Article ID: 1000-5641(2013)05-0136-08

Vertex-distinguishing proper edge coloring of composition of complete graph and star

YANG Fang¹, WANG Zhi-wen², CHEN Xiang-en¹, MA Chun-yan¹

 $(1.\ College\ of\ Mathematics\ and\ Statistics,\ Northwest\ Normal\ University,$

Lanzhou 730070, China;

2. School of Mathematics and Computer Sciences, Ningxia University, Yinchuan 750021, China)

Abstract: Firstly, we gave an upper bound for the vertex-distinguishing proper edge chromatic number of composition of complete graph K_p and star S_q , which is pq+1 for $p \ge 2$, $q \ge 4$. Then by constructing coloring in terms of the symmetry of regular polygons and the methods of combinatorial analysis, we obtained respectively vertex-distinguishing proper edge chromatic numbers for composition of complete graph K_p and star S_q when p = 2, $q \ge 4$; $p \ge 3$, q = 4; p is even and $p \ge 4$, q = 5; pq is odd and $p \ge 3$, $q \ge 5$.

Key words: composition; complete graph; star; vertex-distinguishing proper edge coloring; vertex-distinguishing proper edge chromatic number

CLC number: O157.5 Document code: A

DOI: 10.3969/j.issn.1000-5641.2013.05.017

完全图和星的合成的点可区别正常边染色

杨 芳¹, 王治文², 陈祥恩¹, 马春燕¹ (1. 西北师范大学 数学与统计学院, 兰州 730070; 2. 宁夏大学 数学与计算机科学学院, 银川 750021)

摘要: 首先, 给出了完全图 K_p 和星 S_q 的合成的点可区别正常边色数的一个上界: 当 $p \ge 2$, $q \ge 4$ 时, 上界是 pq+1. 再利用正多边形的对称性以及组合分析的方法来构造染色, 分别得到了当 p=2, $q \ge 4$; $p \ge 3$, q=4; p 是偶数且 $p \ge 4$, q=5; pq 是奇数且 $p \ge 3$, $q \ge 5$ 时, 完全图 K_p 和星 S_q 的合成的点可区别正常边色数.

关键词: 合成; 完全图; 星; 点可区别正常边染色; 点可区别正常边色数

收稿日期: 2012-09

基金项目: 国家自然科学基金(61163037, 61163054, 11261046); 宁夏回族自治区百人计划资助项目

第一作者: 杨芳, 女, 硕士生, 研究方向为图论及其应用. E-mail: yangfangnwnu@126.com. 通信作者: 陈祥恩, 男, 教授, 研究方向为图论以及代数理论. E-mail: chenxe@nwnu.edu.cn.

0 Introduction and definitions

Determining chromatic numbers of various kinds of colorings is a fundamental problem of graph coloring. After the concept of vertex-distinguishing proper edge coloring of graphs was presented in [1], international scholars did many studies in [2-4].

All graphs mentioned here are simple, undirected and finite. We denote the vertex set, edge set, maximum degree, minimum degree, and edge chromatic number of a graph G by V(G), E(G), $\Delta(G)$, $\delta(G)$, and $\chi'(G)$, respectively.

A proper k-edge coloring f of a graph G is an assignment of k colors, $1, 2, \dots, k$, to edges of G (or a mapping from E(G) to $\{1, 2, \dots, k\}$) such that no two adjacent edges receive the same color. Given such a coloring f, for any vertex $x \in V(G)$, let S(x) be the set of colors assigned to the edges incident to x, i.e., $S(x) = \{f(xu)|xu \in E(G), u \in V(G)\}$, S(x) is called the color set of vertex x. If for any two distinct vertices u and v of V(G), $S(u) \neq S(v)$, then we say that f is a vertex-distinguishing proper edge coloring of graph G (in brief k-VDPEC). Let $\overline{S}(x) = \{1, 2, \dots, k\} \setminus S(x)$. $\overline{S}(x)$ is called the complementary color set of vertex x. The minimum number of colors required for a vertex-distinguishing proper edge chromatic number. A graph with no more than one isolated vertex and no isolated edges is called a vdec graph. Obviously, a graph G has the vertex-distinguishing proper edge coloring if and only if G is a vdec graph.

Let G be a vdec graph and $n_d(G)$ denote the number of vertices of degree d, $\delta(G) \leq d \leq \Delta(G)$. Set

$$\pi(G) = \min\{\theta | {\theta \choose d} \ge n_d(G), \ \delta(G) \le d \le \Delta(G)\}.$$

Clearly, the following lemma is true.

