Article ID：1000－5641（2012）01－0084－04

Two families of spanning subgraphs of a complete graph determined by their spectra

WU Ting－zeng，HU Sheng－biao
（School of Mathematics and Statistics，Qinghai Nationalities University，Xining 810007，China）

Abstract

A graph G is said to be determined by its spectrum if any graph having the same spectrum as that of G is isomorphic to G ．In this paper，it was proved that $K_{n}-E\left(l P_{2}\right)$ and $K_{n}-E\left(K_{1, l}\right)$ are determined by their spectra，respectively．

Key words：cospectral graphs；spectrum of a graph；eigenvalues
CLC number：O157．5 Document code：A
DOI：10．3969／j．issn．1000－5641．2012．01．010

完全图的两类生成子图是谱唯一确定的

吴廷增，扈生彪
（青海民族大学 数学与统计学院，西宁 810007）

摘要：只有与 G 同构的图才有相同的谱，则称图 G 称为谱唯一确定的．本文证明了， $K_{n}-E\left(l P_{2}\right)$ 和 $K_{n}-E\left(K_{1, l}\right)$ 是谱唯一确定的。
关键词：同谱图；图的谱；特征值

0 Introduction

Let $G=(V, E)$ be a graph with vertex set $V=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ and edge set E ．Let $d\left(v_{i}\right)$ denote the degree of $v_{i} \in V$ ．All graphs considered in this paper are finite undirected loopless simple graphs．Let $\boldsymbol{A}(G)$ be the（ 0,1 ）－adjacency matrix of G ．The polynomial $P_{A(G)}(\lambda)=$ $\operatorname{det}(\lambda \boldsymbol{I}-\boldsymbol{A}(G))$ is called the characteristic polynomial of the graph G with respect to the adjacency matrix，where \boldsymbol{I} is the identity matrix，which can be written as $P_{A(G)}(\lambda)=\lambda^{n}+$ $a_{1} \lambda^{n-1}+\cdots+a_{n}$ ．Since the matrix $\boldsymbol{A}(G)$ are real and symmetric，its eigenvalues are all real numbers．Assume that $\lambda_{1}(G) \geqslant \lambda_{2}(G) \geqslant \cdots \geqslant \lambda_{n}(G)$ are the adjacency eigenvalues of graph G ．The adjacency spectrum of graph G consists of the adjacency eigenvalues（together with their multiplicities）．Two graphs are cospectral if they share the same spectrum．A graph G is said to be determined by its spectrum（DS for short）if for any graph $H, P_{A(H)}(\lambda)=P_{A(G)}(\lambda)$ implies that H is isomorphic to G ．

收稿日期：2010－10
基金项目：国家自然科学基金（10861009）；国家民委科研项目（10QH01）
通讯作者：吴廷增，男，硕士，讲师，研究方向为代数图论．E－mail：tingzengwu＠yahoo．com．cn．

Up to now，only few graphs with very special structures have been proved to the determined by their spectra．So，＂which graphs are determined by their spectrum？＂${ }^{[1]}$ seems to be a difficult problem in the theory of graph spectrum．For the background and some recent surveys of the known results about this problem and related topics，we refer the reader to $[2,3]$ and references therein．

We denote by $l P_{2}$ the disjoint union of l paths P_{2} ，that is $l P_{2}=P_{2} \cup P_{2} \cup \cdots \cup P_{2}$ ．In this paper，we show that $K_{n}-E\left(l P_{2}\right)\left(1 \leqslant l \leqslant\left\lfloor\frac{n}{2}\right\rfloor\right)$ and $K_{n}-E\left(K_{1, l}\right)(1 \leqslant l \leqslant n-1)$ are determined by their spectrum，respectively．

1 Main results

Before presenting proof to Theorems，we need the following Lemmas：
Lemma $1^{[1]}$ Let G be a graph．For the adjacency matrix，the following can be obtained from the spectrum．
（i）The number of vertices．（ii）The number of edges．
（iii）Whether G is regular．（iv）Whether G is regular with any fixed girth．
For the adjacency matrix the following follows from the spectrum．
(v) The number of closed walk of any length．（vi）Whether G is bipartite．
Lemma 2 Let G be a graph with n vertices and $\binom{n}{2}-l$ edges，If $1 \leqslant l<n-1$ ，then G have only one connected component．

