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0 Introduction

Aron and Lohman[1] introduced the λ property which for infinite dimensional Banach

spaces is more important than the Krein-Milman property, because for Banach spaces with the

λ property we have that c̄o(ExtB(X)) = B(X) although B(X) need not to be compact[2]. The

λ property of classical Orlicz spaces has been discussed in [3-5]. In this paper, we study the

criteria for being λ point in generalized Orlicz function space equipped with the Luxemburg

norm, and then the λ property and the uniform λ property of such spaces.

Let [X, ‖ · ‖] be a Banach space, S(X) and B(X) denote the unit sphere and unit ball

of X , respectively. A point x ∈ S(X) is said to be an extreme point of B(X) if x cannot be

written as x = 1
2 (y+z), where y and z are distinct points in S(X). Denote the set of all extreme

points of B(X) as Ext B(X). For x ∈ B(X), we associate the number λ(x) = sup{λ ∈ [0, 1] :

x = λe + (1 − λ)y, y ∈ B(X), e ∈ Ext B(X)}, and λ(x) = 0 if Ext B(L(M)) = ∅. We call x a λ

point if λ(x) > 0; X to have the λ property if λ(x) > 0 for all x ∈ B(X). We call X to have

the uniform λ property if λ(X) > 0, where λ(X) = inf{λ(x) : x ∈ B(X)}.

Let R denote the set of all real numbers. A left-continuous function M : R → [0, +∞] is

called an Orlicz function if M is convex and even, M(0) = 0. For an Orlicz function M , set

α = sup{u : M(u) = 0}, β = sup{u : M(u) < +∞}.

u ∈ R is called a strictly convex point of M , provided M(u) <
M(u+ε)+M(u−ε)

2 for all ε > 0.

For a < b ∈ R, an interval (a, b) is called a structural affine interval (SAI) of M, if M is affine

on (a, b) and it is not affine on either (a− ε, b) or (a, b + ε) for all ε > 0; for a ∈ R, an interval

(a, +∞) is called an infinite structural affine interval of M if M is affine on (a, +∞) and it is

not affine on (a − ε, +∞) for all ε > 0. Let {(ai, bi)}∞i=1 be all structural affine intervals of M,

and then denote SCM = R \
[ ∞⋃

i=1

(ai, bi)
]
.

Let (G, Σ, µ) be a non-atomic finite measurable space. For u(t) a measurable function

on G, its modular is defined by ρM (u) =
∫

G
M(u(t))dt. The generalized Orlicz space L(M) is

constructed as

L(M) = {u : ∃k > 0, ρM (ku) < ∞},

equipped with the Luxemburg norm

‖u‖(M) = inf{k > 0 : ρM (
u

k
) 6 1}.

For more details, please refer to [6]. In order to avoid trivial cases, we assume that there exist

u1, u2 > 0 such that M(u1) > 0 and M(u2) < ∞.

1 Main results

For the convenience of reading, we present some auxiliary lemmas.

Lemma 1.1 For an Orlicz function M ,

(1) when M(β)µG > 1, u ∈ ExtB(L(M)) ⇔

(a) ρM (u) = 1, and (b) µ{t ∈ G : u(t) 6∈ SCM} = 0;
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(2) when M(β)µG 6 1, u ∈ ExtB(L(M)) ⇔ |u(t)| = β a.e. on G.

Proof Referring to [7], we can get the lemma.

Remark 1.1 Take s̃ign(u(t)) =

{
1, u(t) > 0

−1, u(t) < 0
for any u(t). Then

u(t) = λe(t) + (1 − λ)v(t) ⇔ |u(t)| = u(t)s̃ign(u(t)) = λe(t)s̃ign(u(t)) + (1 − λ)v(t)s̃ign(u(t)).

Since e ∈ Ext B(L(M)) ⇔ e · ε ∈ Ext B(L(M)) by Lemma 1.1, where |ε(t)| = 1. Thus

λ(u) = λ(|u|) and without loss of generality, we assume u(t) > 0 in the following.

Lemma 1.2[6] Let Ext B(X) 6= ∅. If x, y, z ∈ B(X) and x = αy + (1 − α)z for some

α ∈ (0, 1), then λ(x) > αλ(y). Consequently, λ(0) = 1
2 and

λ(x) > max
{1

2
(1 − ‖x‖), λ

( x

‖x‖

)
‖x‖

}
, (x(6= 0) ∈ B(X)).

Remark 1.2 Since λ(x) = 1 whenever x ∈ Ext B(X), and by Lemma 1.2 λ(x) >

1
4λ

(
x

‖x‖

)
> 0, we only need to discuss x ∈ S(X) \ Ext B(X) in the following.