Lemma 1
$$\chi'_{s}(G) \geqslant \pi(G)$$
.

Burris and Schelp got the vertex-distinguishing proper edge chromatic numbers of complete graphs, complete bipartite graphs, paths and cycles in [4], and presented the following Conjecture.

Conjecture 1 If G is a vdec graph, then $\chi'_s(G) = \pi(G)$ or $\pi(G) + 1$.

Lemma 2^[3] For any *vdec* graph of order n, then $\chi'_s(G) \leq n+1$.

The composition of simple graphs G and H is the simple graph G[H] with vertex set $V(G) \times V(H)$, in which (u,v) is adjacent to (u',v') if and only if either $uu' \in E(G)$ or u=u' and $vv' \in E(H)$. The notation (u,v)(u',v') indicates the edge between adjacent two vertices (u,v) and (u',v') in G[H].

Lemma 3^[5] (i) If
$$(u, v) \in V(G[H])$$
, then $d_{G[H]}(u, v) = d_{G}(u)|V(H)| + d_{H}(v)$.
(ii) $\Delta(G[H]) = \Delta(G) \cdot |V(H)| + \Delta(H)$.

Let $K_p[S_q]$ be the composition of complete graph K_p and star S_q , where K_p is a complete graph of order p, S_q is a star of order q. Then there exist edge-disjoint spanning subgraph $K(p \times q)$ and pS_q of $K_p[S_q]$, such that $K_p[S_q] = K(p \times q) \bigcup pS_q$, where $K(p \times q)$ is a complete p-partite graph with equipotent parts and q vertices in each part, pS_q is the disjoint union of p graphs which are isomorphic to S_q .

Lemma 4 If
$$p \geqslant 2$$
, $q \geqslant 4$, then $\pi(K_p[S_q]) = \min\{\theta | {\theta \choose pq-1} \geqslant p, {\theta \choose pq-q+1} \geqslant pq-p\} = pq$.

Proposition 1^[6] If $p \ge 3$, $q \ge 2$, then $\chi'_s(K(p \times q)) = (p-1)q + 2$. **Proposition 2**^[7] If $n \ge 2$, then $\chi'_s(K_{n,n}) = n + 2$.

1 Main results

For convenience, let $V(K_p[S_q]) = \{(u_i, v_j) | i = 1, 2, \dots, p, j = 1, 2, \dots, q\}.$

Theorem 1 If $p \ge 2$, $q \ge 4$, then $\chi'_s(K_p[S_q]) \le \chi'_s(K(p \times q)) + \chi'(pS_q)$.

Proof Firstly, we assign $\chi'_s(K(p \times q))$ colors to the edges of $K(p \times q)$ so that the resulting edge coloring is proper and vertex-distinguishing. Then we assign $\chi'(pS_q)$ new colors properly to the edges of pS_q . Combining these two colorings together gives the VDPEC of $K_p[S_q]$ using $\chi'_s(K(p \times q)) + \chi'(pS_q)$ colors. This theorem follows.

According to Proposition 1, Proposition 2 and Theorem 1, the following theorem is obvious.

Theorem 2 If $p \ge 2$, $q \ge 4$, then $\chi'_s(K_p[S_q]) \le pq + 1$.

Theorem 3 If $q \ge 4$, then $\chi'_s(K_2[S_q]) = 2q$.

Proof By Lemma 1 and Lemma 4, $\chi'_s(K_2[S_q]) \ge 2q$. Set

$$E(K_2[S_q]) = \{(u_1, v_j)(u_2, v_l)|j, l = 1, 2, \cdots, q\} \bigcup \Big(\bigcup_{i=1}^2 \{(u_i, v_1)(u_i, v_j)|j = 2, 3, \cdots, q\}\Big);$$

$$E(K_{q,q}) = \{(u_1, v_j)(u_2, v_l)|j, l = 1, 2, \cdots, q\}.$$

By Proposition 2, we may give a (q+2)-VDPEC φ of $K_{q,q}$. According to the proof procedure of Proposition 2 in [7], we have

$$\begin{cases} \varphi((u_1, v_j)(u_2, v_l)) = (q + j + l)_{q+2}, \\ \varphi((u_1, v_q)(u_2, v_l)) = (q - 1 + l)_{q+2}, \end{cases}$$
 $j = 1, 2, \dots, q - 1, l = 1, 2, \dots, q.$

The above symbol $(m)_n$ denotes the number in $\{1, 2, \dots, n\}$ which is congruent with m modulo n. Note that if m is a multiple of n, then $(m)_n = n$. For example, $(5)_5 = 5$, $(10)_5 = 5$, $(8)_5 = 3$, $(2)_5 = 2$.

