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Two families of spanning subgraphs of a
complete graph determined by their spectra
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Abstract: A graph G is said to be determined by its spectrum if any graph having the same
spectrum as that of G is isomorphic to G. In this paper, it was proved that K, — E(IPs)
and K, — E(K1,;) are determined by their spectra, respectively.
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0 Introduction

Let G = (V, E) be a graph with vertex set V = {v1,v9,--- ,v,} and edge set E. Let d(v;)
denote the degree of v; € V. All graphs considered in this paper are finite undirected loopless
simple graphs. Let A(G) be the (0,1)-adjacency matriz of G. The polynomial Py(c)(A) =
det(AI — A(G)) is called the characteristic polynomial of the graph G with respect to the
adjacency matrix, where I is the identity matrix, which can be written as Pyg)(\) = A" +
aiA" "1 4+ --. + a,. Since the matrix A(G) are real and symmetric, its eigenvalues are all real
numbers. Assume that A\ (G) = A2(G) > -+ = A\, (G) are the adjacency eigenvalues of graph
G. The adjacency spectrum of graph G consists of the adjacency eigenvalues (together with
their multiplicities). Two graphs are cospectral if they share the same spectrum. A graph G is
said to be determined by its spectrum (DS for short) if for any graph H, Pyry(A) = Pa(a)(N)
implies that H is isomorphic to G.
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Up to now, only few graphs with very special structures have been proved to the determined
by their spectra. So, “which graphs are determined by their spectrum?” [l seems to be a difficult
problem in the theory of graph spectrum. For the background and some recent surveys of the
known results about this problem and related topics, we refer the reader to [2,3] and references
therein.

We denote by [P, the disjoint union of [ paths Ps, that is [P, = P, UP,U---UP,. In
this paper, we show that K, — E(IP)(1 <1 < [§]) and K,, — E(K1,;)(1 <1 < n—1) are
determined by their spectrum, respectively.

1 Main results

Before presenting proof to Theorems, we need the following Lemmas:

Lemma 1 Let G be a graph. For the adjacency matrix, the following can be obtained
from the spectrum.

(7) The number of vertices. (i¢) The number of edges.

(791) Whether G is regular. (iv) Whether G is regular with any fixed girth.

For the adjacency matrix the following follows from the spectrum.

(v) The number of closed walk of any length. (vi) Whether G is bipartite.

Lemma 2 Let G be a graph with n vertices and (g) —ledges, If 1<l <n—1,then G
have only one connected component.

Proof Assume that G have r connected components, that is G = G,,, UG, U---UG,,,
where |V(Gp,))| =n,0l=1,2,--- ,rand ny +n2 + -+ n, = n.

n(n—1)
5 ~L=I1E(G)] = |E(Gu)| + |E(Gng)| + - + | E(Gn, )|
ni(ni —1)  mna(ng —1) ne(n, — 1)
h 2 2 o 2 ’
namely
Zn%—i—? Z ninj—2l:n2—21§2nl2,
=1 1<i<j<r =1
we get
1<i<j<r
since

n—1< Z nin;, (1.2)
1<i<g<r

the equality hold if and only if r=2, n;)=1 and ns = n—1. By (1.1) and (1.2) we have n —1 < I,
a contradiction.

Let T3(G) denote the number of triangles in the graph G, we have following Lemmas.

Lemma 3 If Gy be a graph of size [, and d(vy) > d(v2) = -+ > d(vy,) is the degree
sequence of Gy. Then Ts(K, — E(G1)) = (5) = 1(n = 2) + X cv(ay) (*S)) — T5(G1) for any
d(v) = 2.
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Proof |E(G;)| =1 and every edge of K,, corresponds to n — 2 triangles in K.

Case 1 (7 contains no C3. For a P3 = uvw in G, since the edges uv and vw correspond
to same one triangle, denote it wvw, hence uv and vw correspond to 2(n-2)-1 triangles in
Ky — E(Gh), so the [ edges in E(G1) correspond to I(n —2) — 3 cvay) (d(2”)) triangles in
K, — E(G1), where ZUGV(Gl) (d(;)) is the number of P in G;.

Case 2 (7 contains C3. Similarly, for a C'3 = uvw, the edges uv, vw and wu correspond to
same one triangle, denote it uvw. Since for the triangle uvw, we counted 3 times in I(n —2) and
2 vev(Gh) (d(;)), respectively. So the [ edges in E(G1) correspond to l(n—2)=3, cy ) (d(zv)) +
T3(G1) triangles in K, — E(Gy). Thus the number of triangles in K, — E(G1) is (5) —I(n —

2)+ > evic) ("Y)) = Ts(Gh).

Theorem 1 The graph K,, — E(IP)(n > 3,1 <1 < |%]) is determined by its spectrum.

Proof Suppose a graph G is cospectral with K,, — E(IP) respect to the adjacency
spectrum. By Lemma 1, G is a graph with n vertices and (’2’) — [ edges. Since n > 3, hence
I <[%] < % <n—1, by Lemma 2, G have only one connected component. So G must isomorphic
to a graph which is obtained from K,, by deleting [ edges, write the graph consist of the [ edges
is G1 and E(G1) = {e1,e2, - ,e;}. Assume that there exist at least two edges e;,e; € E(G1)
such that them are jointed but no triangle in G4, let u be the common vertex of e; and ey,
then d(u) > 2, by Lemma 3, T5(G) = (3) = 1(n = 2) + Lpev ) ('S)) = (5) = ln—2) +1 >
(3) — l(n — 2) = T3(K,, — E(IP,)). Assume that there exist at least one triangle in Gy, then
T5(G) > (3) —ln—2)+3(3) —1> (%) —(n —2) = T3(K,, — E(IP,)). This is a contradiction
with (v) of Lemma 1. Thus the edges in E¢, is pairwise disjoint, that is H 2 G.