Remark 1.3 For any u, define

v(t) =

{
α, 0 6 u(t) < α,

u(t), u(t) > α,
and w(t) =

{
2u(t) − α, 0 6 u(t) < α,

u(t), u(t) > α.

Then µ{t : v(t) < α} = 0, and u = 1
2 (v + w) which implies λ(u) >

1
2λ(v) by Lemma 1.2. So we

assume µ{t : u(t) < α} = 0 in the following.

In the following, we denote {(ai, bi)}i the set of all finite structural affine intervals of M

except (−α, α).

Lemma 1.3 If β = +∞ and M has no infinite SAI, then λ(u) > 0 for any u ∈ B(L(M)).

Proof We can prove this by similar arguments as that in classical Orlicz spaces in [6].

Lemma 1.4 If β = +∞ and (a, +∞) is a SAI with M(a)µG < 1, then Ext B(L(M)) = ∅.

Proof For u ∈ B(L(M)), if µ{t : u(t) 6∈ SCM} = 0, then u(t) 6 a a.e. on G. Thus

ρM (u) 6 M(a)µG < 1, and u 6∈ Ext B(L(M)) by Lemma 1.1(1). So Ext B(L(M)) = ∅.

Lemma 1.5 If β = +∞ and (a, +∞) is a SAI with M(a)µG > 1. Then for any u with

ρM (u) = 1, λ(u) > 0 ⇔

(1) [
∑
i

∫
{t:|u(t)|∈(ai,bi)}

+
∫
{t:|u(t)|>a}]M(u(t))dt<

∑
i

∫
{t:|u(t)|∈(ai,bi)}

M(bi)dt+
∫
{t:|u(t)|>a} ·

M(a)dt, or

(2) [
∑
i

∫
{t:|u(t)|∈(ai,bi)}

+
∫
{t:|u(t)|>a}]M(u(t))dt=

∑
i

∫
{t:|u(t)|∈(ai,bi)}

M(bi)dt+
∫
{t:|u(t)|>a} ·

M(a)dt,

and there exists some ε0 > 0 such that µ{t : |u(t)| ∈ (ai, bi),
|u(t)|−ai

bi−ai
< ε0} = 0, i = 1, 2, · · ·

Proof Since M(a)µG>1, take E⊂G with M(a)µE =1 and u1(t) =

{
a, t ∈ E,

α, t ∈ G \ E.

Then ρM (u1) = 1 and µ{t : u1(t) 6∈ SCM} = 0, which implies u1 ∈ ExtB(L(M)) by Lemma

1.1(1), which means ExtB(L(M)) 6= ∅.

“Necessity”: For u with ρM (u) = 1, if u = λv + (1 − λ)w where λ ∈ [0, 1], v ∈

ExtB(L(M)), w ∈ B(L(M)), 1 = ρM (u) 6 λρM (v) + (1 − λ)ρM (w) = λ + (1 − λ)ρM (w) 6 1
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which follows that ρM (w) = 1. Hence, M(u(t)) = λM(v(t)) + (1 − λ)M(w(t)) a.e. on G. It

implies that for almost t ∈ G, u(t), v(t), w(t) are either equal to each other or in the same SAI.

Now we prove the necessity in two steps:

(1) [
∑

i

∫
{t:|u(t)|∈(ai,bi)}

+

∫
{t:|u(t)|>a}

]M(u(t))dt 6
∑

i

∫
{t:|u(t)|∈(ai,bi)}

M(bi)dt

+

∫
{t:|u(t)|>a}

M(a)dt.

Otherwise, suppose
∑
i

∫
{t:u(t)∈(ai,bi)}

[M(bi)−M(u(t))]dt <
∫
{t:u(t)>a}

[M(u(t))−M(a)]dt.

Since v ∈ ExtB(L(M)), µ{t : v(t) 6∈ SCM} = 0. A contradiction

1 = ρM (u)

=

∫
{t:u(t)∈SCM}

M(u(t))dt +
∑

i

∫
{t:u(t)∈(ai,bi)}

M(u(t))dt +

∫
{t:u(t)>a}

M(u(t))dt

>

∫
{t:u(t)∈SCM}

M(u(t))dt +
∑

i

∫
{t:u(t)∈(ai,bi)}

M(bi)dt +

∫
{t:u(t)>a}

M(a)dt

> ρM (v) = 1.

