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Abstract: In this paper, a parametric vector equilibrium problem in a lexicographic order

was first introduced. Then, by using an auxiliary problem, the lower semicontinuity of the

solution set map was established based on the density of the solution set mapping for a

parametric lexicographic vector equilibrium problem.
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0 Introduction

As a unified model of vector optimization problems, vector variational inequality prob-

lems, variational inclusion problems and vector complementarity problems, vector equilibrium

problems have been intensively studied. The stability analysis of the solution mapping for

these problems is an important topic in vector optimization theory. Recently, a great deal of

research has been denoted to the semicontinuity of the solution mapping for a parametric vector

equilibrium problem.
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Based on the assumption of (strong) C-inclusion property of a function, Anh and Khanh[1]

obtained the upper and lower semicontinuity of the solution set map of parametric multivalued

(strong) vector quasiequilibrium problems. By virtue of a scalarization technique, Chen et al.[2,3]

discussed the semicontinuity of the solution set map of parametric (weak) vector equilibrium

problems. Especially, they investigated the lower semicontinuity and continuity of the solution

set map of a parametric generalized vector equilibrium problem by a scalarization method and

a property of the union of a family of set-valued mapping. Anh and Khanh[4] obtained the

semicontinuity of a class of parametric quasiequilibrium problems by a generalized concavity

assumption and a closedness of the level set of functions.

It is well known that partial order plays an important role in vector optimization theory.

The vector optimization problems in the previous references are studied in the partial order

induced by a closed or open cone. But in some situations, the cone is neither open nor closed,

such as the lexicographic cone. On the other hand, since the lexicographic order induced by the

lexicographic cone is a total order, it can refine the optimal solution points to make it smaller

in the theory of vector optimization. Thus, it is valuable to investigate the vector optimization

problems in the lexicographic order. In fact, there has been some literature in this respect, such

as [5, 6]. But, there is no paper studing the stability of the problems.

Motivated by the work of [2, 3, 5, 7-9], this paper aims to establish the lower semicontinuity

of the solution set map to a parametric lexicographic vector equilibrium problem. Since the

lexicographic cone is neither open nor closed, the direct investigation of the problem is not an

easy task. For the particularity of lexicographic cone, by using an auxiliary problem and a

density result, we first obtain the lower semicontinuity of the solution mapping to parametric

lexicographic vector equilibrium problem.

The rest of the paper is organized as follows. In Section 1, we introduce the paramet-

ric lexicographic vector equilibrium problems, and recall some concepts of semicontinuity. In

Section 2, we investigate the lower semicontinuity of the solution set mapping to parametric

lexicographic vector equilibrium problems.

1 Preliminaries

Throughout this paper, let X and Λ be Hausdorff topological vector spaces. The lexico-

graphic cone of R2 is defined as the set of all vectors whose first nonzero coordinate (if any) is

positive:

Slex := {(s1, s2) ∈ R2 : s1 > 0)} ∪ {(s1, s2) ∈ R2 : s1 = 0 and s2 > 0}.

Note that the lexicographic cone Slex is neither closed nor open. Remark also that Slex is

convex, pointed and Slex ∪ (−Slex) = R2. The binary relation defined for any u, v ∈ R2 by

u 6lex v ⇔ u ∈ v − Slex

is a total order on R2. The binary relation induced by Slex is called a lexicographic order.
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Let f(·, ·) = (f1(·, ·), f2(·, ·)) : A×A → R2 be a vector-valued function, where A is a subset

of X and fi : A × A → R, for i = 1, 2. Now, we introduce the lexicographic vector equilibrium

problem: find x ∈ A such that

f(x, y) ∈ Slex, ∀y ∈ A.

If f(x, y) = g(y) − g(x), x, y ∈ A, and if x̄ ∈ A is a lexicographic vector equilibrium solution,

then x̄ ∈ A is called a lexicographic optimization solution[12] of g.

When the function f is perturbed by a parameter λ ∈ Λ, we can define the parametric

lexicographic vector equilibrium problem: find x ∈ E(λ) such that

f(x, y, λ) ∈ Slex, ∀y ∈ E(λ),

where E : Λ → 2X\{Ø} is a set-valued mapping with E(Λ) =
⋃

λ∈Λ

E(λ) ⊂ A. For each λ ∈ Λ,

we denote by S(λ) the solution set mapping of the parametric lexicographic vector equilibrium

problem, i.e.,

S(λ) := {x ∈ E(λ) : f(x, y, λ) ∈ Slex, ∀y ∈ E(λ)}.

Next we recall some basic definitions. Let F : Λ → 2X be a set-valued mapping, and given

λ0 ∈ Λ.

Definition 1.1[10]

(i) F is said to be upper semicontinuous (u.s.c., in short) at λ0 if for any open set N ⊂ X

with F (λ0) ⊂ N , there exists a neighborhood N(λ0) of λ0 such that for every λ ∈ N(λ0),

F (λ) ⊂ N .

