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0 Introduction

In this paper we consider the following p(x)-Kirchhoff systems






utt −M(g(t))∆p(x)u+ |u|p(x)−2u = f(t, x, u), in R+
0 × Ω,

u(t, x) = 0, on R+
0 × Γ0,

utt = −[M(g(t))|Du|p(x)−2∂νu+Q(t, x, u, ut)], on R+
0 × Γ1,

(0.1)

where p(x) > pn, pn is a critical value smaller than 2. u = (u1, · · · , uN ) = u(t, x) is the

vectorial displacement, N > 1, R+
0 = [0,∞). Ω is a regular and bounded domain of Rn,

with boundary ∂Ω = Γ0 ∪ Γ1, Γ0 ∩ Γ1 = φ, µn−1(Γ0) > 0, where µn−1 denotes the (n − 1)-

dimensional Lebesgue measure on ∂Ω, while µn is the n-dimensional Lebesgue measure on Ω.

Moreover, ν is the outward normal vector field on ∂Ω. ∆p(x) denotes the vectorial p(x)-Laplacian

operator defined as div(|Du|p(x)−2Du), and the associated p(x)-Dirichlet energy integral is

g(t) =
∫
Ω

|Du(t,x)|p(x)

p(x) dx. The functions f , M and Q represent a source force, a Kirchhoff

dissipative term and an external damping term, respectively. We further suppose that

(Q(t, x, u, v), v) > 0 for all (t, x, u, v) ∈ R+
0 × Γ1 × RN × RN ,

Q ∈ C(R+
0 × Γ1 × RN × RN → RN), f ∈ C(R+

0 × Ω × RN → RN ),

f(t, x, u) = Fu(t, x, u), F (t, x, 0) = 0,

so F (t, x, u) =
∫1

0
(f(t, x, τu), u)dτ is a potential for f . The Kirchhoff dissipative term M is

assumed to be of the standard form

M(τ) = a+ bγτγ−1, a, b > 0, a+ b > 0, γ > 1 if b > 0. (0.2)

We choose M(τ) = aτ + bτγ , so M(τ) =
∫τ

0 M(z)dz, where γ > 1 if b > 0.

The boundary conditions considered in (0.1) are usually called dynamic boundary con-

ditions and they arise in several physical applications (for example, see [1]). Some important

and interesting results about Kirchhoff equations can be found, for example, in [2]. The study

of Kirchhoff type equations has already been extended to p-Kirchhoff equations[3]. In [3], the

global nonexistence results are proved for scalar Kirchhoff equations, when Eu(0) < E1 and

all the exponents are constant, with p(x) ≡ 2. In particular, they considered the p-Kirchhoff

system 




utt −M(‖Du(t, ·)‖p
p)∆pu+ µ|u|p−2u = f(t, x, u), in R+

0 × Ω,

u(t, x) = 0, on R+
0 × Γ0,

M(‖Du(t, ·)‖p
p)|Du|

p−2∂νu = Q(t, x, u, ut), on R+
0 × Γ1,

(0.3)

and obtained that any local solution u of (0.3) cannot be continued in R+
0 × Ω, whenever the

initial energy is controlled by a critical value.

The p(x)-Laplacian possesses more complicated nonlinearities than the p-Laplacian; for

example, it is inhomogeneous. We recall that the nonhomogeneous p(x)-Kirchhoff operator has
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been used in the last decades to model various phenomena[3,5], such as the image restoration

problem, the motion of electro-rheological fluids. In particular, in [6], they considered the

dissipative anisotropic nonhomogeneous p(x)-Kirchhoff system




utt −M(g(t))∆p(x)u+ µ|u|p(x)−2u+Q(t, x, u, ut) = f(t, x, u), in R+

0 × Ω,

u(t, x) = 0, on R+
0 × ∂Ω,

(0.4)

and showed the nonexistence of global solutions of (0.4), when the initial energy is controlled

by a critical value.

This paper will be organized as follows. In Section 1, we will give some preliminaries on

the variable exponent space. In Section 2, we will give the main theorem and its proof. In

Section 3, we will show the applications of the main theorem.

1 Preliminaries

Let h ∈ C+(Ω), where C+(Ω) = {h ∈ C(Ω) : min
x∈Ω

h(x) > 1}, and define

h+ = sup
x∈Ω

h(x), h− = inf
x∈Ω

h(x).

Fix p ∈ C+(Ω), then the variable exponent Lebesgue space, denoted by Lp(·)(Ω) = [Lp(·)(Ω)]N ,

consisting of all the measurable vector-valued functions u : Ω → RN such that
∫
Ω
|u(x)|p(x)dx

is finite, is endowed with the Luxemburg norm

‖u‖p(·) = inf
{
λ > 0 :

∫
Ω

∣∣∣
u(x)

λ

∣∣∣
p(x)

dx 6 1
}
.