Proof Assume that G have r connected components，that is $G=G_{n_{1}} \cup G_{n_{2}} \cup \cdots \cup G_{n_{r}}$, where $\left|V\left(G_{n_{l}}\right)\right|=n_{l}, l=1,2, \cdots, r$ and $n_{1}+n_{2}+\cdots+n_{r}=n$ ．

$$
\begin{aligned}
\frac{n(n-1)}{2}-l & =|E(G)|=\left|E\left(G_{n_{1}}\right)\right|+\left|E\left(G_{n_{2}}\right)\right|+\cdots+\left|E\left(G_{n_{r}}\right)\right| \\
& \leqslant \frac{n_{1}\left(n_{1}-1\right)}{2}+\frac{n_{2}\left(n_{2}-1\right)}{2}+\cdots+\frac{n_{r}\left(n_{r}-1\right)}{2}
\end{aligned}
$$

namely

$$
\sum_{l=1}^{r} n_{l}^{2}+2 \sum_{1 \leqslant i<j \leqslant r} n_{i} n_{j}-2 l=n^{2}-2 l \leqslant \sum_{l=1}^{r} n_{l}^{2}
$$

we get

$$
\begin{equation*}
\sum_{1 \leqslant i<j \leqslant r} n_{i} n_{j} \leqslant l \tag{1.1}
\end{equation*}
$$

since

$$
\begin{equation*}
n-1 \leqslant \sum_{1 \leqslant i<j \leqslant r} n_{i} n_{j} \tag{1.2}
\end{equation*}
$$

the equality hold if and only if $r=2, n_{l}=1$ and $n_{2}=n-1$ ．By（1．1）and（1．2）we have $n-1 \leqslant l$ ， a contradiction．

Let $T_{3}(G)$ denote the number of triangles in the graph G ，we have following Lemmas．
Lemma 3 If G_{1} be a graph of size l ，and $d\left(v_{1}\right) \geqslant d\left(v_{2}\right) \geqslant \cdots \geqslant d\left(v_{n_{1}}\right)$ is the degree sequence of G_{1} ．Then $T_{3}\left(K_{n}-E\left(G_{1}\right)\right)=\binom{n}{3}-l(n-2)+\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}-T_{3}\left(G_{1}\right)$ for any $d(v) \geqslant 2$ ．

Proof $\left|E\left(G_{1}\right)\right|=l$ and every edge of K_{n} corresponds to $n-2$ triangles in K_{n} ．
Case $1 \quad G_{1}$ contains no C_{3} ．For a $P_{3}=u v w$ in G_{1} ，since the edges $u v$ and $v w$ correspond to same one triangle，denote it $u v w$ ，hence $u v$ and $v w$ correspond to $2(n-2)-1$ triangles in $K_{n}-E\left(G_{1}\right)$ ，so the l edges in $E\left(G_{1}\right)$ correspond to $l(n-2)-\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}$ triangles in $K_{n}-E\left(G_{1}\right)$ ，where $\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}$ is the number of P_{3} in G_{1} ．

Case $2 G_{1}$ contains C_{3} ．Similarly，for a $C_{3}=u v w$ ，the edges $u v, v w$ and $w u$ correspond to same one triangle，denote it $u v w$ ．Since for the triangle $u v w$ ，we counted 3 times in $l(n-2)$ and $\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}$ ，respectively．So the l edges in $E\left(G_{1}\right)$ correspond to $l(n-2)-\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}+$ $T_{3}\left(G_{1}\right)$ triangles in $K_{n}-E\left(G_{1}\right)$ ．Thus the number of triangles in $K_{n}-E\left(G_{1}\right)$ is $\binom{n}{3}-l(n-$ $2)+\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}-T_{3}\left(G_{1}\right)$ ．

Theorem 1 The graph $K_{n}-E\left(l P_{2}\right)\left(n \geqslant 3,1 \leqslant l \leqslant\left\lfloor\frac{n}{2}\right\rfloor\right)$ is determined by its spectrum．
Proof Suppose a graph G is cospectral with $K_{n}-E\left(l P_{2}\right)$ respect to the adjacency spectrum．By Lemma $1, G$ is a graph with n vertices and $\binom{n}{2}-l$ edges．Since $n \geqslant 3$ ，hence $l \leqslant\left\lfloor\frac{n}{2}\right\rfloor \leqslant \frac{n}{2}<n-1$ ，by Lemma $2, G$ have only one connected component．So G must isomorphic to a graph which is obtained from K_{n} by deleting l edges，write the graph consist of the l edges is G_{1} and $E\left(G_{1}\right)=\left\{e_{1}, e_{2}, \cdots, e_{l}\right\}$ ．Assume that there exist at least two edges $e_{i}, e_{j} \in E\left(G_{1}\right)$ such that them are jointed but no triangle in G_{1} ，let u be the common vertex of e_{i} and e_{j} ， then $d(u) \geqslant 2$ ，by Lemma $3, T_{3}(G)=\binom{n}{3}-l(n-2)+\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2} \geqslant\binom{ n}{3}-l(n-2)+1>$ $\binom{n}{3}-l(n-2)=T_{3}\left(K_{n}-E\left(l P_{2}\right)\right)$ ．Assume that there exist at least one triangle in G_{1} ，then $T_{3}(G) \geqslant\binom{ n}{3}-l(n-2)+3\binom{2}{2}-1>\binom{n}{3}-l(n-2)=T_{3}\left(K_{n}-E\left(l P_{2}\right)\right)$ ．This is a contradiction with (v) of Lemma 1．Thus the edges in $E_{G_{1}}$ is pairwise disjoint，that is $H \cong G$ ．

