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Abstract: A graph G is said to be determined by its spectrum if any graph having the same

spectrum as that of G is isomorphic to G. In this paper, it was proved that Kn − E(lP2)

and Kn − E(K1,l) are determined by their spectra, respectively.
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0 Introduction

Let G = (V, E) be a graph with vertex set V = {v1, v2, · · · , vn} and edge set E. Let d(vi)

denote the degree of vi ∈ V . All graphs considered in this paper are finite undirected loopless

simple graphs. Let A(G) be the (0,1)-adjacency matrix of G. The polynomial PA(G)(λ) =

det(λI − A(G)) is called the characteristic polynomial of the graph G with respect to the

adjacency matrix, where I is the identity matrix, which can be written as PA(G)(λ) = λn +

a1λ
n−1 + · · · + an. Since the matrix A(G) are real and symmetric, its eigenvalues are all real

numbers. Assume that λ1(G) > λ2(G) > · · · > λn(G) are the adjacency eigenvalues of graph

G. The adjacency spectrum of graph G consists of the adjacency eigenvalues (together with

their multiplicities). Two graphs are cospectral if they share the same spectrum. A graph G is

said to be determined by its spectrum (DS for short) if for any graph H , PA(H)(λ) = PA(G)(λ)

implies that H is isomorphic to G.
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Up to now, only few graphs with very special structures have been proved to the determined

by their spectra. So, “which graphs are determined by their spectrum?”[1] seems to be a difficult

problem in the theory of graph spectrum. For the background and some recent surveys of the

known results about this problem and related topics, we refer the reader to [2,3] and references

therein.

We denote by lP2 the disjoint union of l paths P2, that is lP2 = P2 ∪ P2 ∪ · · · ∪ P2. In

this paper, we show that Kn − E(lP2)(1 6 l 6 ⌊n
2 ⌋) and Kn − E(K1,l)(1 6 l 6 n − 1) are

determined by their spectrum, respectively.

1 Main results

Before presenting proof to Theorems, we need the following Lemmas:

Lemma 1[1] Let G be a graph. For the adjacency matrix, the following can be obtained

from the spectrum.

(i) The number of vertices. (ii) The number of edges.

(iii) Whether G is regular. (iv) Whether G is regular with any fixed girth.

For the adjacency matrix the following follows from the spectrum.

(v) The number of closed walk of any length. (vi) Whether G is bipartite.

Lemma 2 Let G be a graph with n vertices and
(

n
2

)

− l edges, If 1 6 l < n − 1, then G

have only one connected component.

Proof Assume that G have r connected components, that is G = Gn1
∪Gn2

∪ · · · ∪Gnr
,

where |V (Gnl
)| = nl, l = 1, 2, · · · , r and n1 + n2 + · · · + nr = n.

n(n − 1)

2
− l = |E(G)| = |E(Gn1

)| + |E(Gn2
)| + · · · + |E(Gnr

)|

6
n1(n1 − 1)

2
+

n2(n2 − 1)

2
+ · · · +

nr(nr − 1)

2
,

namely
r

∑

l=1

n2
l + 2

∑

16i<j6r

ninj − 2l = n2 − 2l 6

r
∑

l=1

n2
l ,

we get
∑

16i<j6r

ninj 6 l, (1.1)

since

n − 1 6
∑

16i<j6r

ninj , (1.2)

the equality hold if and only if r=2, nl=1 and n2 = n−1. By (1.1) and (1.2) we have n−1 6 l,

a contradiction.

Let T3(G) denote the number of triangles in the graph G, we have following Lemmas.

Lemma 3 If G1 be a graph of size l, and d(v1) > d(v2) > · · · > d(vn1
) is the degree

sequence of G1. Then T3(Kn − E(G1)) =
(

n
3

)

− l(n − 2) +
∑

v∈V (G1)

(

d(v)
2

)

− T3(G1) for any

d(v) > 2.
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Proof |E(G1)| = l and every edge of Kn corresponds to n − 2 triangles in Kn.