(2) When [
∑
i

∫
{t:|u(t)|∈(ai,bi)}

+
∫
{t:|u(t)|>a}]M(u(t))dt =

∑
i

∫
{t:|u(t)|∈(ai,bi)}

M(bi)dt +

∫
{t:|u(t)|>a}

M(a)dt, there exists some ε0 > 0 such that µ{t : |u(t)| ∈ (ai, bi),
|u(t)|−ai

bi−ai

<

ε0} = 0, i = 1, 2, · · ·

Otherwise, for any ε > 0, there exist some Bi ⊂ {t : u(t) ∈ (ai, bi)} with µBi > 0 satisfying
u(t)−ai

bi−ai

< ε for t ∈ Bi. So

1 =ρM (u)=

∫
{t:u(t)∈SCM}

M(u(t))dt+
∑

i

∫
{t:u(t)∈(ai,bi)}

M(u(t))dt+

∫
{t:u(t)>a}

M(u(t))dt

=

∫
{t:u(t)∈SCM}

M(v(t))dt +
∑

i

∫
{t:u(t)∈(ai,bi)}

M(bi)dt +

∫
{t:u(t)>a}

M(a)dt,

1 = ρM (v)

=

∫
{t:u(t)∈SCM}

M(v(t))dt +
∑

i

∫
{t:v(t)=ai}

M(ai)dt +
∑

i

∫
{t:v(t)=bi}

M(bi)dt

+

∫
{t:u(t)>a}

M(a)dt.

Hence, we have that for all i,
∫
{t:u(t)∈(ai,bi)}

M(bi)dt =

∫
{t:v(t)=ai}

M(ai)dt +

∫
{t:v(t)=bi}

M(bi)dt.

From {t : u(t) ∈ (ai, bi)} = {t : v(t) = ai}
⋃
{t : v(t) = bi}, we get v(t) = bi a.e. on {t : u(t) ∈

(ai, bi)}. From w(t) = 1
1−λ

(u(t) + λbi) ∈ (ai, bi), we have λ <
u(t)−ai

bi−ai

< ε (t ∈ Bi). It reaches a

contradiction that λ(u) = 0 by the arbitrariness of ε.

“Sufficiency”: Since u 6∈ Ext B(L(M)) and ρM (u) = 1, µ{t : u(t) 6∈ SCM} > 0 by Lemma

1.1(1).
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In case (1), for λ ∈ (0, 1), define

vλ(t) =





ai, ai < u(t) 6 λai + (1 − λ)bi, i = 1, 2, · · ·

bi, bi > u(t) > λai + (1 − λ)bi, i = 1, 2, · · ·

a, u(t) > a, for SAI (a, +∞),

u(t), others.

v̂λ(t) =





ai, ai < u(t) < λai + (1 − λ)bi, i = 1, 2, · · ·

bi, bi > u(t) > λai + (1 − λ)bi, i = 1, 2, · · ·

a, u(t) > a, for SAI (a, +∞),

u(t), others.

v0(t) = v̂0(t) =





ai, ai < u(t) < bi, i = 1, 2, · · ·

a, u(t) > a, for SAI (a, +∞),

u(t), others.

v1(t) = v̂1(t) =





bi, ai < u(t) < bi, i = 1, 2, · · ·

a, u(t) > a, for SAI (a, +∞),

u(t), others.

Then v̂λ(t) > vλ(t). From the condition(I), ρM (v1) = ρM (v̂1) > ρM (u) = 1. By the same

argument as in [6], we have that ρM (v̂0) = ρM (v0) < ρM (u) = 1 and that ρM (v̂λ) is right-

continuous with respect to λ whereas ρM (vλ) is left-continuous to λ.

Set σ = sup{λ : ρM (vλ) 6 1} and σ̂ = sup{λ : ρM (v̂λ) 6 1}. Then from the left-continuity

of ρM (vλ) and the right-continuity of ρM (v̂λ), we see 1 > σ > σ̂ > 0 and ρM (vσ) 6 1 6 ρM (v̂σ̂)

by referring to [6].

If σ = σ̂, from ρM (vσ) 6 1 6 ρM (v̂σ) and since G is a non-atomic finite measurable space,

take Ei ⊂ {t : u(t) = σai + (1 − σ)bi} such that ρM (v) = 1, where

v(t) =





ai, ai < u(t) < σai + (1 − σ)bi or t ∈ Ei, i = 1, 2, · · ·

bi, bi > u(t) > σai+(1−σ)bi or t∈{t : u(t) = σai+ (1−σ)bi} \ Ei, i = 1, 2, · · ·

a, u(t) > a, for SAI (a, +∞),

u(t), others.

It follows that µ{t : v(t) 6∈ SCM} = 0. So v ∈ Ext B(L(M)). When σ > 1
2 , set w = 1

σ
[u−(1−σ)v]

(i.e.(1 − σ)v + σw = u), which implies that u(t), v(t), w(t) are either equal to each other or in

the same SAI by referring to [6]. And then

1 = ρM (u) = (1 − σ)ρM (v) + σρM (w) = ρM (u) = 1 − σ + σρM (w),

which implies ρM (w) = 1. Therefore λ(u) > 1 − σ > 0 by Lemma 1.2. When σ < 1
2 , set

w = 1
1−σ

(u − σv). We can deduce λ(u) > σ > 0 by replacing σ above by 1 − σ.

