Article ID: 1000-5641(2012)01-0084-04

Two families of spanning subgraphs of a complete graph determined by their spectra

WU Ting-zeng, HU Sheng-biao

(School of Mathematics and Statistics, Qinghai Nationalities University, Xining 810007, China)

Abstract: A graph G is said to be *determined by its spectrum* if any graph having the same spectrum as that of G is isomorphic to G. In this paper, it was proved that $K_n - E(lP_2)$ and $K_n - E(K_{1,l})$ are determined by their spectra, respectively. **Key words:** cospectral graphs; spectrum of a graph; eigenvalues **CLC number:** O157.5 **Document code:** A **DOI:** 10.3969/j.issn.1000-5641.2012.01.010

完全图的两类生成子图是谱唯一确定的

吴廷增, 扈生彪

(青海民族大学 数学与统计学院, 西宁 810007)

摘要: 只有与G同构的图才有相同的谱,则称图G称为谱唯一确定的. 本文证明了, $K_n - E(lP_2) 和 K_n - E(K_{1,l})$ 是谱唯一确定的. 关键词: 同谱图; 图的谱; 特征值

0 Introduction

Let G = (V, E) be a graph with vertex set $V = \{v_1, v_2, \dots, v_n\}$ and edge set E. Let $d(v_i)$ denote the degree of $v_i \in V$. All graphs considered in this paper are finite undirected loopless simple graphs. Let $\mathbf{A}(G)$ be the (0,1)-adjacency matrix of G. The polynomial $P_{A(G)}(\lambda) =$ $\det(\lambda \mathbf{I} - \mathbf{A}(G))$ is called the characteristic polynomial of the graph G with respect to the adjacency matrix, where \mathbf{I} is the identity matrix, which can be written as $P_{A(G)}(\lambda) = \lambda^n +$ $a_1\lambda^{n-1} + \dots + a_n$. Since the matrix $\mathbf{A}(G)$ are real and symmetric, its eigenvalues are all real numbers. Assume that $\lambda_1(G) \ge \lambda_2(G) \ge \dots \ge \lambda_n(G)$ are the adjacency eigenvalues of graph G. The adjacency spectrum of graph G consists of the adjacency eigenvalues (together with their multiplicities). Two graphs are cospectral if they share the same spectrum. A graph G is said to be determined by its spectrum (DS for short) if for any graph H, $P_{A(H)}(\lambda) = P_{A(G)}(\lambda)$ implies that H is isomorphic to G.

收稿日期: 2010-10

基金项目: 国家自然科学基金(10861009); 国家民委科研项目(10QH01)

通讯作者: 吴廷增, 男, 硕士, 讲师, 研究方向为代数图论. E-mail: tingzengwu@yahoo.com.cn.

Up to now, only few graphs with very special structures have been proved to the determined by their spectra. So, "which graphs are determined by their spectrum?"^[1] seems to be a difficult problem in the theory of graph spectrum. For the background and some recent surveys of the known results about this problem and related topics, we refer the reader to [2,3] and references therein.

We denote by lP_2 the disjoint union of l paths P_2 , that is $lP_2 = P_2 \cup P_2 \cup \cdots \cup P_2$. In this paper, we show that $K_n - E(lP_2)(1 \leq l \leq \lfloor \frac{n}{2} \rfloor)$ and $K_n - E(K_{1,l})(1 \leq l \leq n-1)$ are determined by their spectrum, respectively.

1 Main results

Before presenting proof to Theorems, we need the following Lemmas:

Lemma $\mathbf{1}^{[1]}$ Let G be a graph. For the adjacency matrix, the following can be obtained from the spectrum.

(i) The number of vertices. (ii) The number of edges.

(iii) Whether G is regular. (iv) Whether G is regular with any fixed girth.

For the adjacency matrix the following follows from the spectrum.

(v) The number of closed walk of any length. (vi) Whether G is bipartite.

Lemma 2 Let G be a graph with n vertices and $\binom{n}{2} - l$ edges, If $1 \leq l < n - 1$, then G have only one connected component.

