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0 Introduction and definitions

Determining chromatic numbers of various kinds of colorings is a fundamental problem of
graph coloring. After the concept of vertex-distinguishing proper edge coloring of graphs was
presented in [1], international scholars did many studies in [2-4].

All graphs mentioned here are simple, undirected and finite. We denote the vertex set,
edge set, maximum degree, minimum degree, and edge chromatic number of a graph G by
V(G), E(G), A(G), §(G), and x’'(G), respectively.

A proper k-edge coloring f of a graph G is an assignment of k colors, 1,2,--- | k, to edges
of G (or a mapping from E(G) to {1,2,---,k}) such that no two adjacent edges receive the
same color. Given such a coloring f, for any vertex z € V(G), let S(z) be the set of colors
assigned to the edges incident to z, i.e., S(z) = {f(zu)|zu € E(G), u € V(G)}, S(z) is called
the color set of vertex z. If for any two distinct vertices u and v of V(G), S(u) # S(v), then
we say that f is a vertex-distinguishing proper edge coloring of graph G (in brief k-VDPEC).
Let S(x) = {1,2,--- ,k} \ S(x). S(x) is called the complementary color set of vertex x. The
minimum number of colors required for a vertex-distinguishing proper edge coloring of G,
denoted by x.(G), is called the vertex-distinguishing proper edge chromatic number. A graph
with no more than one isolated vertex and no isolated edges is called a vdec graph. Obviously,
a graph G has the vertex-distinguishing proper edge coloring if and only if G is a vdec graph.

Let G be a vdec graph and ng(G) denote the number of vertices of degree d, §(G) < d <
A(G). Set

m(G) = min{0|(}) = na(G), §(G) < d < A(G)}.
Clearly, the following lemma is true.
Lemma 1 x.(G) > n(G).
Burris and Schelp got the vertex-distinguishing proper edge chromatic numbers of com-

plete graphs, complete bipartite graphs, paths and cycles in [4], and presented the following

Conjecture.
Conjecture 1 If G is a vdec graph, then x.(G) = 7(G) or n(G) + 1.
Lemma 2] For any vdec graph of order n, then x.(G) < n + 1.

The composition of simple graphs G and H is the simple graph G[H]| with vertex set
V(G) x V(H), in which (u,v) is adjacent to (u’,v") if and only if either uu’ € E(G) or u = v’
and vv’ € E(H). The notation (u,v)(u,v") indicates the edge between adjacent two vertices
(u,v) and (v',v") in G[H].

Lemma 3! (i) If (u,v) € V(G[H]), then dara)(u,v) = dg(u)|V(H)| + dg (v).

(i) AGIH]) = A(G) - |V (H)| + A(H),

Let K,[S4] be the composition of complete graph K, and star S;, where K, is a complete
graph of order p, S; is a star of order q. Then there exist edge-disjoint spanning subgraph
K(p x q) and pSy of Kp[S,], such that K,[S,] = K(p % q) UpSy, where K(p x ¢) is a complete
p-partite graph with equipotent parts and ¢ vertices in each part, pS, is the disjoint union of p
graphs which are isomorphic to S,.

Lemma 4 Ifp > 2,¢q > 4, then n(K,[S,]) = min{9|(pq0_1) >p, (pq—6q+1) > pq—p} = pq.
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Proposition 16 Ifp >3, ¢ > 2, then Y. (K(p x q¢)) = (p — 1)qg + 2.
=

Proposition 271 If n > 2, then \(K,.,) = n + 2.

1 Main results

For convenience, let V(K,[Sy]) = {(ui,v)li =1,2,---,p, j=1,2,--- ,q}.

Theorem 1 Ifp > 2, q > 4, then x,(K,[S,]) < x4(K(p x q)) + X' (pSy)-

Proof Firstly, we assign x/, (K (p X q)) colors to the edges of K (px ¢) so that the resulting
edge coloring is proper and vertex-distinguishing. Then we assign x’(pS,) new colors properly
to the edges of pS,. Combining these two colorings together gives the VDPEC of K, [S,] using
Xs(K(p x q)) + x'(pSy) colors. This theorem follows.