If σ > σ̂, for any λ ∈ (σ̂, σ), from the definition of σ̂ and σ, we get ρM (vλ) 6 1 < ρM (v̂λ).

Replacing the σ by λ, by the same arguments to the case of σ = σ̂, we have λ(u) > 0.

In case (2), take v = v1 as above. Then ρM (v) = 1 and µ{t : v(t) 6∈ SCM} = 0.

Therefore v ∈ Ext B(L(M)). Take w = 1
1−λ

(u − λv), λ ∈ (0, min{ε0, 1}). We see that when
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u(t) ∈ (ai, bi), v(t) = bi, w(t) = 1
1−λ

[u(t) − λbi] < bi, and u(t)−w(t)
bi−w(t) = λ < ε0 6

u(t)−ai

bi−ai

which

implies w(t) > ai. So u(t), v(t), w(t) are either equal to each other or in the same SAI. Thus

1 = ρM (u) = λρM (v)+ (1−λ)ρM(w) = λ+ (1−λ)ρM(w), and then ρM (w) = 1. Consequently,

λ(u) > λ > 0 by Lemma 1.2.

Lemma 1.6 If β < +∞, M(β)µG > 1, then for any u with ρM (u) = 1, λ(u) > 0.

Proof For u 6∈ Ext B(L(M)) with ρM (u) = 1, µ{t : u(t) 6∈ SCM} > 0 by Lemma 1.1(1).

Moreover, |u(t)| 6 β a.e. on G. For λ ∈ (0, 1), set

vλ(t) =





ai, ai < u(t) 6 λai + (1 − λ)bi, i = 1, 2, · · ·

bi, bi > u(t) > λai + (1 − λ)bi, i = 1, 2, · · ·

u(t), others.

v̂λ(t) =





ai, ai < u(t) < λai + (1 − λ)bi, i = 1, 2, · · ·

bi, bi > u(t) > λai + (1 − λ)bi, i = 1, 2, · · ·

u(t), others.

v0(t) = v̂0(t) =

{
ai, ai < u(t) < bi, i = 1, 2, · · ·

u(t), others.

v1(t) = v̂1(t) =

{
bi, ai < u(t) < bi, i = 1, 2, · · ·

u(t), others.

Repeating the arguments in (I) of the sufficiency’s proof of Lemma 1.5, we have λ(u) > 0.

Lemma 1.7 If β < +∞, M(β) = +∞, α > 0, then for any u ∈ B(L(M)), λ(u) > 0.

Proof When ρM (u) = 1, we have λ(u) > 0 by Lemma 1.6. When ρM (u) < 1, from

M(β) = +∞, we see |u(t)| < β a.e. on G. Take ε ∈ (0, β − α) such that M(β − ε)µ{t : u(t) 6

β − ε} > 1. Denote

f(h) =

∫
{t:u(t)>h}

M(u(t))dt, f̂(h) =

∫
{t:u(t)>h}

M(u(t))dt,

g(h) =

∫
{t:u(t)<h}

M(β − ε)dt, ĝ(h) =

∫
{t:u(t)6h}

M(β − ε)dt.

Referring to [6], we get that f(h) and g(h) are left-continuous on (0, +∞), whereas f̂(h) and

ĝ(h) are right-continuous on [0, +∞). For h > β − ε, ĝ(h) > 1 and f(h) + g(h) > 1; for h < α,

f(h) + g(h) = f̂(h) + ĝ(h) = ρM (u) < 1; for h 6 β − ε, f(h) + g(h) 6 f̂(h) + ĝ(h).

Set H = sup{h : f(h) + g(h) 6 1} and Ĥ = sup{h : f̂(h) + ĝ(h) 6 1}. Then from

the left-continuity of f, g and the right-continuity of f̂ , ĝ, we see α < Ĥ 6 H < β − ε and

f(H) + g(H) 6 1 6 f̂(Ĥ) + ĝ(Ĥ).

If H = Ĥ , from f(H) + g(H) 6 1 6 f̂(Ĥ) + ĝ(Ĥ), take E ⊂ {t : u(t) = H} such that

ρM (v) = 1, where

v(t) =

{
β − ε, α 6 u(t) < H, or t ∈ E,

u(t), u(t) > H or t ∈ {t : u(t) = H} \ E.
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Take λ ∈ ( α
2β

, α
β−ε

) which implies λ(β − ε) < α, and set w(t) = 1
1−λ

(u(t) − λv(t)) (i.e. u =

λv+(1−λ)w). When v(t) = β−ε, α 6 u(t) 6 H < β−ε and 0 6 w(t) = β−ε+u(t)−(β−ε)
1−λ

< β−ε.

