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0 Introduction

Recently, the oscillatory behavior of solutions of third order functional differential equa-

tions has attracted many researchers. For recent results we refer the reader in particular to [1-5]

and the references cited therein. We know that neutral differential equations have applications

in many problems such as the vibrating masses attached to an elastic bar and some variational

problems (see [6]). Theoretically, the oscillation analysis of neutral equations are more compli-

cated than that of delay equations (of [7-9]). In this paper, we study the oscillatory behavior

of solutions of the third order neutral differential equation

(r(t)[x(t) + p(t)x(τ(t))]′′)′ + q(t)f(x(σ(t)))g(x′(t)) = 0, t > t0. (E)
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Throughout this paper, we always assume that

(H1) r(t), q(t) ∈ C([t0,∞), (0,∞)),
∫
∞

t0

1
r(t)dt = ∞;

(H2) p(t) ∈ C([t0,∞)), 0 6 p(t) 6 p < 1;

(H3) τ(t), σ(t) ∈ C([t0,∞), (0,∞)), τ(t) 6 t, σ(t) 6 t, lim
t→∞

τ(t) = lim
t→∞

σ(t) = ∞;

(H4) f ∈ C(R,R), f(u)
u

> K > 0, u 6= 0;

(H5) g ∈ C(R, [L,∞)), L > 0.

For the equation (E), corresponding second order neutral differential equation, namely

(r(t)[x(t) + p(t)x(τ(t))]′)′ + q(t)f(x(σ(t)))g(x′(t)) = 0, t > t0, (E1)

has been considered by Yang and Zhu in [10]. Corresponding second order delay differential

equation, namely

x′′(t) + q(t)f(x(σ(t)))g(x′(t)) = 0, t > t0, (E2)

has been also considered by Rogovchenko in [11]. In this paper, our aim is to study the third

order neutral equation (E), which have not been considered yet in the literature, and establish

the oscillation criteria which extend and improve the results in [11,12].

We put y(t) = x(t) + p(t)x(τ(t)). By a solution of the Eq. (E) we mean a function

x(t) ∈ C1[Tx,∞), Tx > t0, which has the property r(t)y′′(t) ∈ C1[Tx,∞) and satisfies Eq. (E)

on [Tx,∞). We consider only those solution x(t) of (E) which satisfy sup{|x(t)| : t > T } > 0 for

all T > Tx. We assume that (E) possesses such a solution. A solution of (E) is called oscillatory

if it has arbitrarily large zeros on [Tx,∞) and otherwise it is called nonoscillatory.

1 Main results

Before starting our main results, we begin with the following lemmas which will play an

important role in the proof of main results.

Lemma 1[11] Assume that u(t) > 0, u′(t) > 0, u′′(t) 6 0, t > t0, then for every

α ∈ (0, 1), there exists Tα > t0, such that u(σ(t)) > α
σ(t)

t
u(t), t > Tα.

Lemma 2 Assume that u(t) > 0, u′(t) > 0, u′′(t) > 0, u′′′(t) 6 0, t > Tα, then there

exist β ∈ (0, 1), and Tβ > Tα, such that

u(t) > βtu′(t), t > Tβ. (1)

Proof Set y(t) = (t − Tα)u(t) − 1
2 (t − Tα)2u′(t), t > Tα. Then y(Tα) = 0, and

y′(t) = u(t) −
1

2
(t − Tα)2u′′(t). (2)

We claim that y′(t) > 0. In fact, since u′′ is nonincreasing, by Taylor’s theorem, we get

u(t) > u(Tα) + (t − Tα)u′(Tα) +
1

2
(t − Tα)2u′′(t).

This implies that y′(t) > u(Tα) + (t − Tα)u′(Tα) > 0. Since y(Tα) = 0, we have y(t) > 0 for

t > Tα, i.e. u(t) >
t−Tα

2 u′(t), t > Tα. So there exist β ∈ (0, 1) and Tβ > Tα, such that (1)

holds. The proof is complete.
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Lemma 3 Assume that x(t) is an eventually positive solution of equation (E). Define

the function

y(t) = x(t) + p(t)x(τ(t)). (3)

Then for t > T > t0 sufficiently large, (A) y(t) > 0, y′(t) > 0, y′′(t) > 0, or (B) y(t) >

0, y′(t) < 0, y′′(t) > 0.

Proof Let x(t) is an eventually positive solution of equation (E). Then there exists t1 >

t0, such that x(t) > 0, x(τ(t)) > 0, x(σ(t)) > 0, t > t1. It is easy to see that y(t) > x(t) > 0,

and (r(t)y′′(t))′ = −q(t)f(x[σ(t)])g(x′(t)) < 0, t > t1. Then r(t)y′′(t) is a nonincreasing

function for t > t1 and of a constant sign. Thus there exists t2 > t1, such that y′′(t) < 0 or

y′′(t) > 0, t > t2.