According to Proposition 1, Proposition 2 and Theorem 1, the following theorem is obvious.

Theorem 2 Ifp > > 4, then x, (K,[S¢]) < pg+ 1.

Theorem 3 If g > 4 then X5 (K2[S,]) = 2g.

Proof By Lemma 1 and Lemma 4, x,(K2[S,]) > 2¢. Set

E(KQ[SQ]) = {(ulvvj)(u27vl)|jvl =12, 7Q}U ( U u17U1 uhvj)lj =2,3,--- =Q});

E(Kyq) = {(ur,v))(uz,v)|j,l = 1,2,--- ,q}.

By Proposition 2, we may give a (¢ + 2)-VDPEC ¢ of K, ,. According to the proof

procedure of Proposition 2 in [7], we have

@((ul?vJ)(uz’vl)) (Q+]+ )q+2’ j:172,"',q_17l:1727"'7q
P((u1,v9)(uz,01)) = (¢ — 1+ )g42,

The above symbol (m),, denotes the number in {1,2,--- ,n} which is congruent with m
modulo n. Note that if m is a multiple of n, then (m),, = n. For example, (5)5 =5, (10)5 = 5,
(8)5 =3, (2)5 =2.

Under ¢, the set of two colors which are not represented at vertex (u;,v;) is denoted by

o (u,v5),1=1,2,7=1,2,---,¢, we have

d(ulavl):{%q—’—l}u d(ulav2):{q+1uq+2}a
A (uz,v1) ={q—1,q+1}, & (uz,v3)={1l,q+1}.

Based on the coloring ¢, we will color the edges of two S;. This time we need color ¢ + 1
and new colors ¢+ 3,q + 4, -+ ,2q.

Let (u1,v1)(u1,v2) and (ug,v1)(ug, vs) receive color g + 1, (u1,v1)(u1,v;) receive color
g+7,75=3,4,---,q, (u2,v1)(u2, v2) receive color ¢ + 3 and (u2,v1)(u2,v;) receive color g + j,
j=4,5,---,q. The resulting edge coloring of K[S,] is denoted by f. Then f is proper and
for this f, we have

S(ur,v1) = {a}, S(ur,v2) = {g+2} UL, S(ur,v)) = o (w1, v;) U\{g+4}), j = 3,4, L@
S(uz,v1) = {q — 1}, S(uz,v2) = o (uz, v2) UL \ {q + 3}), S(uz,vs) = {1} U1, S(U%UJ) =
o (ug,v;) UI\{g+J}), j=4,5,---,¢; where I = {¢+3,¢+4,---,2q}.
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Since ¢ is a VDPEC, <7 (u;, v;)

It is easy to see that S(u;,v;) #
follows.

Theorem 4 Ifp > 3, then x,(K,[S4]) = 4p.

Proof By Lemma 1 and Lemma 4, x,(K,[S4]) > 4p. Set

B s)=('U 0 o) li1=1,2.34) U ( U fGansoa)unopli=1.2.43).

i=1 k=i+1
Arrange clockwisely vertices (u1,v1), (u1,v2), (u1,vs), (u1,v4), (uz,v1), (u2,vs), (ug,vs),

7& %(ukavl)u Z,k = 1727 1 <.77l < q, (17]) 7& (kul)
Slug,v), i,k=1,2,1<4,1<q, (i,§) # (k,1). Theorem

(u2,v4), -+, (up,v1), (up,v2), (up,vs) on the apics of a regular (4p — 1)-gon with center
point (up,vs). Note that all vertices of the regular (4p — 1)-gon and center point (up,v4)
together form the vertex set of K,[Ss]. At the same time, the three segments of connect-
ing (us,v1) and (u;,v2), (ui,v1) and (u;,va), (u;,ve) and (u;,vs) are not edges of K,[S4l,
1 = 1,2,--- | p. Except these 3p segments, connecting segments between any two distinct
vertices can be viewed as edges of K,[S4]. Let M;; be all edges in K,[S,] which are perpen-
dicular to straight line connecting two vertices (up,v4) and (u;,v;) as well as (up, va) (i, v;),
i=1,2,---,p—1,7=1234i=p,j =3 Let My be all edges in K,[S,s] which are
perpendicular to straight line connecting two vertices (up,vs) and (up,v;), j = 1,2. Thus
M1, My, Mz, Ma, Moy, Moy, Moz, Moy, -+, My, Mpa, Mpy3 are matching and edge-

disjoint each other. Furthermore,

E(Kp[S4]) :MHU My, M13U M14U Mo M22U Mol J M24U - My Mial Mys.