It follows ρM (w) 6 ρM (v) = 1. Therefore, λ(v) > α
2β

by Lemma 1.6, and λ(u) > λ · λ(v) >
α
2β

λ(v) > 0 by Lemma 1.2.

If H > Ĥ , for any h ∈ (Ĥ, H), f(h) + g(h) 6 1 < f̂(h) + ĝ(h). Replacing the H above by

h, we obtain λ(u) > α
2β

λ(v) > 0.

Lemma 1.8 If β < +∞, M(β) = +∞, α = 0, then for any u ∈ B(L(M)), λ(u) > 0.

Proof For u ∈ S(L(M)), when ρM (u) = 1, we have λ(u) > 0 by Lemma 1.6. When

ρM (u) < 1, firstly, µ{t : u(t) >
1
2β} > 0. Otherwise, u(t) < 1

2β a.e. on G, and then ρM (3u
2 ) 6

M(3β
4 )µG < +∞. Combining ρM (u) < 1, a contradiction with that u ∈ S(L(M)). From M(β) =

+∞, take ε > 0 with M(β−ε)µ{t : 1
2β 6 u(t) 6 β−ε} > 1. It follows M(β−ε)µ{t : 1

2 (β−ε) 6

u(t) 6 β − ε} > 1. Denote

f(h) =

∫
{t:u(t)>h}

M(u(t))dt, f̂(h) =

∫
{t:u(t)>h}

M(u(t))dt,

g(h) =

{ ∫
{t:u(t)<h} M(2u(t))dt, h 6

1
2 (β − ε),∫

{t:u(t)< 1
2 (β−ε)}

M(2u(t))dt +
∫
{t: 12 (β−ε)6u(t)<h}

M(β − ε)dt, h > 1
2 (β − ε),

ĝ(h) =

{ ∫
{t:u(t)6h} M(2u(t))dt, h 6

1
2 (β − ε),∫

{t:u(t)< 1
2 (β−ε)}

M(2u(t))dt +
∫
{t: 12 (β−ε)6u(t)6h}

M(β − ε)dt, h > 1
2 (β − ε).

Referring to [6], we can obtain that f and g are left-continuous on (0, +∞), whereas f̂ and

ĝ are right-continuous on [0, +∞); and that f(0) + g(0) = f̂(0) + ĝ(0) = ρM (u) < 1, ĝ(h) >

1 and f(h) + g(h) > 1 for h > β − ε. For h 6 β − ε, f(h) + g(h) 6 f̂(h) + ĝ(h).

Set H = sup{h : f(h)+ g(h) 6 1} and Ĥ = sup{h : f̂(h) + ĝ(h) 6 1}. Then 0 < Ĥ 6 H <

β − ε and f(H) + g(H) 6 1 6 f̂(Ĥ) + ĝ(Ĥ).

If H = Ĥ 6
1
2 (β − ε), from f(H) + g(H) 6 1 6 f̂(Ĥ) + ĝ(Ĥ), take E ⊂ {t : u(t) = H}

such that ρM (v) = 1, where

v(t) =

{
2u(t), u(t) < H, or t ∈ E,

u(t), u(t) > H, or t ∈ {t : u(t) = H} \ E.

Define

w(t) =

{
0, u(t) < H, or t ∈ E,

u(t), u(t) > H, or t ∈ {t : u(t) = H} \ E.

then u = 1
2v+ 1

2w and ρM (w) 6 ρM (v) = 1. Thus, λ(v) > 0 by Lemma 1.6 and λ(u) > 1
2λ(v) > 0

by Lemma 1.2.

If H = Ĥ > 1
2 (β − ε), from f(H) + g(H) 6 1 6 f̂(Ĥ) + ĝ(Ĥ), take E ⊂ {t : u(t) = H},

such that ρM (v) = 1, where

v(t) =





2u(t), u(t) < 1
2 (β − ε),

β − ε, 1
2 (β − ε) 6 u(t) < H, or t ∈ E,

u(t), u(t) > H or t ∈ {t : u(t) = H} \ E.
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Take w(t) = 2u(t)− v(t) (i.e. u = 1
2v + 1

2w). Then ρM (w) 6 ρM (v) = 1. It follows λ(v) > 0 by

Lemma 1.6, and λ(u) >
1
2λ(v) > 0 by Lemma 1.2.

If H > Ĥ, for any h ∈ (Ĥ, H), f(h) + g(h) 6 1 < f̂(h) + ĝ(h). Replacing the H by h and

repeating the same arguments, we have λ(u) >
1
2λ(v) > 0.

Lemma 1.9 If β < +∞, M(β) < +∞, M(β)µG > 1, α > 0, then for any u ∈ B(L(M)),

λ(u) > 0.