Under φ , the set of two colors which are not represented at vertex (u_i, v_j) is denoted by $\mathscr{A}(u_i, v_j)$, $i = 1, 2, j = 1, 2, \dots, q$, we have

$$\mathscr{A}(u_1, v_1) = \{q, q+1\},$$
 $\mathscr{A}(u_1, v_2) = \{q+1, q+2\},$ $\mathscr{A}(u_2, v_1) = \{q-1, q+1\},$ $\mathscr{A}(u_2, v_3) = \{1, q+1\}.$

Based on the coloring φ , we will color the edges of two S_q . This time we need color q+1 and new colors $q+3, q+4, \cdots, 2q$.

Let $(u_1, v_1)(u_1, v_2)$ and $(u_2, v_1)(u_2, v_3)$ receive color q + 1, $(u_1, v_1)(u_1, v_j)$ receive color q + j, $j = 3, 4, \dots, q$, $(u_2, v_1)(u_2, v_2)$ receive color q + 3 and $(u_2, v_1)(u_2, v_j)$ receive color q + j, $j = 4, 5, \dots, q$. The resulting edge coloring of $K_2[S_q]$ is denoted by f. Then f is proper and for this f, we have

 $\overline{S}(u_1, v_1) = \{q\}, \overline{S}(u_1, v_2) = \{q+2\} \bigcup I, \overline{S}(u_1, v_j) = \mathscr{A}(u_1, v_j) \bigcup (I \setminus \{q+j\}), j = 3, 4, \cdots, q;$ $\overline{S}(u_2, v_1) = \{q-1\}, \overline{S}(u_2, v_2) = \mathscr{A}(u_2, v_2) \bigcup (I \setminus \{q+3\}), \overline{S}(u_2, v_3) = \{1\} \bigcup I, \overline{S}(u_2, v_j) = \mathscr{A}(u_2, v_j) \bigcup (I \setminus \{q+j\}), j = 4, 5, \cdots, q; \text{ where } I = \{q+3, q+4, \cdots, 2q\}.$

Since φ is a VDPEC, $\mathscr{A}(u_i, v_j) \neq \mathscr{A}(u_k, v_l), i, k = 1, 2, 1 \leqslant j, l \leqslant q, (i, j) \neq (k, l).$

It is easy to see that $\overline{S}(u_i, v_j) \neq \overline{S}(u_k, v_l)$, $i, k = 1, 2, 1 \leq j, l \leq q$, $(i, j) \neq (k, l)$. Theorem follows.

Theorem 4 If $p \geqslant 3$, then $\chi'_s(K_p[S_4]) = 4p$.

Proof By Lemma 1 and Lemma 4, $\chi'_s(K_p[S_4]) \ge 4p$. Set

$$E(K_p[S_4]) = \left(\bigcup_{i=1}^{p-1} \bigcup_{k=i+1}^{p} \{(u_i, v_j)(u_k, v_l) | j, l = 1, 2, 3, 4\}\right) \bigcup \left(\bigcup_{i=1}^{p} \{(u_i, v_3)(u_i, v_j) | j = 1, 2, 4\}\right).$$

Arrange clockwisely vertices (u_1, v_1) , (u_1, v_2) , (u_1, v_3) , (u_1, v_4) , (u_2, v_1) , (u_2, v_2) , (u_2, v_3) , (u_2, v_4) , \cdots , (u_p, v_1) , (u_p, v_2) , (u_p, v_3) on the apics of a regular (4p-1)-gon with center point (u_p, v_4) . Note that all vertices of the regular (4p-1)-gon and center point (u_p, v_4) together form the vertex set of $K_p[S_4]$. At the same time, the three segments of connecting (u_i, v_1) and (u_i, v_2) , (u_i, v_1) and (u_i, v_4) , (u_i, v_2) and (u_i, v_4) are not edges of $K_p[S_4]$, $i=1,2,\cdots,p$. Except these 3p segments, connecting segments between any two distinct vertices can be viewed as edges of $K_p[S_4]$. Let M_{ij} be all edges in $K_p[S_4]$ which are perpendicular to straight line connecting two vertices (u_p, v_4) and (u_i, v_j) as well as $(u_p, v_4)(u_i, v_j)$, $i=1,2,\cdots,p-1$, j=1,2,3,4; i=p, j=3. Let M_{pj} be all edges in $K_p[S_4]$ which are perpendicular to straight line connecting two vertices (u_p, v_4) and (u_p, v_j) , j=1,2. Thus M_{11} , M_{12} , M_{13} , M_{14} , M_{21} , M_{22} , M_{23} , M_{24} , \cdots , M_{p1} , M_{p2} , M_{p3} are matching and edge-disjoint each other. Furthermore,