Since here 0 < |Ω| <∞, if q ∈ C+(Ω) and p 6 q in Ω, then the embedding Lq(·)(Ω) → Lp(·)(Ω)

is continuous (see [5, Theorem 2.8]).

Now, we define a p(·)-modular function of the Lp(·)(Ω) space, that is

ρp(·)(u) =

∫
Ω

|u(x)|p(x)dx.

If u ∈ Lp(·)(Ω), since p+ <∞, then the following relations hold:

‖u‖p(·) < 1(= 1;> 1) ⇔ ρp(·)(u) < 1(= 1;> 1),

‖u‖p(·) > 1 ⇒ ‖u‖
p−

p(·) 6 ρp(·)(u) 6 ‖u‖
p+

p(·), (1.1)

‖u‖p(·) 6 1 ⇒ ‖u‖
p+

p(·) 6 ρp(·)(u) 6 ‖u‖
p−

p(·), (1.2)

The variable exponent Sobolev space W 1,p(·)(Ω) = [W 1,p(·)(Ω)]N , consisting of functions

u ∈ Lp(·)(Ω), is endowed with the norm

‖u‖1,p(·) = ‖u‖p(·) + ‖Du‖p(·).
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Define W
1,p(·)
Γ0

(Ω) = [W
1,p(·)
Γ0

(Ω)]N as the Sobolev space of the functions u ∈ W 1,p(·)(Ω) with

u|Γ0 = 0. If p+ < n and some conditions satisfied, then the embedding W
1,p(·)
Γ0

(Ω) → Lp∗(·)(Ω)

is continuous, where p∗ is the critical variable exponent related to p, defined by the relation

p∗(x) =
np(x)

n− p(x)
for all x ∈ Ω.

We refer to more details about Sobolev space in [7]. Hereafter, we assume that

p(x) ∈ C+(Ω) and 1 < p− 6 p+ < n.

For all h ∈ C(Ω), with 1 6 h 6 p∗ in Ω, we denote by λh(·) the Sobolev constant, of the

continuous embedding W
1,p(·)
Γ0

(Ω) → Lh(·)(Ω), that is

‖u‖h(·) 6 λh(·) ‖Du‖p(·) . (1.3)

For simplicity in notation, we write

Lp(·)(Ω) = [Lp(·)(Ω)]N ,W
1,p(·)
Γ0

(Ω) = [W
1,p(·)
Γ0

(Ω)]N ,

which are endowed with the norms ‖ · ‖p(·) and ‖Du‖p(·), respectively. The usual Lebesgue

space L2(Ω) = [L2(Ω)]N is equipped with the canonical norm ‖ϕ‖2 = (
∫
Ω |ϕ(x)|2dx)

1
2 , while

the elementary bracket pairing 〈ϕ, ψ〉 =
∫
Ω (ϕ(x), ψ(x))dx is clearly well defined for all φ, ψ

such that (φ, ψ) ∈ L1(Ω). Analogously, also 〈ω, φ〉Γ1 =
∫
Γ1

(ω(x), φ(x))dµn−1 is well defined

for all ω, ϕ such that (ω, ϕ) ∈ L1(Γ1). Finally

K = C(R+
0 →W

1,p(·)
Γ0

(Ω)) ∩C1(R+
0 → L2(Ω))

denotes the main solution and test function space.

2 The main theorem

Before we state our main theorem, we first assume that for all ϕ ∈ K

(F1) F (t, ·, ϕ(t, ·)), (f(t, ·, ϕ(t, ·)), ϕ(t, ·)) ∈ L1(Ω) for all t ∈ R+
0 ; 〈f(t, ·, φ(t, ·)), φ(t, ·)〉∈

L1
loc(R

+
0 ).

Next, we assume the following monotonicity condition

(F2) Ft > 0 in R+
0 ×W

1,p(·)
Γ0

(Ω),

where Ft is the partial derivative with respect to t of F = F(t, ϕ) =
∫
Ω
F (t, x, φ(t, x))dx, with

(t, ϕ) in R+
0 ×W

1,p(·)
Γ0

(Ω), and Fϕ(t) = F(t, ϕ) is the potential energy of the field ϕ ∈ K, which

is well defined by (F1). Moreover, the natural total energy of the field ϕ ∈ K, associated with

(0.1), is 




Eφ(t) =
1

2
(‖φt(t, ·)‖

2
2 + ‖φt(t, ·)‖

2
2,Γ1

) + Aφ(t) −Fφ(t),

Aϕ(t) = M(gϕ(t)) +

∫
Ω

|φ(t, x)|p(x)

p(x)
dx > 0,

(2.1)

where gϕ is the p(·)-Dirichlet energy integral. Eϕ is well defined in K.
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Finally, we consider the following condition:

(F3) There exists a function q ∈ C+(Ω) satisfying the restriction

max{2, γp+} < q− 6 p∗(x), p∗(x) =
np(x)

n− p(x)
, (2.2)

with the property that for all a0 > 0 and ϕ ∈ K for which inft∈R
+
0
Fϕ(t) > a0, there exist

c1 = c1(a0, ϕ) > 0 and ε0 = ε0(a0, ϕ) > 0, such that

(i) Fϕ(t) 6 c1ρq(·)(ϕ(t, ·)) for all t ∈ R+
0 ,

and for all ε ∈ (0, ε0) there exists c2 = c2(a0, ϕ, ε) > 0, such that

(ii) 〈f(t, ·, φ(t, ·)), φ(t, ·)〉 − (q− − ε)Fφ(t) > c2ρq(·)(φ(t, ·)) for all t ∈ R+
0 .

Following [8], if u ∈ K satisfies the two following properties:

(A) Distribution Identity

[〈ut, φ〉]
t
0 =

∫ t

0

{〈ut, φt〉 −M(gφ(t))〈|Du|p(·)−2Du,Dφ〉 − 〈|u|p(·)−2u, φ〉

+〈f(τ, ·, u), φ〉 − 〈Q(τ, ·, u, ut) + utt, φ〉Γ1}dτ

for all t ∈ R+
0 and φ ∈ K.

(B) Energy Conservation

(i) Du(t) = 〈Q(t, ·, u(t, ·), ut(t, ·)), ut(t, ·)〉Γ1 + Ftu(t) ∈ L1
loc(R

+
0 ),

(ii) Eu(t) 6 Eu(0) −
∫t

0 Du(τ)dτ , for all t ∈ R+
0 ,

we say that u is a (weak) solution of (0.1).

Moreover, by (2.2), there exists a constant cq such that for all u ∈ K, we have

ρq(·)(u) 6 cqρp(·)(Du).

In this paper, we show that any local solution u of (0.1) cannot be continued in R+
0 × Ω,

whenever the initial energy is controlled above by a critical value. Now we state our main

theorem as follows.

Theorem 2.1 Take p ∈ (pn, n). Assume (F1)—(F3) and the following conditions are

satisfied.

• Eu(0) < (1 − γp+

q−
)ω1 = E1, where ω1 = inft∈R

+
0
Au(t).

•There exist T > 0, q1 > 0, m, ζ, with 1 < m < ζ−k0, 0 6 k0 6 p+(1− m
ζ ) and 2 6 ζ < ζ0

with ζ0 will be defined in Lemma 2.5, and non-negative functions δ ∈ L∞
loc(J), ψ, k ∈ W 1,1

loc (J),

J = [T,∞), with k′ > 0, ψ > 0 in J and ψ′(t) = o(ψ(t)) as t → ∞, such that

〈Q(t, ·, u(t, ·), ut(t, ·)), u(t, ·)〉Γ1 6 q1δ(t)
1
m Du(t)

1
m′ ‖u(t, ·)‖

1+
k0
m

ζ,Γ1
(2.3)

for all t ∈ J , and

δ 6

( k
ψ

)m−1

in J,

∫∞

T

ψ(t)[max{k(t), ψ(t)}]−(1+θ)dt = ∞, (2.4)

for some appropriate constant θ ∈ (0, θ0), where

θ0 = min
{q− − 2

q− + 2
,

r

1 − r

}
, r =

1

ζ
−

(1 − s

q−
+

s

p+

)
∈ (0, 1), s =

n

p+
−
n− 1

ζ0
∈ (0, 1). (2.5)
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Then there are no solutions u ∈ K of (0.1) in R+
0 × Ω.

Remark 2.2 For all ϕ ∈ K and (t, x) ∈ R+
0 × Ω, we define pointwise

Aϕ(t, x) = −M(gϕ(t))∆p(x)ϕ(t, x) + |ϕ(t, x)|p(x)−2ϕ(t, x), (2.6)

so that A is the Fréchet derivative of A with respect to ϕ. By (0.2), (2.1), we have, as γ > 1,

〈Aφ(t, ·), φ(t, ·)〉 = M(gφ(t))ρp(·)(Dφ(t, ·)) + ρp(·)(φ(t, ·))

6 p+

{
gφ(t)M(gφ(t)) +

∫
Ω

|φ(t, x)|p(x)

p(x)
dx

}
6 γp+Aφ(t). (2.7)

Remark 2.3 If u ∈ K is a solution of (0.1) in R+
0 ×Ω, then by (2.1) there exists always

ω1 > 0 such that Au(t) > ω1 for all t ∈ R+
0 . Moreover, by (2.1), (B)—(ii) and (F2) we get

Fu(t) > ω1 − Eu(0) > −Eu(0) for all t ∈ R+
0 , in other words Fu is bounded from below in

R+
0 along any solution u ∈ K.