(ii) F is said to be lower semicontinuous (l.s.c., in short) at λ0 if for any open set N ⊂ X

with F (λ0) ∩ N 6= ∅, there exists a neighborhood N(λ0) of λ0 such that for every λ ∈ N(λ0),

F (λ) ∩ N 6= ∅.

We say F is u.s.c.(resp. u.s.c.) on Λ if it is u.s.c.(resp. l.s.c.) at each λ0 ∈ X . F is said

to be continuous on Λ if it is both u.s.c. and l.s.c. on Λ.

Proposition 1.2[10,11] If F has compact values (i.e., F (λ) is a compact set for each

λ ∈ Λ), then F is u.s.c. at λ0 ∈ Λ if and only if for any net {λα} ⊂ Λ with λα → λ0 and for

any yα ∈ F (λα), there exist y0 ∈ F (λ0) and a subnet {yβ} of {yα}, such that yβ → y0.

The lower limit of F is defined as

lim inf
λ→λ0

F (λ) := {x ∈ X : ∀λγ → λ0, ∃xγ ∈ F (λγ), s.t.xγ → x)}.

Proposition 1.3[7]

(i) lim infλ→λ0
F (λ) is a closed set;

(ii) F is l.s.c at λ0 ∈ dom F := {λ|F (λ) 6= ∅} if and only if F (λ0) ⊆ lim inf
λ→λ0

F (λ).

Now, we introduce the following concept of concavity in the sense of lexicographic order.

Definition 1.4 Let A be a convex subset of X and f = (f1, f2) : A → R2 be a vector-

valued mapping. f is said to be Slex-concave if, for all x, y ∈ A and l ∈ (0, 1) such that

f(lx + (1 − l)y) − lf(x) − (1 − l)f(y) ∈ Slex.
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If f1 : A → R is a strict concave function on A, i.e., for any x, y ∈ A with x 6= y and l ∈ (0, 1),

f1(lx + (1 − l)y) > lf1(x) + (1 − l)f1(y),

then f is Slex-concave on A. However, the converse is not valid. The following example

illustrates this case.

Example 1.5 Let A = [0, 1] and f(x, y) = (f1(x, y), f2(x, y)) : A × A → R2, where

f1(x, y) = f2(x, y) = x + y. For each x1, x2 ∈ A and l ∈ (0, 1),

f(x1 + (1 − l)x2, y) − lf(x1, y) − (1 − l)f(x2, y) = (0, 0) ∈ Slex,

namely, for each y ∈ A, f(·, y) is Slex-concave on A. However, it is obvious that f1(·, y) is not

a strict concave function on A, for each y ∈ A.

2 Main results

In order to investigate the lower semicontinuity of the solution mapping S(·) to the para-

metric lexicographic vector equilibrium problem, we consider the following auxiliary problem:

find x ∈ E(λ) such that

f(x, y, λ) ∈ S, ∀y ∈ E(λ),

where S ={(s1, s2)∈R2 : s1 >0}. For each λ ∈ Λ, we denote by S1(λ) the solution set mapping

of the auxiliary problem, i.e.,

S1(λ) := {x ∈ E(λ) : f(x, y, λ) ∈ S, ∀y ∈ E(λ)}.

Since the existence of solution for lexicographic vector equilibrium problem has been intensively

studied in the literature, we focus on the stability study, assuming always that S1(λ) 6= ∅ and

S(λ) 6= ∅. Clearly, S1(λ) ⊆ S(λ).

Lemma 2.1 Suppose that the following conditions are satisfied:

(i) E(·) is continuous with nonempty compact values at λ0;

(ii) f1(·, ·, ·) is lower semicontinuous on E(Λ) × E(Λ) × Λ.

Then, S1(·) is l.s.c at λ0.

Proof For fixed λ0 ∈ Λ. Suppose to the contrary that S1(·) is not l.s.c. at λ0. Then,

there exist a net {λα} with λα → λ0 and x0 ∈ S1(λ0) such that for any xα ∈ S1(λα), xα 6→ x0.

Since E(·) is l.s.c. at λ0, for x0 ∈ E(λ0), there exists x̄α ∈ E(λα) such that x̄α → x0. By

the contradiction assumption, there must be a net {x̄β} of {x̄α} such that x̄β 6∈ S1(λβ), for all

β, i.e., there exists ȳβ ∈ E(λβ) such that f(x̄β , ȳβ , λβ) 6∈ S, namely,

f1(x̄β , ȳβ, λβ) 6 0. (1)

Since E(·) is u.s.c. at λ0 with compact values, for ȳβ ∈ E(λβ), there exists y0 ∈ E(λ0) satisfying

ȳβ → y0(taking a subnet if necessary). By the condition (ii) and Eq. (1), we have

f1(x0, y0, λ0) 6 0,
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which contradicts x0 ∈ S1(λ0). Thus, our result holds and the proof is complete.