Case 1 G1 contains no C3. For a P3 = uvw in G1, since the edges uv and vw correspond

to same one triangle, denote it uvw, hence uv and vw correspond to 2(n-2)-1 triangles in

Kn − E(G1), so the l edges in E(G1) correspond to l(n − 2) −
∑

v∈V (G1)

(

d(v)
2

)

triangles in

Kn − E(G1), where
∑

v∈V (G1)

(

d(v)
2

)

is the number of P3 in G1.

Case 2 G1 contains C3. Similarly, for a C3 = uvw, the edges uv, vw and wu correspond to

same one triangle, denote it uvw. Since for the triangle uvw, we counted 3 times in l(n−2) and
∑

v∈V (G1)

(

d(v)
2

)

, respectively. So the l edges in E(G1) correspond to l(n−2)−
∑

v∈V (G1)

(

d(v)
2

)

+

T3(G1) triangles in Kn − E(G1). Thus the number of triangles in Kn − E(G1) is
(

n
3

)

− l(n −

2) +
∑

v∈V (G1)

(

d(v)
2

)

− T3(G1).

Theorem 1 The graph Kn −E(lP2)(n > 3, 1 6 l 6 ⌊n
2 ⌋) is determined by its spectrum.

Proof Suppose a graph G is cospectral with Kn − E(lP2) respect to the adjacency

spectrum. By Lemma 1, G is a graph with n vertices and
(

n
2

)

− l edges. Since n > 3, hence

l 6 ⌊n
2 ⌋ 6

n
2 < n−1, by Lemma 2, G have only one connected component. So G must isomorphic

to a graph which is obtained from Kn by deleting l edges, write the graph consist of the l edges

is G1 and E(G1) = {e1, e2, · · · , el}. Assume that there exist at least two edges ei, ej ∈ E(G1)

such that them are jointed but no triangle in G1, let u be the common vertex of ei and ej,

then d(u) > 2, by Lemma 3, T3(G) =
(

n
3

)

− l(n − 2) +
∑

v∈V (G1)

(

d(v)
2

)

>
(

n
3

)

− l(n − 2) + 1 >
(

n
3

)

− l(n − 2) = T3(Kn − E(lP2)). Assume that there exist at least one triangle in G1, then

T3(G) >
(

n
3

)

− l(n− 2) + 3
(

2
2

)

− 1 >
(

n
3

)

− l(n− 2) = T3(Kn − E(lP2)). This is a contradiction

with (v) of Lemma 1. Thus the edges in EG1
is pairwise disjoint, that is H ∼= G.

The disjoint union of k disjoint paths Pn1
∪Pn2

∪· · ·∪Pnk
is determined by its spectrum[4],

by Theorem 1 we can get the following corollary.

Corollary 1 lP2 is determined by its spectrum.

Theorem 2 The graph Kn −E((l− 2)P2 ∪P3)(n > 6, 2 6 l 6 ⌊n
2 ⌋) is determined by its

spectrum.

Proof Suppose a graph G is cospectral with Kn − E((l − 2)P2 ∪ P3) respect to the

adjacency spectrum. Similar to the proof of Theorem 1, G isomorphic to a graph which is

obtained from Kn by deleting l edges, write the graph consist of the l edges is G1, that is

G = Kn − E(G1). By Lemma 3, T3(G) =
(

n
3

)

− l(n − 2) +
∑

v∈V (G1)

(

d(v)
2

)

− T3(G1) and

T3(Kn − E((l − 2)P2 ∪ P3)) =
(

n
3

)

− l(n − 2) + 1. By (v) of Lemma 1, we have T3(G) =

T3(Kn − E((l − 2)P2 ∪ P3)), that is

∑

v∈V (G1)

(

d(v)

2

)

− T3(G1) = 1. (1.3)

Assume that there exist at least one triangle in G1, then
∑

v∈V (G1)

(

d(v)
2

)

−T3(G1) > 3−1 = 2 6=

1, a contradiction, so contains no triangle in G1. By (1.3) we have
∑

v∈V (G1)

(

d(v)
2

)

= 1, so there

exist one vertex v ∈ V (G1) such that d(v)=2 and d(u)=1 for other vertices u ∈ V (G1) − {v},

thus G1
∼= (l − 2)P2 ∪ P3 and G ∼= Kn − E((l − 2)P2 ∪ P3).