$$E(K_p[S_4]) = M_{11} \bigcup M_{12} \bigcup M_{13} \bigcup M_{14} \bigcup M_{21} \bigcup M_{22} \bigcup M_{23} \bigcup M_{24} \bigcup \cdots \bigcup M_{p1} \bigcup M_{p2} \bigcup M_{p3}.$$

We define a proper edge coloring φ of $K_p[S_4]$ using colors $1, 2, \dots, 4p-1$ as follows: assign color 4(i-1)+j to edges in M_{ij} , $i=1,2,\dots,p-1$, j=1,2,3,4; $i=p,\,j=1,2,3$.

Based on the coloring φ , now we recolor the edge $(u_i, v_1)(u_i, v_3)$ by a new color 4p, $i = 1, 2, \dots, p-1$. The resulting edge coloring is denoted by f. Clearly f is proper.

Case 1 p is even. For this f, we have

$$\overline{S}(u_i, v_1) = \{4i - 2, 4i + 2p - 3, 4i + 2p - 2\}, i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_1) = \{4i - 2p - 2, 4i - 2p - 1, 4i - 2\}, i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_1) = \{2p - 2, 4p - 3, 4p\}.$$

$$\overline{S}(u_i, v_2) = \{4i - 1, 4i + 2p - 3, 4p\}, i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_2) = \{4i - 2p - 2, 4i - 1, 4p\}, i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_2) = \{2p - 2, 4p - 2, 4p\}.$$

$$\overline{S}(u_i, v_3) = \{4i - 2\}, i = 1, 2, \dots, p-1; \overline{S}(u_p, v_3) = \{4p\}.$$

$$\overline{S}(u_i, v_4) = \{4i - 1, 4i + 2p - 2, 4p\}, i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_4) = \{4i - 2p - 1, 4i - 1, 4p\}, i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_4) = \{4p - 3, 4p - 2, 4p\}.$$

Note that the numbers in each set $\overline{S}(u_i, v_j)$ are arranged in ascending order, $i = 1, 2, \dots, p, j = 1, 2, 3, 4$. We just need to prove that the complementary color sets of any two distinct vertices of same degree are different from each other.

Obviously,
$$\overline{S}(u_i, v_3) \neq \overline{S}(u_k, v_3), 1 \leq i < k \leq p$$
.

Now we prove $\overline{S}(u_i, v_1) \neq \overline{S}(u_k, v_1)$, by contradiction, suppose $\overline{S}(u_i, v_1) = \overline{S}(u_k, v_1)$, $1 \leq i < k \leq p$.

For $1 \leqslant i \leqslant \frac{p}{2}, \ \frac{p+2}{2} \leqslant k \leqslant p-1$, from 4i+2p-3=4k-2p-1 we know that $k-i=p-\frac{1}{2}$; for $1 \leqslant i \leqslant \frac{p}{2}, \ k=p$, from 4i+2p-2=4p we know that $i=\frac{p+1}{2}$;

for $\frac{p+2}{2} \leqslant i \leqslant p-1$, k=p, from 4i-2=4p we know that $i=p+\frac{1}{2}$.

These are contradictions. Thus $\overline{S}(u_i, v_1) \neq \overline{S}(u_k, v_1), 1 \leq i < k \leq p$.

Similarly, we can show that $\overline{S}(u_i, v_2) \neq \overline{S}(u_k, v_2)$, $\overline{S}(u_i, v_4) \neq \overline{S}(u_k, v_4)$, $1 \leq i < k \leq p$.

We will prove $\overline{S}(u_p, v_1) \neq \overline{S}(u_i, v_2)$, $\overline{S}(u_p, v_1) \neq \overline{S}(u_i, v_4)$. By contradiction, suppose $\overline{S}(u_p, v_1) = \overline{S}(u_i, v_2)$, $\overline{S}(u_p, v_1) = \overline{S}(u_i, v_2)$

For $1 \leqslant i \leqslant \frac{p}{2}$, from 2p-2=4i-1 we know that $i=\frac{p}{2}-\frac{1}{4}$; for $\frac{p+2}{2} \leqslant i \leqslant p-1$, from 4p-3=4i-1 we know that $i=p-\frac{1}{2}$.