Proof Assume that G have r connected components, that is $G = G_{n_1} \cup G_{n_2} \cup \cdots \cup G_{n_r}$, where $|V(G_{n_l})| = n_l, l = 1, 2, \cdots, r$ and $n_1 + n_2 + \cdots + n_r = n$.

$$\frac{n(n-1)}{2} - l = |E(G)| = |E(G_{n_1})| + |E(G_{n_2})| + \dots + |E(G_{n_r})|$$
$$\leq \frac{n_1(n_1-1)}{2} + \frac{n_2(n_2-1)}{2} + \dots + \frac{n_r(n_r-1)}{2},$$

namely

$$\sum_{l=1}^{r} n_l^2 + 2 \sum_{1 \leq i < j \leq r} n_i n_j - 2l = n^2 - 2l \leq \sum_{l=1}^{r} n_l^2,$$

we get

$$\sum_{1 \leqslant i < j \leqslant r} n_i n_j \leqslant l, \tag{1.1}$$

since

$$n-1 \leqslant \sum_{1 \leqslant i < j \leqslant r} n_i n_j, \tag{1.2}$$

the equality hold if and only if r=2, $n_l=1$ and $n_2=n-1$. By (1.1) and (1.2) we have $n-1 \leq l$, a contradiction.

Let $T_3(G)$ denote the number of triangles in the graph G, we have following Lemmas.

Lemma 3 If G_1 be a graph of size l, and $d(v_1) \ge d(v_2) \ge \cdots \ge d(v_{n_1})$ is the degree sequence of G_1 . Then $T_3(K_n - E(G_1)) = \binom{n}{3} - l(n-2) + \sum_{v \in V(G_1)} \binom{d(v)}{2} - T_3(G_1)$ for any $d(v) \ge 2$.

Proof $|E(G_1)| = l$ and every edge of K_n corresponds to n-2 triangles in K_n .

Case 1 G_1 contains no C_3 . For a $P_3 = uvw$ in G_1 , since the edges uv and vw correspond to same one triangle, denote it uvw, hence uv and vw correspond to 2(n-2)-1 triangles in $K_n - E(G_1)$, so the l edges in $E(G_1)$ correspond to $l(n-2) - \sum_{v \in V(G_1)} {d(v) \choose 2}$ triangles in $K_n - E(G_1)$, where $\sum_{v \in V(G_1)} {d(v) \choose 2}$ is the number of P_3 in G_1 .

Case 2 G_1 contains C_3 . Similarly, for a $C_3 = uvw$, the edges uv, vw and wu correspond to same one triangle, denote it uvw. Since for the triangle uvw, we counted 3 times in l(n-2) and $\sum_{v \in V(G_1)} {d(v) \choose 2}$, respectively. So the l edges in $E(G_1)$ correspond to $l(n-2) - \sum_{v \in V(G_1)} {d(v) \choose 2} + T_3(G_1)$ triangles in $K_n - E(G_1)$. Thus the number of triangles in $K_n - E(G_1)$ is ${n \choose 3} - l(n-2) + \sum_{v \in V(G_1)} {d(v) \choose 2} - T_3(G_1)$.

Theorem 1 The graph $K_n - E(lP_2)$ $(n \ge 3, 1 \le l \le \lfloor \frac{n}{2} \rfloor)$ is determined by its spectrum.

Proof Suppose a graph G is cospectral with $K_n - E(lP_2)$ respect to the adjacency spectrum. By Lemma 1, G is a graph with n vertices and $\binom{n}{2} - l$ edges. Since $n \ge 3$, hence $l \le \lfloor \frac{n}{2} \rfloor \le \frac{n}{2} < n-1$, by Lemma 2, G have only one connected component. So G must isomorphic to a graph which is obtained from K_n by deleting l edges, write the graph consist of the l edges is G_1 and $E(G_1) = \{e_1, e_2, \cdots, e_l\}$. Assume that there exist at least two edges $e_i, e_j \in E(G_1)$ such that them are jointed but no triangle in G_1 , let u be the common vertex of e_i and e_j , then $d(u) \ge 2$, by Lemma 3, $T_3(G) = \binom{n}{3} - l(n-2) + \sum_{v \in V(G_1)} \binom{d(v)}{2} \ge \binom{n}{3} - l(n-2) + 1 > \binom{n}{3} - l(n-2) = T_3(K_n - E(lP_2))$. Assume that there exist at least one triangle in G_1 , then $T_3(G) \ge \binom{n}{3} - l(n-2) + 3\binom{2}{2} - 1 > \binom{n}{3} - l(n-2) = T_3(K_n - E(lP_2))$. This is a contradiction with (v) of Lemma 1. Thus the edges in E_{G_1} is pairwise disjoint, that is $H \cong G$.