Now we show that, under some suitable conditions, the solution set of the auxiliary problem

is dense in the solution set to parametric lexicographic vector equilibrium problem.

Lemma 2.2 Suppose that the following conditions are satisfied:

(i) E(λ0) is a convex set;

(ii) for each y ∈ E(λ0), f(·, y.λ0) is Slex-concave on E(λ0).

Then, S1(λ0) ⊆ S(λ0) ⊆ clS1(λ0).

Proof It is obvious that for each λ ∈ Λ, S1(λ) ⊆ S(λ). Next we claim that S(λ0) ⊆

clS1(λ0). In fact, let x1 ∈ S1(λ0), x ∈ S(λ0) and xl = (1 − l)x + lx1 with l ∈ (0, 1), we only

need to prove that xl ∈ S1(λ0). By assumptions and the condition (ii), we have that for all

y ∈ E(λ0),

f((1 − l)x + lx1, y, λ0) ∈ (1 − l)f(x, y, λ0) + lf(x1, y, λ0) + Slex

⊆ S + Slex + Slex = S.

Namely, xl ∈ S1(λ0). Thus, our result holds and the proof is complete.

Now we state lower semicontinuity result of S(·) as follows.

Theorem 2.3 Suppose that the following conditions are satisfied:

(i) E(·) is continuous with nonempty compact convex values at λ0;

(ii) f1(·, ·, ·) is lower semicontinuous on E(Λ) × E(Λ) × Λ;

(iii) for each y ∈ E(λ0), f(·, y, λ0) is Slex-concave on E(λ0).

Then, S(·) is l.s.c at λ0.

Proof By Lemmas 2.1 and 2.2 and Proposition 1.3, for λ0 ∈ Λ, we have

S(λ0) ⊆ clS1(λ0) ⊆ lim inf
λ→λ0

S1(λ) ⊆ lim inf
λ→λ0

S(λ).

Then, by Proposition 1.3, S(·) is l.s.c. at λ0. By the arbitrariness of λ0, S(·) is l.s.c on Λ. This

completes the proof.
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lim
k→+∞

nk

{

Yt

(
y + z · (Bt+ 1

n
k

−Bt), t+
1

nk

, g1

)
− y

}

= g1(t, y, z);

lim
k→+∞

nk

{

Yt

(
y + z · (Bt+ 1

n
k

−Bt), t+
1

nk

, g2

)
− y

}

= g2(t, y, z).

u´, (Üþ¡�A�ªf��

g1(t, y, z) > g2(t, y, z), dP × dt− a.e..

[ë � © z]

[ 1 ] BRIAND P, COQUET F, HU Y, et al. A converse comparison theorem for BSDEs and related properties of

g-expectation[J]. Electronic Communications in Probability, 2000, 5: 101-117.

[ 2 ] JIANG L. Convexity, translation invariance and subadditivity for g-expectations and related risk measures[J].

Annals of Applied Probability, 2008, 18(1): 245-258.

[ 3 ] FAN S J, JIANG L. A representation theorem for generators of BSDEs with continuous linear-growth generators

in the space of processes[J]. Journal of Computational and Applied Mathematics, 2010, 235: 686-695.

[ 4 ] FAN S J, JIANG L, XU Y. Representation theorem for generators of BSDEs with monotonic and polynomial-

growth generators in the space of processes[J]. Electronic Journal of Probability, 2011, 16(27): 830-834.

[ 5 ] CHEN Z J, WANG B. Infinite time interval BSDEs and the convergence of g-martingales[J]. Journal of the

Australian Mathematical Society. Series A, 2000, 69: 187-211.

[ 6 ] HEWITT E, STROMBERG K R. Real and Abstract Analysis[M]. New York: Springer-Verlag, 1978.

[ 7 ] �We. y�VÇØÄ: [M]. 2�. þ°: E��ÆÑ��, 2005.

(þ�1 135 �)

[ 7 ] ANH L Q, KHANH P Q. Semicontinuity of solution sets to parametric quasivariational inclusions with applica-

tions to traffic networks I: uper semicontinuities[J]. Set-Valued Analysis, 2008, 16: 267-279.

[ 8 ] LI S J, FANG Z M. Lower semicontinuity of the solution mappings to a parametric generalized Ky Fan inequal-

ity[J]. Journal of Optimization Theory and Applications, 2010, 147: 507-515.

[ 9 ] GONG X H, YAO J C. Lower semicontinuity of the set of efficient solutions for generalized systems[J]. Journal

of Optimization Theory and Applications, 2008, 138: 197-205.

[10] AUBIN J P, EKELAND I. Applied Nonlinear Analysis[M]. New York: Wiley, 1984.

[11] FERRO F. A minimax theorem for vector-valued functions[J]. Journal of Optimization Theory and Applications,

1989, 60: 19-31.


	16.2012-math-008修改稿 (1).pdf
	Acr179.tmp