Proof When ρM (u) = 1, λ(u) > 0 by Lemma 1.6. When ρM (u) < 1, noticing M(β) <

+∞ and M(β)µG > 1, replace the β − ε in the proof of Lemma 1.7 by the β here and repeat

the argument of Lemma 1.7. Then λ(u) > α
2β

λ(v) > 0.

Lemma 1.10 If β < +∞, M(β) < +∞, M(β)µG > 1, α = 0, then for any u ∈ B(L(M)),

λ(u) > 0.

Proof When ρM (u) = 1, we have λ(u) > 0 by Lemma 1.6. When ρM (u) < 1, from

M(β) < +∞, we have µ{t : u(t) 6 β} = µG. We discuss in the two cases as follows:

(1) In the case of M(β)µ{t : 0 < u(t) 6 β} > 1, there exists one λ ∈ (0, 1), such that

M(β){t : λβ 6 u(t) 6 β} > 1. Replacing the β − ε in the proof of Lemma 1.8 by the β here,

we can prove λ(u) > 0 by the same arguments as in Lemma 1.8.

(2) In the case of M(β)µ{t : 0 < u(t) 6 β} 6 1, combining M(β)µ{t : 0 6 u(t) 6 β} > 1,

we deduce µ{t : u(t) = 0} > 0. Pick δ ∈ (0, β) with M(δ) <
1−ρM (u)

µ{t:u(t)=0} , and set

v(t) =

{
δ, u(t) = 0,

u(t), u(t) > 0,
and w(t) =

{
−δ, u(t) = 0,

u(t), u(t) > 0.

So, u = 1
2v + 1

2w, ρ(v) = ρ(w) = M(δ)µ{t : u(t) = 0} + ρ(u) < 1, and M(β)µ{t : 0 < v(t) 6

β} = M(β)µ{t : u(t) 6 β} > 1. Hence by (I), λ(v) > 0; further λ(u) >
1
2λ(v) > 0 by Lemma

1.2.

Lemma 1.11 If M(β)µG 6 1, then L(M) has the uniform λ property.

Proof For any u ∈ B(L(M)), then ρM (u) 6 1, u(t) 6 β a.e. on G. Set v(t) = β,

w(t) = 2u(t) − β. Then v ∈ Ext B(L(M)) by lemma 1.1(2) and |w(t)| 6 β. From u = 1
2v + 1

2w,

and ρM (w) 6 M(β)µG 6 1 which implies ‖w‖(M) 6 1, we see λ(u) >
1
2λ(v) = 1

2 by Lemma

1.2. This implies λ(L(M)) = inf{λ(u) : u ∈ B(L(M))} >
1
2 , so L(M) has the uniform λ property.

Theorem 1.1 If M is an Orlicz function, then for any u ∈ B(L(M)),

(1) if β < +∞, or β = +∞ and M has no infinite SAI, then λ(u) > 0;

(2) if β = +∞, (a, +∞) is a SAI with M(a)µG < 1, then Ext B(L(M)) = ∅;

(3) if β = +∞, (a, +∞) is a SAI with M(a)µG > 1, then λ(u) > 0 ⇔.

(a) ρM (u) < 1; or

(b) ρM (u) = 1, and [
∑
i

∫
{t:|u(t)|∈(ai,bi)}

+
∫
{t:|u(t)|>a}

]M(u(t))dt <
∑
i

∫
{t:|u(t)|∈(ai,bi)}

·

M(bi)dt+
∫
{t:|u(t)|>a} M(a)dt; or

(c) ρM (u) = 1, and [
∑
i

∫
{t:|u(t)|∈(ai,bi)}

+
∫
{t:|u(t)|>a}]M(u(t))dt =

∑
i

∫
{t:|u(t)|∈(ai,bi)}

·

M(bi)dt +
∫
{t:|u(t)|>a}

M(a)dt, and there exists some ε0 > 0 such that µ{t : |u(t)| ∈ (ai, bi),
|u(t)|−ai

bi−ai

< ε0} = 0, i = 1, 2, · · ·

Proof (1) It is followed by the conclusions of Lemmas 1.3, 1.7, 1.8, 1.9, 1.10, 1.11;
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(2) It is followed by Lemma 1.4;

(3) “Sufficiency”: For this M, M ∈ ∆2, thus ‖u‖(M) = 1 ⇔ ρM (u) = 1.

In the case of (a), ρM (u) < 1 implies ‖u‖(M) < 1. Then λ(u) > 0 by Lemma 1.2.

In the case of (b) or (c), since ρM (u) = 1, λ(u) > 0 by Lemma 1.5.

“Necessity”: If ρM (u) < 1, (a) is true; if not, i.e. ρM (u) = 1, it is followed by the necessity

of Lemma 1.5 that either (b) or (c) is ture.