The disjoint union of k disjoint paths $P_{n_{1}} \cup P_{n_{2}} \cup \cdots \cup P_{n_{k}}$ is determined by its spectrum ${ }^{[4]}$ ， by Theorem 1 we can get the following corollary．

Corollary $1 \overline{l P_{2}}$ is determined by its spectrum．
Theorem 2 The graph $K_{n}-E\left((l-2) P_{2} \cup P_{3}\right)\left(n \geqslant 6,2 \leqslant l \leqslant\left\lfloor\frac{n}{2}\right\rfloor\right)$ is determined by its spectrum．

Proof Suppose a graph G is cospectral with $K_{n}-E\left((l-2) P_{2} \cup P_{3}\right)$ respect to the adjacency spectrum．Similar to the proof of Theorem $1, G$ isomorphic to a graph which is obtained from K_{n} by deleting l edges，write the graph consist of the l edges is G_{1} ，that is $G=K_{n}-E\left(G_{1}\right)$ ．By Lemma $3, T_{3}(G)=\binom{n}{3}-l(n-2)+\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}-T_{3}\left(G_{1}\right)$ and $T_{3}\left(K_{n}-E\left((l-2) P_{2} \cup P_{3}\right)\right)=\binom{n}{3}-l(n-2)+1$ ．By (v) of Lemma 1，we have $T_{3}(G)=$ $T_{3}\left(K_{n}-E\left((l-2) P_{2} \cup P_{3}\right)\right)$ ，that is

$$
\begin{equation*}
\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}-T_{3}\left(G_{1}\right)=1 \tag{1.3}
\end{equation*}
$$

Assume that there exist at least one triangle in G_{1} ，then $\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}-T_{3}\left(G_{1}\right) \geqslant 3-1=2 \neq$ 1，a contradiction，so contains no triangle in G_{1} ．By（1．3）we have $\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}=1$ ，so there exist one vertex $v \in V\left(G_{1}\right)$ such that $d(v)=2$ and $d(u)=1$ for other vertices $u \in V\left(G_{1}\right)-\{v\}$ ， thus $G_{1} \cong(l-2) P_{2} \cup P_{3}$ and $G \cong K_{n}-E\left((l-2) P_{2} \cup P_{3}\right)$ ．

Corollary $2 \overline{(l-2) P_{2} \cup P_{3}}$ is determined by its spectrum．

Theorem 3 The graph $K_{n}-E\left(K_{1, l}\right)(1 \leqslant l \leqslant n-1)$ is determined by its spectrum．
Proof If $l=n-1$ ，then $K_{n}-E\left(K_{1, l}\right)$ must isomorphic to the disjoint union of K_{n-1} and K_{1} ，so graph $K_{n}-E\left(K_{1, l}\right)$ is determined by its adjacency spectrum．Next，we will assume that $1 \leqslant l<n-1$ ．

Similar to the proof of Theorem 2，suppose a graph G is cospectral with $K_{n}-E\left(K_{1, l}\right)$ respect to the adjacency spectrum，then G is a graph with n vertices and $\binom{n}{2}-l$ edges．By Lemma 2，G have only one connected component．So G must isomorphic to a graph which is obtained from K_{n} by deleting l edges，write the set of l edges is $E_{l}=\left\{e_{1}, e_{2}, \cdots, e_{l}\right\}$ ．We denote by \mathcal{G}_{1} the set of all graphs consist of the l edges in E_{l} ．

Case $1 \quad l=1$ ．By Theorem 1，the graph $G=K_{n}-E\left(P_{2}\right)$ is determined by its spectrum．
Case $2 \quad l=2$ ．Then $G=K_{n}-E\left(2 P_{2}\right)$ or $G \cong K_{n}-E\left(K_{1,2}\right)$ ．By Lemma $3, T_{3}\left(K_{n}-\right.$ $\left.E\left(2 P_{2}\right)\right)=\binom{n}{3}-l(n-2)$ and $T_{3}\left(K_{n}-E\left(K_{1,2}\right)\right)=\binom{n}{3}-l(n-2)+\binom{2}{2}, T_{3}\left(K_{n}-E\left(2 P_{2}\right)\right) \neq$ $T_{3}\left(K_{n}-E\left(K_{1,2}\right)\right)$ ，this is a contradiction with (v) of Lemma 1．so $G \cong K_{n}-E\left(K_{1,2}\right)$ ．