These are contradictions. Thus $\overline{S}(u_p, v_1) \neq \overline{S}(u_i, v_2)$, $\overline{S}(u_p, v_1) \neq \overline{S}(u_i, v_4)$, $i = 1, 2, \dots, p$. The color 4p belongs to $\overline{S}(u_i, v_2)$ and $\overline{S}(u_i, v_4)$, but does not belong to $\overline{S}(u_k, v_1)$, $i = 1, 2, \dots, p$, $k = 1, 2, \dots, p - 1$. Thus, $\overline{S}(u_k, v_1) \neq \overline{S}(u_i, v_2)$, $\overline{S}(u_k, v_1) \neq \overline{S}(u_i, v_4)$, $i, k = 1, 2, \dots, p$.

We will prove $\overline{S}(u_i, v_2) \neq \overline{S}(u_k, v_4)$, by contradiction, suppose $\overline{S}(u_i, v_2) = \overline{S}(u_k, v_4)$, $i, k = 1, 2, \dots, p$.

For $1 \leqslant i \leqslant \frac{p}{2}$, $1 \leqslant k \leqslant \frac{p}{2}$, from 4i + 2p - 3 = 4k + 2p - 2 we know that $i - k = \frac{1}{4}$;

for $1 \le i \le \frac{p}{2}$, $\frac{p+2}{2} \le k \le p-1$, from 4i + 2p - 3 = 4k - 1 we know that $k - i = \frac{p-1}{2}$;

for $1 \leqslant i \leqslant \frac{p}{2}$, k = p, from 4i - 1 = 4p - 3 we know that $i = p - \frac{1}{2}$;

for $\frac{p+2}{2} \le i \le p-1$, $1 \le k \le \frac{p}{2}$, from 4i-2p-2=4k-1 we know that $i-k=\frac{p}{2}+\frac{1}{4}$; for $\frac{p+2}{2} \le i \le p-1$, $\frac{p+2}{2} \le k \le p-1$, from 4i-2p-2=4k-2p-1, we know that

for $\frac{p+2}{2} \le i \le p-1$, $\frac{p+2}{2} \le k \le p-1$, from 4i-2p-2=4k-2p-1 we know that $i-k=\frac{1}{4}$;

for $\frac{p+2}{2} \leqslant i \leqslant p-1$, k=p, from 4i-1=4p-2 we know that $i=p-\frac{1}{4}$;

for $i=p,\ 1\leqslant k\leqslant \frac{p}{2}$, from 2p-2=4k-1 we know that $k=\frac{p}{2}-\frac{1}{4}$;

for i = p, $\frac{p+2}{2} \le k \le p-1$, from 2p-2 = 4k-2p-1 we know that $k = p - \frac{1}{4}$.

These are contradictions. Thus $\overline{S}(u_i, v_2) \neq \overline{S}(u_k, v_4), i, k = 1, 2, \dots, p$.

In summary, the above coloring is a 4p-VDPEC coloring of $K_p[S_4]$.

Case 2 p is odd. For this f, we have

$$\overline{S}(u_{i}, v_{1}) = \{4i - 2, 4i + 2p - 3, 4i + 2p - 2\}, \quad i = 1, 2, \dots, \frac{p - 1}{2};$$

$$\overline{S}(u_{\frac{p+1}{2}}, v_{1}) = \{1, 2p, 4p - 1\};$$

$$\overline{S}(u_{i}, v_{1}) = \{4i - 2p - 2, 4i - 2p - 1, 4i - 2\}, \quad i = \frac{p + 3}{2}, \frac{p + 5}{2}, \dots, p - 1;$$

$$\overline{S}(u_{p}, v_{1}) = \{2p - 2, 4p - 3, 4p\}.$$

$$\overline{S}(u_{i}, v_{2}) = \{4i - 1, 4i + 2p - 3, 4p\}, \quad i = 1, 2, \dots, \frac{p + 1}{2};$$

$$\overline{S}(u_{i}, v_{2}) = \{4i - 2p - 2, 4i - 1, 4p\}, \quad i = \frac{p + 3}{2}, \frac{p + 5}{2}, \dots, p - 1;$$

$$\overline{S}(u_{p}, v_{2}) = \{2p - 2, 4p - 2, 4p\}.$$

$$\overline{S}(u_{i}, v_{3}) = \{4i - 2\}, \quad i = 1, 2, \dots, p - 1; \overline{S}(u_{p}, v_{3}) = \{4p\}.$$

$$\overline{S}(u_{i}, v_{4}) = \{4i - 1, 4i + 2p - 2, 4p\}, \quad i = 1, 2, \dots, \frac{p - 1}{2};$$

$$\overline{S}(u_i, v_4) = \{4i - 2p - 1, 4i - 1, 4p\}, i = \frac{p+1}{2}, \frac{p+3}{2}, \dots, p-1;$$