We define a proper edge coloring ¢ of K,[Sy] using colors 1,2, --- ,4p—1 as follows: assign
color 4(i — 1) +j toedges in M;;,i=1,2,--- ,p—1,5=1,2,3,4;i=p, j=1,2,3.

Based on the coloring ¢, now we recolor the edge (u;,v1)(u;,v3) by a new color 4p, i =
1,2,---,p— 1. The resulting edge coloring is denoted by f. Clearly f is proper.

Case 1 p is even. For this f, we have

Su,vr) = {4i —2,4i+2p—3,4i+2p— 2}, i = 1,2, , &;
Sui,vr) ={4i—2p—2,4i —2p— 1,4i — 2}, i = 2 X2 ..o p 1
S(up,v1) = {2p — 2,4p — 3, 4p}.

S(ui,va) = {4i — 1,4i+2p — 3,4p}, i = 1,2, | &;

S(ui,va) = {4i —2p —2,4i — 1,4p}, i = B2 2H4 .. p— 1,
S(up,va) = {2p — 2,4p — 2,4p}.

S(uj,vg) = {4i—2},i=1,2,-- ,p—1; S(up,v3) = {4p}.

S(ui,vg) = {4i —1,4i+2p —2,4p}, i =1,2,--- | §;

S(ui,vg) = {4i—2p—1,4i — 1, 4p}, i =22 24 . p—1;
S(up,vs) = {4p — 3,4p — 2, 4p}.

Note that the numbers in each set S(u;,v;) are arranged in ascending order, i =
1,2,---,p, j = 1,2,3,4. We just need to prove that the complementary color sets of any
two distinct vertices of same degree are different from each other.

Obviously, S(u;,v3) # S(ug,v3), 1 <i <k < p.
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Now we prove S(u;,v1) # S(ux,v1), by contradiction, suppose S(u;,v1) = S(ux,v1),
1<i<k<yp
g, P2 < k< p—1, from 4i+2p—3 =4k —2p—1 we know that k—i = p

p, from 4i 4+ 2p — 2 = 4p we know that ¢ = pTH;

for % <i<p—-1, k=np, from4i—2=4pwekn0wthati:p—i—%.

These are contradictions. Thus S(u;,v1) # S(uk,v1), 1 <i <k <p

Similarly, we can show that S(u;,v2) # S(uk, v2), S(ui,va) # S(uk,v4), 1 <i <k <p

We will prove S(up,v1) # S(ui,v2), S(up,v1) # S(ui,vs). By contradiction, suppose
S(up,v1) = S(ui, va), S(up,v1) = S(ui,va), i =1,2,-++ ,p—1.

For1 <i< %,from2p—2:4i—1Weknowthati:g—i; forpTJr2 <i<p-—1, from
4p—3=4i—1wekn0wthatizp—%.

These are contradictions. Thus S(uy, v1) # S(us, va), S(up,v1) # S(ui,v4), 4 =1,2,-+- ,p.
The color 4p belongs to S(u;, v2) and S(u;,v4), but does not belong to S(ug,v1), i =1,2,--- ,p,
k=1,2,---,p—1. Thus, S(ug,v1) # S(us,va), S(ug,v1) # S(ui,va), i,k =1,2,---p

We will prove S(u;,ve) # S(ug,v4), by contradiction, suppose S(u;,v2) = S(ux,vs),

