU(L0)(M, W )

∼=
⊕

p+q=n

∧p
(L/L0)

⊗

F
ExtqU(L0)(Vσ, N).

Theorem 3.2 Keep assumptions as in Theorem 3.1 and in addition assume that

χ(HX
i ) 6= χ ′(HX

i ) for some i ∈ ΞX , where ΞX is defined as follows:

ΞX :=











{1, 2, · · · , m}, if X = W,

{1, 2, · · · , m − 1}, if X = S,

{1, 2, · · · , m/2}, if X = H.

Then Extn
U(L)(M, N) = 0, ∀n > 0.

Proof Note that V and W are H-weight modules with weights P = {γ | Vγ 6= 0}, Q =

{γ′ | Wγ′ 6= 0}, where Vγ = {v ∈ V | h · v = γ(h)v, ∀h ∈ HX}, Wγ′ = {w ∈ W | h · w =

γ′(h)w, ∀h ∈ HX}. For any γ ∈ P , as

Hp
i v − Hiv = χ(Hi)

pv, ∀ v ∈ Vγ .

Then γ(Hi)
p − γ(Hi) = χ(Hi)

p. Similarly, for any γ ′ ∈ Q

γ ′(Hi)
p − γ ′(Hi) = χ ′(Hi)

p.

So (γ − γ ′)(Hi) /∈ Fp. Then the statement is a consequence of [5, Corollary 3.5].

The following result is a direct consequence of Theorem 5.1 in [5].

Proposition 3.3 Keep notations and assumptions as in Theorem 1.3, then

(i) Hn(L0, V ) ∼= Hn(L, L[−1], M), ∀n > 0.

(ii) Hn(L, M) ∼=
⊕

p+q=n

∧p
L[−1]

⊗

F Hq(L, L[−1], M), ∀n > 0.

Acknowledgements The author would like to express her sincere gratitude to the editors and

anonymous referees for their helpful comments and suggestion leading to improve the quality

and presentation.



1 3 Ï �¦: �zCartan.o�ê�p��9Ù*Ü��:5P 99

REFERENCES

[ 1 ] QIU S, SHEN G Y. Cohomology of graded Lie algebras of Cartan type of characteristic p[J]. Abh Math Semin

Univ Hamb, 1987, 57: 139-156.

[ 2 ] SHU B. On the cohomology of generalized restricted Lie algebras[J]. Chinese Ann Math Ser B, 1998, 19: 421-432.

[ 3 ] FARNSTEINER R, STRADE H. Shapiro’s lemma and its consequences in the cohomology theory of modular

Lie algebras[J]. Math Z, 1991, 206: 153-168.

[ 4 ] SHEN G Y. Graded modules of graded Lie algebras of Cartan type, I[J]. Scientica Sinica, 1986, 29: 570-581.

[ 5 ] FARNSTEINER R. Extension functors of modular Lie algebras[J]. Math Ann, 1990, 288: 713-730.

[ 6 ] ZHANG C W. Representations of the restricted Lie algebras of the Cartan type[J]. J Algebra, 2005, 290(2):

408-432.

[ 7 ] YAO Y F, SHU B. Irreducible representations of the special algebras in prime characteristic[J]. Contemp Math,

2009, 478: 273-295.

[ 8 ] SHU B, ZHANT C W. Restricted representations of the witt superalgebras[J]. J Algebra, 2010, 324: 652-672.

[ 9 ] STRADE H, FARNSTEINER R. Modular Lie Algebras and Their Representations[M]. New York: Marcel Dekker,

1988.

[10] SHU B. The generalized restricted representations of graded Lie algebras of cartan type[J]. J Algebra, 1997, 194:

157-177.

[11] SHU B. Generalized restricted Lie algebras and representations of the Zassenhaus algebra[J]. J Algebra, 1998,

204: 549-572.

(þ�1 67 �)

[ 8 ] WANG Q L, LI S J. Generalized higher-order optimality conditions for set-valued optimization under Henig

efficiency[J]. Numer Funct Anal Optim, 2009, 30(7-8): 849-869.

[ 9 ] LI S J, YANG X Q, CHEN G Y. Nonconvex vector optimization of set-valued mappings[J]. J Math Anal Appl,

2003, 283: 337-350.

[10] CERTH C, WEIDNER P. Nonconvex separation theorems and some applications in vector optimization[J]. J

Optim Theory Appl, 1990, 67: 297-320.

[11] CHEN G Y, GOH C J, YANG X Q. Vector network equilibrium problems and nonlinear scalarization methods[J].

Math Meth Oper Res , 1999, 49: 239-253.

(þ�1 84 �)

[11] FAN Y Z, TAM B S, ZHOU J. Maximizing spectral radius of unoriented Laplacian matrix over bicyclic graphs

of a given order[J]. Linear Multilinear Algebra, 2008, 56(4): 381-397.

[12] FENG L H, GUI G. The signless laplacian spectral radius of unicyclic graphs with graph constraints[J]. KYUNG-

POOK Math J, 2009, 49: 123-131.

[13] FENG L H. The signless laplacian spectral radius for bicyclic graphs with k Pendant Vertices[J]. KYUNGPOOK

Math J, 2010, 50: 109-116.

[14] DAS K C. A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of

graphs[J]. Linear Algebra and its Applications, 2004, 376: 173-186.

[15] OLIVEIRA C S, DE LIMA L S, DE ABRREU N M M, et al. Bounds on the index of the signless Laplacian of

a graph[J]. Discrete Appl Math, 2010, 158(4): 355-360.

[16] HONG Y, ZHANG X D. Sharp upper and lower bounds for largest eigenvalue of the Laplacian matrices of

trees[J]. Discrete Math, 2005, 296: 187-197.