Theorem 1.2 L(M) has the λ property if and only if

(1) β < +∞, or

(2) β = +∞ and M has no infinite SAI.

Proof By Theorem 1.1(1), we see the sufficiency. On the other hand, suppose that both

(1) and (2) are not true, β = +∞ and (a, +∞) is a SAI for some a > 0. We consider in the two

cases as follows.

In the case of M(a)µG < 1, ExtB(L(M)) = ∅ by Theorem 1.1(2). Thus L(M) does not

have the λ property.

In the case of M(a)µG>1, set E⊂G with M(a+1)µE=1, and u(t) =

{
a+1, t∈E,

0, t∈G\E.

Then ρM (u) = 1. From a > α, we have
[∑

i

∫
{t:|u(t)|∈(ai,bi)}

+
∫
{t:|u(t)|>a}

]
M(u(t))dt = M(a +

1)µE > M(a)µE =
∑
i

∫
{t:|u(t)|∈(ai,bi)}

M(bi)dt +
∫
{t:|u(t)|>a}

M(a)dt.

Therefore λ(u) = 0 by Theorem 1.1(3). So we reach a contradiction that L(M) has the λ

property.

If Orlicz function M satisfies, as in [6], that α = 0, β = +∞, lim
u→0

M(u)
u

= 0, and

lim
u→+∞

M(u)
u

= +∞ which implies that M has no infinite SAI. By Theorem 1.2, we get the

following corollary which has been proved in [6].

Corollary 1.1 L(M) always has the λ property.

Theorem 1.3 L(M) has the uniform λ property if and only if

(1) M(β)µG 6 1, or (2) M(β)µG > 1 and M is strictly convex on (α, β).

Proof “Necessity”: Suppose that M(β)µG > 1 and that M is not strictly convex on

(α, β). Then there exists some SAI (a, b) ⊂ (α, β). For any ε ∈ (0, 1), set c = εa + (1 − ε)b,

then take s ∈ SCM and E ⊂ G with µE > 0 such that M(c)µE + M(s)µ(G \ E) = 1. In fact,

by Theorem 1.2, β < +∞, or β = +∞ and M has no infinite SAI. We pick s and E in the

following cases:

(a) If M(c)µG < 1.

(a-1) If β = +∞ and M has no infinite SAI, we take s ∈ SCM such that M(s)µG > 1.

(a-2) If β < +∞ and M(β) = +∞, (a, β) is not a SAI for any a < β, from M−1( 1
µG

) < β,

we take s ∈ SCM such that M(s)µG > 1.

(a-3) If β < +∞ and M(β) < +∞, β ∈ SCM , from M(β)µG > 1, set s = β. Then

M(s)µG > 1.

Thus M(s) > 1
µG

> M(c). Further, take E ⊂ G with µE = M(s)µG−1
M(s)−M(c) . Thus 0 < µE < µG

and M(c)µE + M(s)µ(G \ E) = 1.
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(b) If M(c)µG > 1, set s = α. Then s ∈ SCM and M(s) = 0 < 1
µG

6 M(c). Take E ⊂ G

such that µE = 1
M(c) . Hence 0 < µE 6 µG and M(c)µE + M(s)µ(G \ E) = 1.

Set u = cχE + sχG\E . If u = λv + (1 − λ)w with λ ∈ (0, 1), v ∈ ExtB(L(M)) and

w ∈ B(L(M)), 1 = M(c)µE + M(s)µ(G \ E) = ρM (u) 6 λρM (v) + (1 − λ)ρM (w) 6 1 which

implies ρM (w) = 1. Therefore, M(u(t)) = λM(v(t)) + (1 − λ)M(w(t)) a.e. on G which follows

that u(t) = v(t) = w(t) = s for almost t ∈ G \ E, whereas u(t), v(t), w(t) are all in (a, b) for

almost t ∈ E. By Lemma 1.1(1), v(t) = a or b a.e. on E. And we have µ{t ∈ E : v(t) = a} > 0.

Indeed, if v(t) = b a.e. on E, ρM (v) = M(b)µE+M(s)µ(G\E) > M(c)µE+M(s)µ(G\E) = 1

which is a contradiction with that v ∈ B(L(M)). For t ∈ {t ∈ E : v(t) = a} ⊂ E, εa + (1 − ε)b

= c = u(t) = λa + (1 − λ)v(t) 6 λa + (1 − λ)b which implies λ 6 ε. Thus λ(u) 6 ε, moreover

λ(L(M)) = 0 by the arbitrariness of ε, a contradiction.