 $\overline{S}(u_p, v_4) = \{4p - 3, 4p - 2, 4p\}.$

Note that the numbers in each set $\overline{S}(u_i, v_j)$ are arranged in ascending order, $i = 1, 2, \dots, p, j = 1, 2, 3, 4$. We just need to prove that the complementary color sets of any two distinct vertices of same degree are different from each other.

The proof of Case 2 is similar to that of Case 1.

Theorem 5 If $p(\geqslant 4)$ is even, then $\chi'_s(K_p[S_5]) = 5p$.

Proof By Lemma 1 and Lemma 4, $\chi'_s(K_p[S_5]) \ge 5p$. Set

$$E(K_p[S_5]) = (\bigcup_{i=1}^{p-1} \bigcup_{k=i+1}^{p} \{(u_i, v_j)(u_k, v_l) | j, l = 1, 2, 3, 4, 5\}) \bigcup (\bigcup_{i=1}^{p} \{(u_i, v_3)(u_i, v_j) | j = 1, 2, 4, 5\}).$$

We define a proper edge coloring φ of $K_p[S_5]$ using colors $1, 2, \dots, 5p-1$ in the same way as that of Theorem 4 as follows: assign color 5(i-1)+j to edges in M_{ij} , $i=1,2,\dots,p-1$, j=1,2,3,4,5; i=p,j=1,2,3,4.

Based on the coloring φ , now we recolor the edge $(u_i, v_3)(u_i, v_5)$ by a new color 5p, $i = 1, 2, \dots, p-1$. The resulting edge coloring is denoted by f. Clearly f is proper and for this f, we have

$$\overline{S}(u_i, v_1) = \left\{5i - 2, 5i + \frac{5}{2}p - 4, 5i + \frac{5}{2}p - 3, 5p\right\}, \quad i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_1) = \left\{5i - \frac{5}{2}p - 3, 5i - \frac{5}{2}p - 2, 5i - 2, 5p\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_1) = \left\{\frac{5}{2}p - 3, \frac{5}{2}p - 2, 5p - 4, 5p\right\}.$$

$$\overline{S}(u_i, v_2) = \left\{5i - 2, 5i + \frac{5}{2}p - 4, 5i + \frac{5}{2}p - 2, 5p\right\}, \quad i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_2) = \left\{5i - \frac{5}{2}p - 3, 5i - \frac{5}{2}p - 1, 5i - 2, 5p\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_2) = \left\{\frac{5}{2}p - 3, 5p - 3, 5p - 2, 5p\right\}.$$

$$\overline{S}(u_i, v_3) = \left\{5i - 1\right\}, \quad i = 1, 2, \dots, p-1; \quad \overline{S}(u_p, v_3) = \left\{5p\right\}.$$

$$\overline{S}(u_i, v_4) = \left\{5i - 2, 5i + \frac{5}{2}p - 3, 5i + \frac{5}{2}p - 1, 5p\right\}, \quad i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_4) = \left\{5i - \frac{5}{2}p - 2, 5i - \frac{5}{2}p, 5i - 2, 5p\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_4) = \left\{\frac{5}{2}p - 2, 5p - 2, 5p - 1, 5p\right\}.$$

$$\overline{S}(u_i, v_5) = \left\{5i - 2, 5i - 1, 5i + \frac{5}{2}p - 2, 5i + \frac{5}{2}p - 1\right\}, \quad i = 1, 2, \dots, \frac{p}{2};$$

$$\overline{S}(u_i, v_5) = \left\{5i - \frac{5}{2}p - 1, 5i - \frac{5}{2}p, 5i - 2, 5i - 1\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_5) = \left\{5i - \frac{5}{2}p - 1, 5i - \frac{5}{2}p, 5i - 2, 5i - 1\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_5) = \left\{5i - \frac{5}{2}p - 1, 5i - \frac{5}{2}p, 5i - 2, 5i - 1\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_5) = \left\{5i - \frac{5}{2}p - 1, 5i - \frac{5}{2}p, 5i - 2, 5i - 1\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

$$\overline{S}(u_p, v_5) = \left\{5i - \frac{5}{2}p - 1, 5i - \frac{5}{2}p, 5i - 2, 5i - 1\right\}, \quad i = \frac{p+2}{2}, \frac{p+4}{2}, \dots, p-1;$$

Note that the numbers in each set $\overline{S}(u_i, v_j)$ are arranged in ascending order, $i = 1, 2, \dots, p, j = 1, 2, 3, 4, 5$. We just need to prove that the complementary color sets of any two

distinct vertices of same degree are different from each other.