Case $3 \quad l=3$ ．Then $G=K_{n}-E\left(P_{4}\right)$ or $G=K_{n}-E\left(C_{3}\right)$ or $G=K_{n}-E\left(3 P_{2}\right)$ or $G=K_{n}-E\left(P_{2} \cup P_{3}\right)$ or $G \cong K_{n}-E\left(K_{1,3}\right)$ ．

Sub－case 3．1 If $G=K_{n}-E\left(P_{4}\right)$ ，then by Lemma $3, T_{3}\left(K_{n}-E\left(P_{4}\right)\right)=\binom{n}{3}-l(n-2)+2\binom{2}{2}$ and $T_{3}\left(K_{n}-E\left(K_{1,3}\right)\right)=\binom{n}{3}-l(n-2)+\binom{3}{2}, T_{3}\left(K_{n}-E\left(P_{4}\right)\right) \neq T_{3}\left(K_{n}-E\left(K_{1,3}\right)\right)$ ．this is a contradiction with (v) of Lemma 1.

Sub－case 3．2 Similar to Subcase 3．1，if $G=K_{n}-E\left(C_{3}\right)$ ，then by Lemma $3, T_{3}\left(K_{n}-\right.$ $\left.E\left(C_{3}\right)\right)=\binom{n}{3}-l(n-2)+3\binom{2}{2}-1$ and $T_{3}\left(K_{n}-E\left(K_{1,3}\right)\right)=\binom{n}{3}-l(n-2)+\binom{3}{2}, T_{3}\left(K_{n}-E\left(C_{3}\right)\right) \neq$ $T_{3}\left(K_{n}-E\left(K_{1,3}\right)\right)$ ．this is a contradiction with (v) of Lemma 1.

Sub－case 3.3 If $G=K_{n}-E\left(3 P_{2}\right)$ ，or $G=K_{n}-E\left(P_{2} \cup P_{3}\right)$ ，then by Theorem 1 and 2，the graphs $K_{n}-E\left(3 P_{2}\right)$ and $K_{n}-E\left(P_{2} \cup P_{3}\right)$ is determined by its spectrum，respectively． Thus $G \cong K_{n}-E\left(K_{1,3}\right)$ ．

Next，we will assume that $4 \leqslant l<n-1$ ．For a star $K_{1, l} \in \mathcal{G}_{1}$ ，all edges in $K_{1, l}$ is joint with each other，hence $K_{1, l}$ contain the most P_{3} ，the number of P_{3} in $K_{1, l}$ is $\sum_{v \in V\left(K_{1, l}\right)}\binom{d(v)}{2}=\binom{l}{2}$ ． For any graph $G_{1} \in \mathcal{G}_{1}-\left\{K_{1, l}\right\}$ ，since $l \geqslant 4$ ，hence there exist at least two edges in G_{1} is disjoint， so the number of P_{3} in G_{1} less than the number of P_{3} in $K_{1, l}$ ，that is $\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}<\binom{l}{2}$ $\left(G_{1} \in \mathcal{G}_{1}-\left\{K_{1, l}\right\}\right)$ ．By Lemma $3, T_{3}\left(K_{n}-E\left(G_{1}\right)\right)=\binom{n}{3}-l(n-2)+\sum_{v \in V\left(G_{1}\right)}\binom{d(v)}{2}-T_{3}\left(G_{1}\right)<$ $\binom{n}{3}-l(n-2)+\binom{l}{2}=T_{3}\left(K_{n}-E\left(K_{1, l}\right)\right)$ ，By (v) of Lemma 1 the graph $G_{1} \in \mathcal{G}_{1}-\left\{K_{1, l}\right\}$ is not cospectral with $G_{1} \in \mathcal{G}_{1}-\left\{K_{1, l}\right\}$ respect to the adjacency spectrum．This completes the proof．

［ References ］

［1］VAN DAM E R，HAEMERS W H．Which graph are determined by their spectrum？［J］．Linear Algebra Appl， 2003，373：241－272．
［2］WU T，HU S．Some edges－deleted subgraphs of complete graph are determined by their spectrum［J］．Journal of Mathematical Research \＆Exposition，2010，30：833－840．
［3］CVETKOVIĆ D M，DOOB M，SACHS H．Spectra of graphs［M］．New York：John Wiley \＆Son， 1980.
［4］SHEN X，HOU Y，ZHANG Y．Graph Z_{n} and some graphs related to Z_{n} are determined by their spectrum［J］． Linear Algebra Appl，2005，404：58－68．