Now, we assume that y′′(t) < 0, then there exists constant M > 0, such that

r(t)y′′(t) 6 −M < 0, t > t2. (4)

Integrating (4) over [t2, t], we get

y′(t) 6 y′(t2) − M

∫ t

t2

1

r(s)
ds.

Letting t → ∞ in the above. From the condition (H1) we get y′(t) → ∞, i.e. y′(t) is eventually

negative. But y′′(t) < 0 and y′(t) < 0 holds eventually, thus, there exists a T > t2, such that

y(t) < 0 for t > T . This contradicts with the fact that y(t) > 0. Then y′′(t) > 0. The proof is

complete.

Lemma 4 Let x(t) be a positive solution of equation (E) and the corresponding y(t)

satisfies (B). If ∫
∞

t0

∫
∞

v

(
1

r(u)

∫
∞

u

q(s)ds)dudv = ∞. (5)

Then lim
t→∞

x(t) = lim
t→∞

y(t) = 0.

Proof Suppose that x(t) is a positive solution of equation (E), and that y(t) satisfy (B),

i.e., y(t) > 0, y′(t) < 0, t > T > t0. So there exists constant l > 0, such that lim
t→∞

y(t) = l.

Now we claim that l = 0. In fact, if l > 0, then for every ε > 0, there exists t1 > T , such that

l < y(t) < l + ε, t > t1. We can choose 0 < ε <
l(1−p)

p
, we obtain

x(t) = y(t) − p(t)x(τ(t)) > l − py(τ(t)) > l − p(l + ε). (6)

Let m = l−p(l+ε)
l+ε

, then m > 0. From (6) we have

x(t) > m(l + ε) > my(t). (7)

Combining (H4), (H5), (7) and (E), yields

(r(t)y′′(t))′ + KLmq(t)y(σ(t)) 6 0, t > t1. (8)

Integrating (8) from t to ∞, we obtain

−r(t)y′′(t) + KLm

∫
∞

t

q(s)y(σ(s))ds 6 0.
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Noting that y(σ(t)) > l, t > t2 > t1, we get

−y′′(t) +
KLlm

r(t)

∫
∞

t

q(s)ds 6 0, t > t2. (9)

Integrating (9) from t to ∞ again, we have

y′(t) + KLlm

∫
∞

t

( 1

r(u)

∫
∞

u

q(s)ds
)

du 6 0. (10)

Integrating (10) from t2 to ∞, we obtain

∫
∞

t2

∫
∞

v

( 1

r(u)

∫
∞

u

q(s)ds
)

dudv 6
y(t2)

KLml
. (11)

This contradicts (5). Then l = 0. Since 0 < x(t) 6 y(t) implies lim
t→∞

x(t) = 0. The proof is

complete.

We now present some new oscillation results for equation (E) by using integral averages

condition of Kamenev-type.

Theorem 1 Suppose n > 1 and that (5) holds. If there exists a function ρ ∈

C1([t0,∞), (0,∞)) such that

lim sup
t→∞

1

tn

∫ t

t0

(t − s)n
[

ρ(s)Q(s) −
(ρ′(s))2r(s)

4ρ(s)

]

ds = ∞, (12)

where

Q(s) = αβKL(1 − p)
σ2(s)

s
q(s), (13)

α and β are defined by Lemmas 1 and 2. Then every solution x(t) of equation (E) is oscillatory

or lim
t→∞

x(t) = 0.

Proof Assume that (E) has a nonoscillatory solution x(t). Without loss of generality,

we may assume that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t > t1 > max{T, Tβ}. Since the

proof for the case x(t) < 0 for t > t1 > max{T, Tβ} is similar. Define the function y(t) as in

(3). From Lemma 3, there are two possible cases.

First consider that y(t) is (A) type. Note that x(t) = y(t)−p(t)x(τ(t)) > y(t)−py(τ(t)) >

(1 − p)y(t). From (H4), (H5) and (E), we get

(r(t)y′′(t))′ + KL(1 − p)q(t)y(σ(t)) 6 0, t > t1. (14)

Let

w(t) = ρ(t)
r(t)y′′(t)

y′(t)
, t > t1. (15)

Then

w′(t) 6 −
KL(1− p)ρ(t)q(t)y(σ(t))

y′(t)
+

ρ′(t)

ρ(t)
w(t) −

w2(t)

ρ(t)r(t)
. (16)

From Lemma 1 and Lemma 2, for t > t1, we have

w′(t) 6 −ρ(t)Q(t) −
[ w(t)
√

ρ(t)r(t)
−

1

2

√

r(t)

ρ(t)
ρ′(t)

]2

+
(ρ′(t))2r(t)

4ρ(t)
6 −

[

ρ(t)Q(t) −
(ρ′(t))2r(t)

4ρ(t)

]

.
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Where Q(t) is as in (13). Thus

∫ t

t1

(t − s)n
[

ρ(s)Q(s) −
(ρ′(s))2r(s)

4ρ(s)

]

ds 6 −

∫ t

t1

(t − s)nw′(s)ds, t > t1.