The proof is similar to Case 1 of Theorem 4.

Theorem 6 If pq $(p \ge 3, q \ge 5)$ is odd, then $\chi'_s(K_p[S_q]) = pq$.

Proof By Lemma 1 and Lemma 4, $\chi'_{s}(K_{p}[S_{q}]) \geqslant pq$. Set

$$E(K_p[S_q]) = \left(\bigcup_{i=1}^{p-1} \bigcup_{k=i+1}^{p} \{(u_i, v_j)(u_k, v_l) | j, l = 1, 2, \cdots, q\}\right) \bigcup \left(\bigcup_{i=1}^{p} \{(u_i, v_{\frac{q+1}{2}})(u_i, v_j) | j = 1, 2, \cdots, q, \text{ and } j \neq \frac{q+1}{2}\}\right).$$

Arrange clockwisely vertices $(u_1, v_1), (u_1, v_2), \cdots, (u_1, v_q), (u_2, v_1), (u_2, v_2), \cdots, (u_2, v_q), \cdots, (u_p, v_1), (u_p, v_2), \cdots, (u_p, v_q)$ on the apics of a regular pq-gon with center point O. Note that all vertices of the regular pq-gon form the vertex set of $K_p[S_q]$. At the same time, the segment of connecting (u_i, v_j) and (u_i, v_l) is not edge of $K_p[S_q], i = 1, 2, \cdots, p, \ j = 1, 2, \cdots, q-1, l = j+1, j+2, \cdots, q \text{ and } j, l \neq \frac{q+1}{2}$. Except these $\frac{q^2-3q+2}{2}p$ segments, connecting segments between any two distinct vertices can be viewed as edges of $K_p[S_q]$. Let M_{ij} be all edges in $K_p[S_q]$ which are perpendicular to straight line connecting O and $(u_i, v_j), i = 1, 2, \cdots, p, j = 1, 2, \cdots, q$. Thus $M_{11}, M_{12}, \cdots, M_{1q}, M_{21}, M_{22}, \cdots, M_{2q}, \cdots, M_{p1}, M_{p2}, \cdots, M_{pq}$ are matching and edge-disjoint each other. Furthermore,

$$E(K_p[S_q]) = M_{11} \bigcup M_{12} \bigcup \cdots \bigcup M_{1q} \bigcup M_{21} \bigcup \cdots \bigcup M_{2q} \bigcup \cdots \bigcup M_{p1} \bigcup \cdots \bigcup M_{pq}.$$

We define a proper edge coloring f of $K_p[S_q]$ using colors $1, 2, \dots, pq$ as follows: assign color q(i-1)+j to edge in M_{ij} , $i=1,2,\dots,p$, $j=1,2,\dots,q$.

The color $\frac{(2i-1)q+1}{2}$ belongs to $\overline{S}(u_i,v_j)$, but $\frac{(2i-1)q+1}{2}$ does not belong to $\overline{S}(u_k,v_l)$, thus

$$\overline{S}(u_i, v_j) \neq \overline{S}(u_k, v_l), \quad 1 \leqslant i < k \leqslant p, \quad j, l = 1, 2, \dots, q.$$

For $i = 1, 2, \dots, p$, let

$$I = \{1, 2, \dots, pq\}, I_i = \{(i-1)q + 1, (i-1)q + 2, \dots, (i-1)q + q\},$$

$$A_{ij} = \{(i-1)q + \frac{j+2}{2}, (i-1)q + \frac{j+4}{2}, \dots, (i-1)q + \frac{j+q-1}{2}\}, j = 2, 4, \dots, q-1,$$

$$B_{ij} = \{(i-1)q + \frac{j+1}{2}, (i-1)q + \frac{j+3}{2}, \cdots, (i-1)q + \frac{j+q}{2}\}, j = 1, 3, \cdots, q.$$

Of course, $A_{ij} \subseteq I_i$, $B_{ij} \subseteq I_i$. Moreover, A_{ij} and B_{ij} have $\frac{q-1}{2}$ and $\frac{q+1}{2}$ consecutive natural numbers, respectively.