“Sufficiency”: When M(β)µG 6 1, L(M) has the uniform λ property by Lemma 1.11;

when M(β)µG > 1 and M is strictly convex on (α, β), we will discuss in the following five

cases. Firstly, by Remark 1.3, without loss of generality, we assume µ{t : u(t) < α} = 0. On the

other hand, λ(u) > max{ 1
2 (1−‖u‖(M)), λ( u

‖u‖(M)
)‖u‖(M)} >

1
4λ( u

‖u‖(M)
) for u ∈ B(L(M)) \ {0}

by Lemma 1.2.

(a) If β = +∞, for u ∈ S(L(M))\ExtB(L(M)), from the strict convexity of M on (α, +∞),

we get ρM (u) < 1. Using the same argument as in the proof of classical Orlicz spaces[6], we can

get λ(u) = 1. Thus λ(L(M)) >
1
4 > 0.

(b) If β < +∞, M(β) = +∞, α > 0, for u ∈ S(L(M)) \ ExtB(L(M)), since the strict

convexity of M on (α, β), ρM (u) < 1. By the proof of Lemma 1.7, we can get λ(u) >
α
2β

λ(v)

and ρM (v) = 1. Since v(t) > u(t) > α and the strict convexity of M on (α, β), v ∈ ExtB(L(M)).

Then λ(v) = 1 and λ(u) >
α
2β

. Thus λ(L(M)) >
1
4 · α

2β
= α

8β
> 0.

(c) If β < +∞, M(β) = +∞, α = 0, for u ∈ S(L(M)) \ ExtB(L(M)), since the strict

convexity of M on (α, β), ρM (u) < 1. By the same argument as in the proof of Lemma 1.8,

we also obtain λ(u) >
1
2λ(v) and ρM (v) = 1. From the strict convexity of M on (α, β), we see

v ∈ ExtB(L(M)). Thus λ(v) = 1 and λ(u) >
1
2 . Therefore λ(L(M)) >

1
4 · 1

2 = 1
8 > 0.

(d) If β < +∞, M(β) < +∞, α > 0, for u ∈ S(L(M)) \ ExtB(L(M)), since the strict

convexity of M on (α, β), ρM (u) < 1. By the proof of Lemma 1.9, we have λ(u) >
α
2β

λ(v)

and ρM (v) = 1. From v(t) > u(t) > α and the strict convexity of M on (α, β), we see v ∈

ExtB(L(M)). Then λ(v) = 1 and λ(u) >
α
2β

. So λ(L(M)) >
1
4 · α

2β
= α

8β
> 0.

(e) If β < +∞, M(β) < +∞, α = 0, for u ∈ S(L(M)) \ ExtB(L(M)), since the strict

convexity of M on (α, β), ρM (u) < 1. If µ{t : u(t) = 0} = 0, for h ∈ [0, β], we define two

decreasing functions as

f(h) =

∫
{t:u(t)>h}

[M(β)−M(u(t))]dt + ρM (u), f̂(h) =

∫
{t:u(t)>h}

[M(β)−M(u(t))]dt + ρM (u).

Then f is left-continuous on (0, β], whereas f̂ is right-continuous on [0, β); and f(0) = f̂(0) =

M(β)µG −
∫
{t:u(t)>0}

M(u(t))dt + ρM (u) > 1, f(β) = f̂(β) = ρM (u) < 1, and f(h) > f̂(h).

Set H = sup{h : f(h) > 1}, Ĥ = sup{h : f̂(h) > 1}. Then from the left-continuity of f

and the right-continuity of f̂ , we have 0 < Ĥ 6 H < β and f̂(Ĥ) 6 1 6 f(H).
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If H = Ĥ , from f̂(Ĥ) 6 1 6 f(H), take E ⊂ {t : u(t) = H} such that ρM (v) = 1, where

v(t) =

{
u(t), 0 < u(t) < H, or t ∈ E,

β, H < u(t) 6 β, or t ∈ {t : u(t) = H} \ E.

From the strict convexity of M on (α, β), we see v ∈ ExtB(L(M)). Thus λ(v) = 1. Denote

w(t) = 2u(t)− v(t). Then u = 1
2v + 1

2w, and when v(t) = β, −β < w(t) = 2u(t)− β 6 β. Thus

ρM (w) 6 ρM (v) = 1, which by Lemma 1.2, implies λ(u) > 1
2λ(v) = 1

2 .

If H > Ĥ, for any h ∈ (Ĥ, H), f̂(ĥ) 6 1 6 f(h). Replacing the H by h and repeating the

same arguments as in the proof of the case H = Ĥ above, we get λ(u) > 1
2 .

If µ{t : u(t) = 0} > 0, using the same method as in the case (II) of the proof of Lemma

1.10, we see λ(u) > 1
4 . Therefore λ(L(M)) > 1

4 · 1
4 = 1

16 > 0.

If M is defined as in [6], so α = 0 and β = +∞, we reach the result obtained in [6].

Corollary 1.2 L(M) has the uniform λ property iff M is strictly convex.
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