Noting that ∫ t

t1

(t − s)nw′(s)ds = n

∫ t

t1

(t − s)n−1w(s)ds − w(t1)(t − t1)
n,

we have
1

tn

∫ t

t1

(t − s)nG(s)ds 6 w(t1)
(

1 −
t1

t

)n

−
n

tn

∫ t

t1

(t − s)n−1w(s)ds,

where G(s) = ρ(s)Q(s) − (ρ′(s))2r(s)
4ρ(s) . Thus

lim sup
t→∞

1

tn

∫ t

t1

(t − s)nG(s)ds < ∞,

which contradicts (12). If that y(t) is (B) type. From Lemma 4 we have lim
t→∞

x(t) = lim
t→∞

y(t) =

0. The proof is complete.

Next we present some new oscillatory criteria for equation (E) by using the integral aver-

aging condition of Philos-type. So we introduce a class of functions P. Let

D = {(t, s) : t > s > t0}, D0 = {(t, s) : t > s > t0}.

We say that a function H ∈ C(D,R) belongs to a function class P, denoted by H ∈ P, if it

satisfies

(i) H(t, t) = 0, t > t0; H(t, s) > 0, (t, s) ∈ D0;

(ii) H has a continuous and nonpositive partial derivative on D0 with respect to the second

variable, and such that −∂H(t,s)
∂s

= h(t, s)
√

H(t, s), (t, s) ∈ D0.

Theorem 2 Assume that (5) holds, and there exist functions H ∈ P and ρ ∈

C1([t0,∞), (0,∞)) such that

lim sup
t→∞

1

H(t, t0)

∫ t

t0

[

H(t, s)ρ(s)Q(s) −
1

4
ρ(s)r(s)h2

1(t, s)
]

ds = ∞, (17)

where Q(s) is as in (13), and

h1(t, s) = h(t, s) −
ρ′(s)

ρ(s)

√

H(t, s). (18)

Then every solution x(t) of equation (E) is oscillatory or lim
t→∞

x(t) = 0.

Proof Assume that (E) has a nonoscillatory solution x(t). As the proof of Theorem 1,

we may assume that x(t) > 0, x(τ(t)) > 0 and x(σ(t)) > 0 for t > t1 > tβ . Define the function

y(t) as in (3). There are two types: (A) type or (B) type.

First consider that y(t) is (A) type. Define the function w(t) as in (15). Then w(t) > 0

and (16) holds. From Lemma 1 and 2, we obtain

w′(t) 6 −ρ(t)Q(t) +
ρ′(t)

ρ(t)
w(t) −

1

ρ(t)r(t)
w2(t), (19)
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where Q(s) is as in (13). Let A(t) = ρ′(t)
ρ(t) , B(t) = 1

ρ(t)r(t) , we have

∫ t

t1

H(t, s)ρ(s)Q(s)ds 6

∫ t

t1

H(t, s)[−w′(s) + A(s)w(s) − B(s)w2(s)]ds

= −H(t, s)w(s)|tt1 +

∫ t

t1

{∂H(t, s)

∂s
w(s) + H(t, s)[A(s)w(s) − B(s)w2(s)]

}

ds

= H(t, t1)w(t1) −

∫ t

t1

[
√

H(t, s)h1(t, s)w(s) + H(t, s)B(s)w2(s)]ds

= H(t, t1)w(t1) −

∫ t

t1

[

√

H(t, s)B(s)w(s) +
1

2

h1(t, s)
√

B(s)

]2

ds +

∫ t

t1

h2
1(t, s)

4B(s)
ds,

(20)

where h1(t, s) is as in (18). Thus

1

H(t, t1)

∫ t

t1

[

H(t, s)ρ(s)Q(s) −
h2

1(t, s)

4B(S)

]

ds 6 w(t1),

which contradicts condition (17).

Next, if that y(t) is (B) type. From Lemma 4 we have lim
t→∞

x(t) = lim
t→∞

y(t) = 0. The

proof is complete.

Remark 1 Theorem 3 in [11] and Theorem 1 in [12] are extended to third order neutral

equation (E) by above Theorem 2.

In Theorem 2, when (17) is difficult to verify, we have the following Theorem.