The disjoint union of & disjoint paths P,, UP,,U---UP,, is determined by its spectrum¥
by Theorem 1 we can get the following corollary.

Corollary 1 [P, is determined by its spectrum.

Theorem 2 The graph K,, — E((I —2)P,UPs)(n > 6,2 <1 < |5]) is determined by its
spectrum.

Proof Suppose a graph G is cospectral with K,, — E((I — 2)P, U P3) respect to the
adjacency spectrum. Similar to the proof of Theorem 1, G isomorphic to a graph which is
obtained from K, by deleting [ edges, write the graph consist of the [ edges is G, that is
G = K, — B(G1). By Lemma 3, T5(G) = (3) — l(n — 2) + ¥y e, (‘Y)) — T5(G1) and
T3(K, — E((1 —2)P, U Ps)) = (3) —l(n—2) + 1. By (v) of Lemma 1, we have T3(G) =
T3(K, — E((l — 2)P, U P3)), that is

3 <d(2”)) —T3(Gy) = 1. (1.3)

veV(G1)

Assume that there exist at least one triangle in G1, then ZUEV(Gl) (d(;)) —T5(G1) 23-1=2+#
1, a contradiction, so contains no triangle in G;. By (1.3) we have Evev(Gl) (d(;)) =1, so there
exist one vertex v € V(G1) such that d(v)=2 and d(u)=1 for other vertices u € V(G1) — {v},
thus Gy = (1 — 2)Py U Py and G = K,, — E((1 — 2)P, U P3).

Corollary 2 (I —2)P, U Ps is determined by its spectrum.
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Theorem 3 The graph K,, — E(K1,;)(1 <! < n—1) is determined by its spectrum.

Proof If [ =mn—1, then K, — E(K;;) must isomorphic to the disjoint union of K,_;
and K7, so graph K,, — E(K7,) is determined by its adjacency spectrum. Next, we will assume
that 1 <l <n—1.

Similar to the proof of Theorem 2, suppose a graph G is cospectral with K,, — E(K1 )
respect to the adjacency spectrum, then G is a graph with n vertices and (Z) — [ edges. By
Lemma 2, G have only one connected component. So G must isomorphic to a graph which
is obtained from K, by deleting ! edges, write the set of | edges is E; = {e1,ea,- - ,e;}. We
denote by G; the set of all graphs consist of the [ edges in Ej.

Case 1 [=1. By Theorem 1, the graph G = K,, — E(P,) is determined by its spectrum.

Case 2 |=2. Then G = K,, — E(2P2) or G = K,, — E(K12). By Lemma 3, T3(K,, —
EQ2Py)) = (4) — l(n —2) and T3(K,, — E(K12)) = (3) —l(n —2) + (3), T3(K, — EQ2Py)) #
T3(K, — E(K1,2)), this is a contradiction with (v) of Lemma 1. so G = K,, — E(Kj 2).

Case 3 [=3. Then G = K,, — E(Py) or G = K,, — E(C3) or G = K,, — E(3P,) or
G=K,—EP,UP;)or G= K, — E(K13).

Sub-case 3.1 If G = K,,—E(Py), then by Lemma 3, T5(K,,—E(Py)) = (%) —l(n—2)+2(3)
and T5(K, — E(K13)) = (3) —l(n—2) + (3), T5(K,, — E(P1)) # T5(K, — E(K;3)). this is a
contradiction with (v) of Lemma 1.

Sub-case 3.2 Similar to Subcase 3.1, if G = K,, — E(C3), then by Lemma 3, T5(K, —
E(Cs)) = (2) =1(n—2)+3(2) — 1 and T3 (K, — E(K1 3)) = (2) —1(n—2)+ (), Ty(K, — E(Cs)) #
T3(K, — E(K1,3)). this is a contradiction with (v) of Lemma 1.

Sub-case 3.3 If G = K,, — E(3P,), or G = K,, — E(P>» U P;), then by Theorem 1 and
2, the graphs K,, — E(3P,) and K, — E(P,; U P3) is determined by its spectrum, respectively.
Thus G = K,, — E(K13).

Next, we will assume that 4 <1 < n—1. For astar K;; € Gy, all edges in K ; is joint with
each other, hence K ; contain the most Ps, the number of P in K is EveV(KU) (d(;)) = (é)
For any graph G1 € G1 —{K71,}, since I > 4, hence there exist at least two edges in G is disjoint,
so the number of P; in G less than the number of Ps in K, that is ZUEV(Gl) (d(;)) < (é)
(G1 € G1—{K1,}). By Lemma 3, Ts(K, — E(G1)) = (5) —1(n—=2)+ 3 ey () (14)) —T5(G1) <
(5) —ln—2)+ (é) =T3(K, — E(K1,)), By (v) of Lemma 1 the graph G; € G — {K1,} is not
cospectral with Gy € G; — { K1} respect to the adjacency spectrum. This completes the proof.
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