If
$$i = 1, 2, \dots, p, q \equiv 1 \pmod{4}$$
, then

$$\overline{S}(u_i, v_j) = A_{ij} \bigcup C_{ij}, \quad C_{ij} \subseteq I \setminus I_i, \ j = 2, 4, \cdots, q - 1;$$

$$\overline{S}(u_i, v_j) = \left(B_{ij} \setminus \left\{ (i-1)q + \frac{j + \frac{q+1}{2}}{2} \right\} \right) \bigcup C_{ij}, \ C_{ij} \subseteq I \setminus I_i, j = 1, 3, \dots, q, \ j \neq \frac{q+1}{2};$$

$$\overline{S}(u_i, v_{\frac{q+1}{2}}) = \left\{ (i-1)q + \frac{q+1}{2} \right\}.$$

If $i = 1, 2, \dots, p, q \equiv 3 \pmod{4}$, then

$$\overline{S}(u_i, v_j) = B_{ij} \bigcup D_{ij}, \quad D_{ij} \subseteq I \setminus I_i, \quad j = 1, 3, \dots, q;$$

$$\overline{S}(u_i, v_j) = \left(A_{ij} \setminus \left\{ (i-1)q + \frac{j + \frac{q+1}{2}}{2} \right\} \right) \bigcup D_{ij}, \ D_{ij} \subseteq I \setminus I_i, \ j = 2, 4, \cdots, q-1, j \neq \frac{q+1}{2};$$

$$\overline{S}(u_i, v_{\frac{q+1}{2}}) = \left\{ (i-1)q + \frac{q+1}{2} \right\}.$$

Thus for each $i \in \{1, 2, \dots, p\}$ and each odd number $q(\geqslant 5)$, we have that $\overline{S}(u_i, v_j) \neq \overline{S}(u_i, v_l)$, $1 \leqslant j < l \leqslant q$.

In conclusion, the above coloring is a pq-VDPEC coloring of $K_p[S_q]$.

Acknowledgements We would like to thank the referees for their valuable and thoughtful suggestions which greatly improve the present paper.

[References]

- [1] BURRIS A C. Vertex-distinguishing edge-colorings[D]. Memphis: Memphis State University, 1993.
- [2] BALISTER P N, RIORDAN O M, SCHELP R H. Vertex-distinguishing edge colorings of graphs[J]. J Graph Theory, 2003, 42(2): 95-109.
- [3] BAZGAN C, HARKAT-BENHAMDINE A, LI H, et al. On the vertex-distinguishing proper edge colorings of graphs[J]. J Combin Theory, 1999, 75(2): 288-301.
- [4] BURRIS A C, SCHELP R H. Vertex-distinguishing proper edge-colorings[J]. J Graph Theory, 1997, 26(2): 73-82.
- [5] CHEN X N, GAO Y P. Vertex-distinguishing proper edge-coloring chromatic numbers of the composition of two graphs[J]. Journal of Jilin University: Science Edition, 2011, 49(2): 207-212.
- [6] HORŇÁK M, SOTÁK R. Observability of complete multipartite graphs with equipotent parts[J]. Ars Combinatoria, 1995, 41: 289-301.
- [7] ČERNÝ J, HORŇÁK M, SOTÁK R. Observability of a graph[J]. Math Slovaca, 1996, 46(1): 21-31.

(上接第135页)

- [2] AIENA P. Fredholm and Local Spectral Theory, with Applications to Multipliers[M]. Dordrecht: Kluwer Academic Publishers, 2004.
- [3] LAURSEN K B, NEUMANN M M. An Introduction to Local Spectral Theorey[M]. London Math Soc Monogr New Ser 20. New York: Clarendon Press, 2000.
- [4] FINCH J K. The single valued extension property on a Banach space[J]. Pacific J Math, 1975, 58(1): 61-69.
- [5] HERRERO D A. Limits of hypercyclic and supercyclic operators[J]. Journal of Functional Analysis, 1991, 99: 179-190.
- [6] ZHU S, LI CH G. SVEP and compact perturbation[J]. Journal of Mathematical Analysis and Applications, 2011, 380: 69-75.
- [7] JIANG Q F, ZHONG H J, ZENG Q P. Topological uniform descent and localized SVEP[J]. Journal of Mathematical Analysis and Applications, 2012, 390: 355-361.