The disjoint union of k disjoint paths $P_{n_1} \cup P_{n_2} \cup \cdots \cup P_{n_k}$ is determined by its spectrum^[4], by Theorem 1 we can get the following corollary.

Corollary 1 $\overline{lP_2}$ is determined by its spectrum.

Theorem 2 The graph $K_n - E((l-2)P_2 \cup P_3) (n \ge 6, 2 \le l \le \lfloor \frac{n}{2} \rfloor)$ is determined by its spectrum.

Proof Suppose a graph G is cospectral with $K_n - E((l-2)P_2 \cup P_3)$ respect to the adjacency spectrum. Similar to the proof of Theorem 1, G isomorphic to a graph which is obtained from K_n by deleting l edges, write the graph consist of the l edges is G_1 , that is $G = K_n - E(G_1)$. By Lemma 3, $T_3(G) = \binom{n}{3} - l(n-2) + \sum_{v \in V(G_1)} \binom{d(v)}{2} - T_3(G_1)$ and $T_3(K_n - E((l-2)P_2 \cup P_3)) = \binom{n}{3} - l(n-2) + 1$. By (v) of Lemma 1, we have $T_3(G) = T_3(K_n - E((l-2)P_2 \cup P_3))$, that is

$$\sum_{v \in V(G_1)} \binom{d(v)}{2} - T_3(G_1) = 1.$$
(1.3)

Assume that there exist at least one triangle in G_1 , then $\sum_{v \in V(G_1)} {\binom{d(v)}{2}} - T_3(G_1) \ge 3 - 1 = 2 \ne 1$, a contradiction, so contains no triangle in G_1 . By (1.3) we have $\sum_{v \in V(G_1)} {\binom{d(v)}{2}} = 1$, so there exist one vertex $v \in V(G_1)$ such that d(v)=2 and d(u)=1 for other vertices $u \in V(G_1) - \{v\}$, thus $G_1 \cong (l-2)P_2 \cup P_3$ and $G \cong K_n - E((l-2)P_2 \cup P_3)$.

Corollary 2 $(l-2)P_2 \cup P_3$ is determined by its spectrum.

Theorem 3 The graph $K_n - E(K_{1,l}) (1 \le l \le n-1)$ is determined by its spectrum.

Proof If l = n - 1, then $K_n - E(K_{1,l})$ must isomorphic to the disjoint union of K_{n-1} and K_1 , so graph $K_n - E(K_{1,l})$ is determined by its adjacency spectrum. Next, we will assume that $1 \leq l < n - 1$.

Similar to the proof of Theorem 2, suppose a graph G is cospectral with $K_n - E(K_{1,l})$ respect to the adjacency spectrum, then G is a graph with n vertices and $\binom{n}{2} - l$ edges. By Lemma 2, G have only one connected component. So G must isomorphic to a graph which is obtained from K_n by deleting l edges, write the set of l edges is $E_l = \{e_1, e_2, \dots, e_l\}$. We denote by \mathcal{G}_1 the set of all graphs consist of the l edges in E_l .

Case 1 l=1. By Theorem 1, the graph $G = K_n - E(P_2)$ is determined by its spectrum.