1.
-5

iWwk=1,2,---,p.
Forlgz\g,1<k<g,from4i+2p—3=4k+2p—2Weknowthati—k:%;
forlgigg,%<k<p—1,from4i+2p—3=4k—1Weknowthatk—i:p—gl;
for 1 <i<E, k=p, from4i—1=4p— 3 we know that i =p — 1;
for%gzgp 11\k\ , from 47 — 2p — 2 = 4k — 1 we know that ¢ — —p—|—4,
for%ﬁgigp—l,%gk\ — 1, from 4i — 2p — 2 = 4k — 2p — 1 we know that
z—k:%;

f0r¥< <p—1 k= p,fr0m4z—1—4p—2weknowthatz—p—%;
forizp,1<k £, from 2p — 2—4k—1weknowthatk———%,
for ¢ = p, B5= <k<p 1,fr0m2p—2—4k—2p—1Weknowthatkzp—%.
These are contradlctlons. Thus S(u;, v2) # S(ug,v4), i,k =1,2,---,p
In summary, the above coloring is a 4p-VDPEC coloring of K,[S4].
Case 2 pis odd. For this f, we have

_ 1

S(ui,v) = {4i — 2,40+ 2p — 3,4i + 2p — 2}, i:1,2,~--,pT;

§(U’?’T+17’Ul) {1 2p74p_1}

_ 3 )

S(ui,v1) = {4i — 2p—2,4i — 2p — 1,4i — 2}, :7%,]%,---, 1;

S(up,v1) = {2p —2,4p — 3,4p}.

— 1

S(us,ve) ={4i—1,4i+2p—3,4p}, i=1 2,---,]%,

— 3 )

S(us,ve) = {4i —2p — 2,4i — 1,4p},2—]%,]%, ,p—1;

U Wl

Ui, V3

) =

(up,v2) = {2p — 2,4p — 2, 4p}.
y={4i—2}, i=1,2,--- ,p— 1;?(’&;0,1)3) = {4p}.
) =

(
(ws, 4

o

{4i —1,4i+ 2p — 2,4p}, 1,2+, ——:
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p+1 p+3

S(ui,vg) = {4i —2p —1,4i — 1,4p}, 5 o

g(up,m) = {4p - 35 4p - 25 4p}

Note that the numbers in each set S(u;,v;) are arranged in ascending order, i =
1,2,---,p, j = 1,2,3,4. We just need to prove that the complementary color sets of any
two distinct vertices of same degree are different from each other.

The proof of Case 2 is similar to that of Case 1.

Theorem 5 Ifp(>4) is even, then x%(K,[Ss]) = 5p.

Proof By Lemma 1 and Lemma 4, x,(K,[S5]) = 5p. Set

E(K,[S5]) = (1U1kL1J {(us, vy) (un, v)lj, 1 = 1,2,3,4 5})U(£J1{(Uiava)(uz'avj)lj =12
4,5}).

We define a proper edge coloring ¢ of K,[S5] using colors 1,2, ---,5p — 1 in the same way
as that of Theorem 4 as follows: assign color 5(i —1)+j to edges in M;;,¢=1,2,--- ,p—1, j =
1,2,3,4,5; i =p,j = 1,2,3,4.

Based on the coloring ¢, now we recolor the edge (u;,vs)(u;,v5) by a new color 5p, i =

1,2,---,p—1. The resulting edge coloring is denoted by f. Clearly f is proper and for this f,

we have
S(ui, 1) =451 — 2,5+ p 45Z+2p 35p} 221,27...75;
g 3 2 4
S(ui,v1) :{57,——]9 3,51 — —2,5@-2,5]9}, jobr2ptd
2 2 2
= )
S (tp, v1) :{519 3, p 2,5p—4 5p}
j— 5 ) p
S(us, v2) :{52 2,51+ p 45z—|—2p 2,5p}, 121727...75;
K 5 2 4
S(ui,v2) :{52——p 3,51 — —1752'_27519}7 Z’:Zi,i,...7p_1;
2 2 2
= 5
S(uy, v2) :{gp 3.5p—3,5p—2, 5p}
S(us,v3) = {bi—1}, i=1,2,--+ ,p—1; S(up,v3) = {5p}.
< )
S(us, va) :{52 2,51+ p 35Z+2p—1 5p} i:1,27...7§;
T 5 2 4
SUZ7U4 :{52__]9 251 p,5l—2,5p}7 :Ii’]i’,p_17
2 2 2
= )
S (tp, va) :{519—2 5p —2,5p — 1,5p}.
) ) D
i U5) = 15 ~1,5 2,5 1}, i=1,2... L2
S (ui, vs) {Z 1"'219 l+2]9 i 5
) 2 4
u17U5 :{ __p 5]9,51'—2,51'—1}, i:]%7]%7...7p_1;
S(up, vs) = {5p — 4,5p — 3,5p — 1,5p}.