Lemma 2.4 Assume (0.2), (F1) and (F2) hold. If u ∈ K is a solution of (0.1) in R+
0 ×Ω

then ω2 = inft∈R
+
0
Fu(t) > −∞. If there exists ω > −1 such that Eu(0) < ωω2, then ω2 > 0.

Moreover, if also (F3) − (i) holds, then ω1 > 0.

Proof Let u ∈ K be a solution of (0.1) in R+
0 ×Ω. Clearly, Au and Fu are bounded from

below in R+
0 as shown in Remark 2.3. In particular ω2 > −∞ and inft∈R

+
0
Au(t) = ω1 > 0.

Assume that Eu(0) < ωω2, with ω > −1. Then Fu(t) > ω1 − Eu(0) > ω1 − ωω2, which gives

ω2 >
ω1

1+ω > 0 and so ω2 > 0.

Suppose that also (F3)(i) holds. In correspondence with a0 = ω2 > 0, ϕ = u ∈ K,

there exist c1 = c1(ω2, u) > 0 and ε0 = ε0(ω2, u) > 0 for which (F3)(i) is valid along u,

so for all t ∈ R+
0 , ρq(·)(u(t, ·)) > ĉ1 > 0, ρp(·)(Du) >

ĉ1

cq
, where ĉ1 = ω2

c1
by embedding

theorems. Hence by (0.2) and (2.1), Au(t) > a(gu(t)) + b(gu(t))γ−1gu(t) > a1ρp(·)(Du), for

a1 = a
p+

+ b
ĉγ−1
1

cγ−1
q pγ

+

> 0. In particular, ω1 > a1ρp(·)(Du) > 0, and the lemma is proved.

Lemma 2.5 If p > pn, 2n
n−2 < pn = 1

2 [
√

(n+ 1)2 + 4n + 1 − n] < 2, then ζ0 =
p+q−(n−1+p+)−p2

+

n(q−−p+)+p2
+

∈ (max{2, p+},min{p∗(x), q−}).

The proof similar with the proof of Proposition 3.1 in [4], so we omit it.

Proof of theorem 2.1 Suppose as a contradiction that there exists a global solution

u ∈ K of (0.1) in R+
0 × Ω. By Lemma 2.4. and (2.2), we have E1 > 0. Fix E2 > 0 such that

E2 ∈ (Eu(0), E1) and take ε0 > 0 so small that

ε0ω1 6 (q− − γp+)ω1 − q−E2. (2.8)

This choice is possible since ω1 > 0 and E2 < E1. Note that (2.8) forces ε0 6 q− − γp+ as

E2 > 0. Define the function H(t) = E2 −Eu(0) +
∫t

0 Du(τ)dτ for each t ∈ R+
0 . Of course H is

well defined and non-decreasing by (B)—(i) and (F2), being D > 0 and finite along u. Hence,

by (B)—(ii),

E2 − Eu(t) > H(t) > H0 = E2 − Eu(0) > 0 for t ∈ R+
0 , (2.9)
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where H0 = H(0). Moreover, by (2.8), (2.1), the choice of E2, the definition of ω2 and the

inequality ω2 >
γp+ω1

q−
, it follows that for all t ∈ R+

0 ,

H(t) 6 E2 − Eu(t) < E1 + Fu(t) 6

( q−
γp+

− 1
)
Fu(t) + Fu(t) =

q−
γp+

Fu(t). (2.10)

Fix ε ∈ (0, ε0), if we put ϕ = u in the Distribution Identity, we obtain by (2.1)

d

dt
{〈ut, u〉+〈ut, u〉Γ1} = ‖ut(t, ·)‖

2
2 − 〈Au(t, ·), u(t, ·)〉 + 〈f(t, ·, u), u〉 − 〈Q(t, ·, u, ut), u〉Γ1

+ ‖ut(t, ·)‖
2
2,Γ1

= c3(‖ut(t, ·)‖
2
2 + ‖ut(t, ·)‖

2
2,Γ1

) + (q− − ε)Au(t) − 〈Au(t, ·), u(t, ·)〉

+ 〈f(t, ·, u), u〉 − (q− − ε)Fu(t) − (q− − ε)Eu(t) − 〈Q(t, ·, u, ut), u〉Γ1 ,

where c3 = 1 + q−−ε
2 > 0 by the choice of ε. Using (2.7) and (F3)(ii) with c2 = c2(ω2, u, ε) > 0,

we obtain for all t ∈ R+
0 ,

d

dt
{〈ut, u〉 + 〈ut, u〉Γ1} > c3(‖ut(t, ·)‖

2
2 + ‖ut(t, ·)‖

2
2,Γ1

) + c2ρq(·)(u(t, ·)) − (q− − ε)Eu(t)

− 〈Q(t, ·, u, ut), u〉Γ1 + (q− − ε− γp+)Au(t).