Case 2 l=2. Then $G = K_n - E(2P_2)$ or $G \cong K_n - E(K_{1,2})$. By Lemma 3, $T_3(K_n - E(2P_2)) = \binom{n}{3} - l(n-2)$ and $T_3(K_n - E(K_{1,2})) = \binom{n}{3} - l(n-2) + \binom{2}{2}$, $T_3(K_n - E(2P_2)) \neq T_3(K_n - E(K_{1,2}))$, this is a contradiction with (v) of Lemma 1. so $G \cong K_n - E(K_{1,2})$.

Case 3 l=3. Then $G = K_n - E(P_4)$ or $G = K_n - E(C_3)$ or $G = K_n - E(3P_2)$ or $G = K_n - E(P_2 \cup P_3)$ or $G \cong K_n - E(K_{1,3})$.

Sub-case 3.1 If $G = K_n - E(P_4)$, then by Lemma 3, $T_3(K_n - E(P_4)) = \binom{n}{3} - l(n-2) + 2\binom{2}{2}$ and $T_3(K_n - E(K_{1,3})) = \binom{n}{3} - l(n-2) + \binom{3}{2}$, $T_3(K_n - E(P_4)) \neq T_3(K_n - E(K_{1,3}))$. this is a contradiction with (v) of Lemma 1.

Sub-case 3.2 Similar to Subcase 3.1, if $G = K_n - E(C_3)$, then by Lemma 3, $T_3(K_n - E(C_3)) = \binom{n}{3} - l(n-2) + 3\binom{2}{2} - 1$ and $T_3(K_n - E(K_{1,3})) = \binom{n}{3} - l(n-2) + \binom{3}{2}$, $T_3(K_n - E(C_3)) \neq T_3(K_n - E(K_{1,3}))$. this is a contradiction with (v) of Lemma 1.

Sub-case 3.3 If $G = K_n - E(3P_2)$, or $G = K_n - E(P_2 \cup P_3)$, then by Theorem 1 and 2, the graphs $K_n - E(3P_2)$ and $K_n - E(P_2 \cup P_3)$ is determined by its spectrum, respectively. Thus $G \cong K_n - E(K_{1,3})$.

Next, we will assume that $4 \leq l < n-1$. For a star $K_{1,l} \in \mathcal{G}_1$, all edges in $K_{1,l}$ is joint with each other, hence $K_{1,l}$ contain the most P_3 , the number of P_3 in $K_{1,l}$ is $\sum_{v \in V(K_{1,l})} \binom{d(v)}{2} = \binom{l}{2}$. For any graph $G_1 \in \mathcal{G}_1 - \{K_{1,l}\}$, since $l \geq 4$, hence there exist at least two edges in G_1 is disjoint, so the number of P_3 in G_1 less than the number of P_3 in $K_{1,l}$, that is $\sum_{v \in V(G_1)} \binom{d(v)}{2} < \binom{l}{2}$ $(G_1 \in \mathcal{G}_1 - \{K_{1,l}\})$. By Lemma 3, $T_3(K_n - E(G_1)) = \binom{n}{3} - l(n-2) + \sum_{v \in V(G_1)} \binom{d(v)}{2} - T_3(G_1) < \binom{n}{3} - l(n-2) + \binom{l}{2} = T_3(K_n - E(K_{1,l}))$, By (v) of Lemma 1 the graph $G_1 \in \mathcal{G}_1 - \{K_{1,l}\}$ is not cospectral with $G_1 \in \mathcal{G}_1 - \{K_{1,l}\}$ respect to the adjacency spectrum. This completes the proof.

[References]

- VAN DAM E R, HAEMERS W H. Which graph are determined by their spectrum?[J]. Linear Algebra Appl, 2003, 373: 241-272.
- [2] WU T, HU S. Some edges-deleted subgraphs of complete graph are determined by their spectrum [J]. Journal of Mathematical Research & Exposition, 2010, 30: 833-840.
- [3] CVETKOVIĆ D M, DOOB M, SACHS H. Spectra of graphs[M]. New York: John Wiley & Son, 1980.
- [4] SHEN X, HOU Y, ZHANG Y. Graph Z_n and some graphs related to Z_n are determined by their spectrum[J]. Linear Algebra Appl, 2005, 404: 58-68.