Note that the numbers in each set S(u;,v;) are arranged in ascending order, i =

1,2,---,p, 7=1,2,3,4,5. We just need to prove that the complementary color sets of any two

) 3
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distinct vertices of same degree are different from each other.
The proof is similar to Case 1 of Theorem 4.
Theorem 6 Ifpg (p > 3,q > 5) is odd, then x,(K,[S,]) = pg.
pg.

Proof By Lemma 1 and Lemma 4, x,(K,[S,]) > pg. Set

e s = (U U Al )l 5= 1.2, }) U (O (vage s y) G =

i=1 k=it i=1
1,2,---,q,and j # %1})
Arrange clockwisely vertices (u1,v1), (u1,v2),- -, (u1,vq), (uz,v1), (u2,v2), -, (u2,vq),
s (up,v1), (Up,v2), -+, (up,vg) on the apics of a regular pg-gon with center point O. Note
that all vertices of the regular pg-gon form the vertex set of K,[S,]. At the same time, the seg-
ment of connecting (u;,v;) and (u;, v;) is not edge of K,[Sq],i=1,2,---,p, j=1,2,--- ,¢g—1,
l=74+1,j4+2,--- ,qand j,1 # %1. Except these ‘ﬁ%p segments, connecting segments
between any two distinct vertices can be viewed as edges of K,[S,]. Let M;; be all edges in
K,[S,] which are perpendicular to straight line connecting O and (u;,v;), i =1,2,---,p, j =
1,2,---,q. Thus Mq1, Mo, -+, Mg, Ma1, Mag, -+ , Mog, -+, Mp1, Mpa, - - - , M, are matching

and edge-disjoint each other. Furthermore,

E(KP[S‘?]):M”UM12U'"UMl‘IUMﬂU'"UMQ‘IU"'UMMU'”UMP‘I'

We define a proper edge coloring f of K,[Sy]| using colors 1,2,--- ,pg as follows: assign
color q(i — 1)+ j toedge in M;;, i =1,2,--- ,p, j=1,2,--- ,q.
The color % belongs to S(u;,v;), but % does not belong to S(ug,v;), thus

g(ui,’l}j)#g(’(lk,v[), 1<Z<k<p7 jul:1727"'7q

Fort=1,2,---,p, let
12{17277PQ}=L:{(’_1)Q+1=(1_1)Q+277(2—1)q+q},
Bij = {(i— Vg + 552, = g+ 132, -+, (i~ D+ 552}, j= 1,3+ g
q

Of course, A;; C I;, B;; C I,. Moreover, A;; and B;; have %1 and %1 consecutive
natural numbers, respectively.

Ifi=1,2,---,p, ¢ = 1(mod4), then

S(ui,vy) = Ai | JCijy Ciy CI\TL, j=2,4,-,q—1;
g+l

2

J+ q+1

S(us,vy) = (B \ {(i = Da+ NUCu, €y ST\ Lj=13, 0, j# %~

+1
S(us,vag) = {(i - Dg + 5=},
Ifi=1,2,---,p, ¢ = 3(mod4), then
S(ui,vj) = By | Dy, Diy CINL, j=1,3,-,¢;

j+ 9 . . q+1
S(uzvvj) (AZJ\{( )Q+T2})UD13, DngI\Iz7j:274;;q_1;j Ta

S(uivan) = {(i—1)a + %}
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Thus for each i € {1,2,---,p} and each odd number ¢(>5), we have that S(u;,v;) #

S(us,v), 1<j<1<q.

In conclusion, the above coloring is a pg-VDPEC coloring of K,[S,].
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