Corollary 2 (l − 2)P2 ∪ P3 is determined by its spectrum.
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Theorem 3 The graph Kn − E(K1,l)(1 6 l 6 n − 1) is determined by its spectrum.

Proof If l = n − 1, then Kn − E(K1,l) must isomorphic to the disjoint union of Kn−1

and K1, so graph Kn −E(K1,l) is determined by its adjacency spectrum. Next, we will assume

that 1 6 l < n − 1.

Similar to the proof of Theorem 2, suppose a graph G is cospectral with Kn − E(K1,l)

respect to the adjacency spectrum, then G is a graph with n vertices and
(

n
2

)

− l edges. By

Lemma 2, G have only one connected component. So G must isomorphic to a graph which

is obtained from Kn by deleting l edges, write the set of l edges is El = {e1, e2, · · · , el}. We

denote by G1 the set of all graphs consist of the l edges in El.

Case 1 l=1. By Theorem 1, the graph G = Kn − E(P2) is determined by its spectrum.

Case 2 l=2. Then G = Kn − E(2P2) or G ∼= Kn − E(K1,2). By Lemma 3, T3(Kn −

E(2P2)) =
(

n
3

)

− l(n − 2) and T3(Kn − E(K1,2)) =
(

n
3

)

− l(n − 2) +
(

2
2

)

, T3(Kn − E(2P2)) 6=

T3(Kn − E(K1,2)), this is a contradiction with (v) of Lemma 1. so G ∼= Kn − E(K1,2).

Case 3 l=3. Then G = Kn − E(P4) or G = Kn − E(C3) or G = Kn − E(3P2) or

G = Kn − E(P2 ∪ P3) or G ∼= Kn − E(K1,3).

Sub-case 3.1 If G = Kn−E(P4), then by Lemma 3, T3(Kn−E(P4)) =
(

n
3

)

−l(n−2)+2
(

2
2

)

and T3(Kn − E(K1,3)) =
(

n
3

)

− l(n − 2) +
(

3
2

)

, T3(Kn − E(P4)) 6= T3(Kn − E(K1,3)). this is a

contradiction with (v) of Lemma 1.

Sub-case 3.2 Similar to Subcase 3.1, if G = Kn − E(C3), then by Lemma 3, T3(Kn −

E(C3)) =
(

n
3

)

−l(n−2)+3
(

2
2

)

−1 and T3(Kn−E(K1,3)) =
(

n
3

)

−l(n−2)+
(

3
2

)

, T3(Kn−E(C3)) 6=

T3(Kn − E(K1,3)). this is a contradiction with (v) of Lemma 1.

Sub-case 3.3 If G = Kn − E(3P2), or G = Kn − E(P2 ∪ P3), then by Theorem 1 and

2, the graphs Kn − E(3P2) and Kn − E(P2 ∪ P3) is determined by its spectrum, respectively.

Thus G ∼= Kn − E(K1,3).

Next, we will assume that 4 6 l < n−1. For a star K1,l ∈ G1, all edges in K1,l is joint with

each other, hence K1,l contain the most P3, the number of P3 in K1,l is
∑

v∈V (K1,l)

(

d(v)
2

)

=
(

l
2

)

.

For any graph G1 ∈ G1−{K1,l}, since l > 4, hence there exist at least two edges in G1 is disjoint,

so the number of P3 in G1 less than the number of P3 in K1,l, that is
∑

v∈V (G1)

(

d(v)
2

)

<
(

l
2

)

(G1 ∈ G1−{K1,l}). By Lemma 3, T3(Kn−E(G1)) =
(

n
3

)

−l(n−2)+
∑

v∈V (G1)

(

d(v)
2

)

−T3(G1) <
(

n
3

)

− l(n− 2) +
(

l
2

)

= T3(Kn −E(K1,l)), By (v) of Lemma 1 the graph G1 ∈ G1 −{K1,l} is not

cospectral with G1 ∈ G1 −{K1,l} respect to the adjacency spectrum. This completes the proof.
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