Since ε < q− − γp+ by (2.8) and Eu 6 E2 −H by (2.9),

d

dt
{〈ut, u〉 + 〈ut, u〉Γ1} > c3(‖ut(t, ·)‖

2
2 + ‖ut(t, ·)‖

2
2,Γ1

) + c2ρq(·)(u(t, ·))

+ (q− − ε− γp+)Au(t) − 〈Q(t, ·, u, ut), u〉Γ1 + γp+H(t) − (q− − ε)E2.

Now set C2 = (q−−ε−γp+)εa1

q−
> 0, so

(q− − ε− γp+)Au(t) − (q− − ε)E2 > (q− − ε− γp+)
(
1 −

q− − ε

q−

)
Au(t)

+ (q− − ε− γp+)
q− − ε

q−
ω1 − (q− − ε)E2 > C2ρp(·)(Du(t, ·)),

by Au(t) > a1ρp(·)(Du(t, ·)) in Lemma 2.4 and the fact (q−−ε)[(q−−ε−γp+)ω1−q−E2]
q−

> 0 thanks

to (2.8). Consequently, putting c2 = min{c2, C2} > 0, we get

d

dt
{〈ut, u〉 + 〈ut, u〉Γ1} > c3(‖ut(t, ·)‖

2
2 + ‖ut(t, ·)‖

2
2,Γ1

) + c2(ρq(·)u(t, ·)

+ ρp(·)Du(t, ·)) − 〈Q(t, ·, u, ut), u〉Γ1 + γp+H(t). (2.11)

Since ζ < ζ0 there exists S0 > 0 such that ‖u(t, ·)‖ζ,Γ1 6 S0‖u(t, ·)‖ζ0,Γ1 . On the other hand,

by the choice of s in (2.5), as ζ0 > p(·) by Lemma 2.4, we have

‖u(t, ·)‖ζ,Γ1 6 S‖u(t, ·)‖1−s
q(·) ‖Du(t, ·)‖

s
p(·), (2.12)
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where S is an appropriate constant. The proof see [4]. Furthermore, n
p+

− n−1
ζ < s <

(
q−
ζ − 1)

(
q−
p+

− 1)

as ζ < ζ0. Let α1, α2 and β1, β2 denote the numbers

1

α1
=

1

m
−

s

p+

(
1 +

k0

m

)
, β1 = (1 − s)

(
1 +

k0

m

)
− q−

{ 1

m
−

s

p+

(
1 +

k0

m

)}
,

1

α2
=

1

ζ
−

s

p+
, β2 = 1 − s− q−

(1

ζ
−

s

p+

)
.

We can prove that 1 < α1 6 α2 and β1 6 β2 < 0. Hence, using (2.3) and (2.12), we get for all

t ∈ J ,

〈Q(t, ·, u, ut), u〉Γ1 6 q1(δ(t)
1

m−1Du(t))
1

m′ (S ‖u(t, ·)‖
1−s
q(·) ‖Du(t, ·)‖

s
p(·))

1+
k0
m

= q2(δ(t)
1

m−1Du(t))
1

m′ ‖u(t, ·)‖
(1−s)(1+

k0
m

)

q(·) ‖Du(t, ·)‖
s(1+

k0
m

)

p(·)

= q2(δ(t)
1

m−1Du(t))
1

m′ ‖u(t, ·)‖
q
−

α1

q(·) ‖Du(t, ·)‖
s(1+

k0
m

)

p(·) ‖u(t, ·)‖
β1

q(·) ,

where q2 = q1S
1+

k0

m . Let l ∈ (0, 1). Applying Young’s inequality, then it gives

〈Q(t, ·, u, ut), u〉Γ1 6 q2

(
2δ(t)

l

) 1
m−1

Du(t)) +
1

2
l ‖u(t, ·)‖

q−
q(·) +

1

2
l ‖Du(t, ·)‖

p+

p(·)] ‖u(t, ·)‖
β1

q(·)

6 q2[l
−m′

m δ(t)
1

m−1Du(t) + l(‖u(t, ·)‖
q−
q(·) + ‖Du(t, ·)‖

p+

p(·))] ‖u(t, ·)‖
β2

q(·) ,

(2.13)

where q̃2 = q22
1

m−1 max{1, (ĉ1)
β1−β2} > 0. By direct calculation, we have r = − β2

q−
∈ (0, 1).