Theorem 3 Let all the assumption, except (17), of Theorem 2 hold. Further, let

0 < inf
s>T

[

lim inf
t→∞

H(t, s)

H(t, T )

]

6 ∞, (21)

and

lim sup
t→∞

1

H(t, T )

∫ t

T

ρ(s)r(s)h2
1(t, s)ds < ∞. (22)

Let ϕ ∈ C([t0,∞),R) such that

∫
∞

T

ϕ2
+(s)

ρ(s)r(s)
ds = ∞, ϕ+(t) = max{ϕ(t), 0}, (23)

and

lim sup
t→∞

1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)Q(s) −
1

4
ρ(s)r(s)h2

1(t, s)
]

ds > ϕ(T ). (24)

Then every solution x(t) of equation (E) is oscillatory or lim
t→∞

x(t) = 0.

Proof It is the same with Theorem 2. When that y(t) is (A) type, we have (2.15) holds.

Thus for every T > t1, we have

lim sup
t→∞

1

H(t, T )

∫ t

T

[

H(t, s)ρ(s)Q(s) −
1

4
ρ(s)r(s)h2

1(t, s)
]

ds

6 w(T ) − lim inf
t→∞

1

H(t, T )

∫ t

T

[

√

H(t, s)B(s)w(s) +
h1(t, s)

2
√

B(s)

]2

ds.



1 1 Ï ¸§�: n���5¥á.�¼�©�§��Ä5 119

Using (24), we obtain

w(T ) > ϕ(T ) + lim inf
t→∞

1

H(t, T )

∫ t

T

[

√

H(t, s)B(s)w(s) +
h1(t, s)

2
√

B(s)

]2

ds,

thus

lim inf
t→∞

1

H(t, T )

∫ t

T

[

√

H(t, s)B(s)w(s) +
h1(t, s)

2
√

B(s)

]2

ds < ∞. (25)

Define

u(t) =
1

H(t, T )

∫ t

T

H(t, s)B(s)w2(s)ds, v(t) =
1

H(t, T )

∫ t

T

√

H(t, s)h1(t, s)w(s)ds.

From (25), we get lim inf
t→∞

[u(t) + v(t)] < ∞.

When y(t) is (A) type, the rest of the proof is similar to that of Theorem the respective

one in [9,10]. When y(t) is (B) type. From Lemma 4 we have lim
t→∞

x(t) = lim
t→∞

y(t) = 0. The

proof is complete.

Example 1 Consider the third order nonlinear neutral differential equation

(

(t + 1)−r
[

x(t) +
1

3
x
(

t −
1

2

)]

′′
)

′

+ tλ
(

λ
2 − cos t

t

+ (2 + sin t)
)

x(t − 1)(1 + x2(t − 1))(1 + (x′(t))2) = 0, for t > 1.

(E0)

Where r and λ are positive constants. Here r(t) = (t + 1)−r, p(t) = 1
3 , τ(t) = t − 1

2 , f(u) =

u(1 + u2), q(t) = tλ(λ2−cos t
t

+ (2 + sin t)), with K = 1, σ(t) = t− 1, g(v) = 1 + v2, with L = 1.

We have ∫
∞

1

1

r(s)
ds = ∞, (26)

also,

∫ t

to

q(s)ds =

∫ t

to

sλ
(

λ
2 − cos s

s
+ (2 + sin s)

)

ds >

∫ t

to

sλ
(

λ
2 − cos s

s
+ sin s

)

ds

=

∫ t

to

d[sλ(2 − cos s)] = tλ(2 − cos t) − tλ0 (2 − cos t0) > tλ − k0 → ∞, as t → ∞.

(27)

From (26) and (27) we see that (H1) − (H5) and (5) hold. To apply Theorem 2, it remains to

satisfy the condition (17). Taking H(t, s) = (t − s)2, ρ(t) = 1, then h1(t, s) = h(t, s) = 2, and

lim sup
t→∞

1

H(t, t0)

∫ t

t0

ρ(s)r(s)h2
1(t, s)ds < ∞.

From (13) we have Q(t) = αβKL(1−p)σ2(t)
t

q(t) = 2αβ
3

(t−1)2

t
q(t), then there is a T > 1 sufficient

large such that Q(t) > q(t) for t > T . For t > s > T , we have

1

t2

∫ t

T

(t − s)2Q(s)ds >
1

t2

∫ t

T

(t − s)2q(s)ds =
1

t2

∫ t

T

[

2(t − s)
(

∫s

t0

q(u)du
)]

ds

>
2

t2

∫ t

T

(t − s)(sλ − k0)ds =
2

(λ + 1)(λ + 2)
tλ +

K1

t2
+

K2

t
− K0,
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where Ki (i = 0, 1, 2) are constants. Consequently, condition (17) is satisfied. It is easy to see

that the condition (5) is satisfied. Hence, every solution of equation (E0) oscillates or converges

to zero.
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