Moreover, by (F3)(i), if ‖u(t, ·)‖q(·) > 1 then Fu(t) 6 c1 ‖u(t, ·)‖
q−
q(·) by (1.1). On the

other hand, if ‖u(t, ·)‖q(·) 6 1 then ω2 6 c1(t, ·)q(·)
q− by (F3)(i), the definition of ω2 and (1.2).

Hence ‖u(t, ·)‖q(·) > (ω2/c1)
1/q− > 0, so that Fu(t) 6 c1ρq(·)(u(t, ·)) 6 c1(

c1

ω2
)

q+
q
− ‖u(t, ·)‖

q+

q(·)

by (F3)(i). In conclusion, if u is the solution of (0.1), then we have for all t ∈ R+
0 ,

Fu(t) 6 c′1 ‖u(t, ·)‖
q+

q(·) with c′1 = max{c1, c1(
c1

ω2
)

q+

q− }. Since ‖u‖q(·) is finite, we get Fu(t) 6

c′1 ‖u(t, ·)‖
q+

q(·) 6 c̄1 ‖u(t, ·)‖
q−
q(·), for some c1 > 0. Then by (2.10), we have

‖u(t, ·)‖
β2

q(·) = ‖u(t, ·)‖
−r̄q−
q(·) 6 c̄r̄1Fu(t)

−r̄
6

(
c̄1q−
γp+

)r̄

[H(t)]−r̄.

Therefore, for all t ∈ J ,

〈Q(t, ·, u, ut), u〉Γ1 6 c4[l
−m′

m δ(t)
1

m−1Du(t) + l(‖u(t, ·)‖
q−
q(·) + ‖Du(t, ·)‖

p+

p(·))][H(t)]−r̄

where c4 = q̃2(
c1 q−
γp+

)r. Put

r0 = min
{
r,

1

2
−

1

q−

}
. (2.14)
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Note that θ0 in (2.5) can be expressed as θ0 = r0

1−r0
, and take from now on r = θ

1+θ , so that

r ∈ (0, r0). Consequently, we get

〈Q(t, ·, u, ut), u〉Γ1 6 c4{lH
−r̄
0 (‖u(t, ·)‖

q−
q(·) + ‖Du(t, ·)‖

p+

p(·))

+ l−
m′

m Hr−r̄
0 δ(t)

1
m−1 [H(t)]−rDu(t)}, (2.15)

where in the last step we have used that 0 < r < r0 < r by (2.14) and H > H0 by (2.9).

Define the auxiliary function

Z(t) = λk(t)[H(t)]1−r + ψ(t){〈ut(t, ·), u(t, ·)〉 + 〈ut(t, ·), u(t, ·)〉Γ1}

for all t ∈ J , and λ > 0 to be fixed later. Clearly Z ∈ W 1,1
loc (J), so a.e. in J . On the one hand

Z ′(t) = λk(1 − r)H−rH ′ + λk′H1−r + ψ′{〈ut(t, ·), u(t, ·)〉 + 〈ut(t, ·), u(t, ·)〉Γ1}

+ ψ
d

dt
{〈ut(t, ·), u(t, ·)〉 + 〈ut(t, ·), u(t, ·)〉Γ1}. (2.16)

Since Cauchy’s and Young’s inequalities, and the definition of K, we get

|〈ut(t, ·), u(t, ·)〉| 6 ‖ut(t, ·)‖2‖u(t, ·)‖2 6 ‖ut(t, ·)‖
2
2 + ‖u(t, ·)‖2

2.

Consider now the relation zξ 6 z + 1 6 (1 + 1
η )(z + η), which holds for all z > 0, ξ ∈ [0, 1],

η > 0, and take z = ‖u(t, ·)‖
q−
2 , ξ = 2

q−
< 1, since q− > 2 by (2.2), and η = H0. We obtain that

‖u(t, ·)‖2
2 6 (1+ 1

H0
)(‖u(t, ·)‖

q−
2 +H0). Since the embedding Lq(·)(Ω) → L2(Ω) is continuous by

(2.2), there exists a positive constant B, independent of u, such that ‖u(t, ·)‖2 6 B‖u(t, ·)‖q(·).

So we have

‖u(t, ·)‖2
2 6 c5{‖u(t, ·)‖

q−
q(·) + ‖Du(t, ·)‖

p+

p(·) +H(t)}

where c5 = (1 + 1
H0

)max{1, Bq−} > 0, as H > H0 in J by (2.9). Analogously, using again

Cauchy’s and Young’s inequalities, we get

|〈ut(t, ·), u(t, ·)〉|Γ1 6 ‖ut(t, ·)‖2,Γ1‖u(t, ·)‖2,Γ1 6 ‖ut(t, ·)‖
2
2,Γ1

+ ‖u(t, ·)‖2
2,Γ1

Fix α = 1
1−r . By the choice (2.14) of r and r0, α ∈ (1, 2). Put ν = 2

α so that ν > 1. Take

z = ‖u(t, ·)‖αν′

2,Γ1
, ξ = 2

αν′
and η = H0. We get ‖u(t, ·)‖2

2,Γ1
6 (1+ 1

H0
)(H0 +‖u(t, ·)‖αν′

2,Γ1
). Using

the proof in [4], we have

‖u(t, ·)‖αν′

2,Γ1
6 c6{‖u(t, ·)‖

q−
q(·) + ‖Du(t, ·)‖

p+

p(·)},

‖u(t, ·)‖2
2,Γ1

6 c5′{‖u(t, ·)‖
q−
q(·) + ‖Du(t, ·)‖

p+

p(·) +H(t)},
(2.17)

with c6 > 0, c′5 > 0. Combining these facts with (1.6), and inserting them into (2.16), we have

Z ′ > λk(1 − r)H−rH ′ + λk′H1−r − ψ′{‖ut(t, ·)‖
2
2 + ‖ut(t, ·)‖

2
2,Γ1

+(c5 + c5′)(‖u(t, ·)‖
q−
q(·) + ‖Du(t, ·)‖

p+

p(·) +H(t))} + ψ{c3(‖ut(t, ·)‖
2
2 + ‖ut(t, ·)‖

2
2,Γ1

)

+c2(ρq(·)(u(t, ·)) + ρp(·)(Du(t, ·))) − 〈Q(t, ·, u, ut), u〉Γ1 + γp+H(t)}.
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If t ∈ R+
0 and ρq(·)(u(t, ·)) > 1, then ρq(·)(u(t, ·)) > ‖u(t, ·)‖

q−
q(·), by (1.1). On the other

hand, ρq(·)(u(t, ·)) 6 1, then ω2 6 c1‖u(t, ·)‖
q−
q(·) by (F3)(i), by ω2 and (0.2). Hence

‖u(t, ·)‖q(·) > (ω2/c1)
1/q− > 0, so that ρq(·)(u(t, ·)) >

c1

ω2
‖u(t, ·)‖

q−
q(·). Hence for all t ∈ R+

0 ,

we get ρq(·)(u(t, ·)) > min{1, c1

ω2
}‖u(t, ·)‖

q−
q(·) = c0‖u(t, ·)‖

q−
q(·) with c0 = min{1, c1

ω2
}.

Likewise, if t ∈ R+
0 and ρp(·)(Du(t, ·)) > 1, then ρp(·)(Du(t, ·)) > 1, by (1.1). Otherwise

ρp(·)(Du(t, ·)) 6 1 ⇔ ‖Du(t, ·)‖p(·) 6 1, which gives to

‖Du(t, ·)‖
p−

p(·) > ρp(·)(Du(t, ·)) >
ĉ1
cq
> 0

by ρp(·)(Du(t, ·)) >
ĉ1

cq
in Lemma 2.4. We get ‖Du(t, ·)‖p(·) > ( ĉ1

cq
)

1
p
− > 0, so that

ρp(·)(Du(t, ·)) >
cq

ĉ1
‖Du(t, ·)‖

p−

p(·). Hence for all t ∈ R+
0 , we get

ρp(·)(Du(t, ·)) > min
{
1,
cq
ĉ1

}
‖Du(t, ·)‖

p−

p(·) > C0‖Du(t, ·)‖
p+

p(·)

for some C0 > 0, since ‖u(t, ·)‖p(·) is finite. Putting c0 = min{c0, C0}. By (2.4) and (2.14) and

the fact that λk′H1−r > 0, it follows that a.e. in J

Z ′ > k{λ(1 − r) − c4l
−m′

m Hr−r̄
0 }H−rH ′ + ψ

{
γp+ − (c5 + c5′)

∣∣∣
ψ′

ψ

∣∣∣
}
H

+ψ
{
c3 −

∣∣∣
ψ′

ψ

∣∣∣
}

(‖ut(t, ·)‖
2
2 + ‖ut(t, ·)‖

2
2,Γ1

)

+ψ
{
c2c0 − c4lH

−r̄
0 − (c5 + c5′)

∣∣∣
ψ′

ψ

∣∣∣
}
(‖u(t, ·)‖

q−
q(·) + ‖Du(t, ·)‖

p+

p(·)).

Now, since ψ′(t) = o(ψ(t)) as t→ ∞, there exists T1 ∈ J such that

2
∣∣∣
ψ′

ψ

∣∣∣ 6 min
{
c3,

γp+

c5 + c5
,
c2c0
c5 + c5

}

for all t ∈ J1 = [T1,∞). Moreover, we take l > 0 so small such that 4c4l 6 c2c0H
r
0 and λ > 0

so large that λ > max{
c4Hr−r

0

l
m′

m (1−r)

, 1} and Z(T1) > 0. Therefore, for a.e. t ∈ J1,

Z ′(t) > cψ(t){H(t) + ‖ut(t, ·)‖
2
2 + ‖ut(t, ·)‖

2
2,Γ1

+ ‖u(t, ·)‖
q−
q(·) + ‖Du(t, ·)‖

p+

p(·)} (2.18)

where 2c = min{γp+, c3,
c2c0

2 }. Since k(T1), H(T1) > 0, in particular Z(t) > Z(T1) > 0 for all

t ∈ J1.

On the other hand, from the definition of Z, we obtain

Z(t) 6 λk(t)H(t)
1
α + ψ(t){|〈ut(t, ·), u(t, ·)〉| + |〈ut(t, ·), u(t, ·)〉Γ1 |}

6 λk(t)H(t)
1
α + ψ(t){‖ut(t, ·)‖2‖u(t, ·)‖2 + ‖ut(t, ·)‖2,Γ1‖u(t, ·)‖2,Γ1}.

(2.19)

Using once more the relation zξ 6 z + 1 6 (1 + 1
η )(z + η), with z = ‖u(t, ·)‖

q−
2 , ξ = αν′

q−
and

η = H0. Since ν = 2
α , α = 1

1−r , we get 1
αν′

= ν−1
αν = 1

α − 1
2 = 1

2 − r > 1
q−

, then ξ < 1. It follows

by (2.9) that

‖u(t, ·)‖αν′

2 6

(
1 +

1

H0

)
(H0 + ‖u(t, ·)‖

q−
2 ) 6 c5(H(t) + ‖u(t, ·)‖

q−
q(·)) (2.20)
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where c5 defined as before. Hence using (2.17) and (2.20), from (2.19), we get

Zα 6 4α−1[max{λk(t), ψ(t)}]α{H(t) + ‖ut(t, ·)‖
αν
2 + ‖u(t, ·)‖αν′

2 + ‖u(t, ·)‖αν
2,Γ1

+ ‖u(t, ·)‖αν′

2,Γ1
}

6 B[max{λk(t), ψ(t)}]α{H(t) + ‖ut(t, ·)‖
2
2 + ‖ut(t, ·)‖

2
2,Γ1

+ ‖u(t, ·)‖
q−
q(·) + ‖Du(t, ·)‖

p+

p(·)},

where B = 4α−1(c5 + max{1, c6}) for a.e. t ∈ J1.

Combing this with (2.16) and λ > 1, we obtain a.e. in J ,

Z−αZ ′
>

cψ(t)

Bλα[max{k, ψ}]α
.

Finally, since α = 1 + θ, as r = θ
1+θ , we see that Z cannot be global by (2.4). We finish the

proof.

3 Applications

In this section we provide some concrete examples of functions f and Q, and give useful

applications to the main Theorem 2.1. Assume that

f(t, x, u) = g(t, x) |u|
σ(x)−2

u+ c(x) |u|
q(x)−2

u, (3.1)

where σ, q ∈ C+(Ω), c ∈ L∞(Ω) is a non-negative function, g ∈ C(R+
0 × Ω) is differentiable

with respect to t and g+ ∈ C(R+
0 × Ω). Moreover, assume






σ+ 6 q−,max {2, γp+} < q− 6 q 6 p∗ in Ω, c = ‖c‖∞ > 0;

0 6 −g(t, x), gt(t, x) 6 h(x) in R+
0 × Ω, for some h ∈ L1(Ω);

g(t, ·) ∈ Lη(·)(Ω) in R+
0 × Ω, where η(·) =

{
q(x)/[q(x) − σ(x)], if σ+ < q−,

∞, if σ+ = q−.

(3.2)

The next lemma says that the function f given in (3.1)—(3.2) satisfies the principal

structural assumptions (F1)—(F3).

Lemma 3.1[4,Lemma 4.1] Assume that the external force f is of the type given in (3.1)

and (3.2). Then (F1)—(F2) and (F3)(i) hold. Furthermore, if in addition

σ+ < q− and c̄ = ess inf
Ω
c(x) > 0, (3.3)

then (F3)(ii) is verified, and in particular

〈f(t, ·, φ(t, ·)), φ(t, ·)〉 > q−Fφ(t), (3.4)

for all φ ∈ K and t ∈ R+
0 .

In the same manner as for f , we provide a concrete function Q which represents the typical

nonlinear boundary damping for (0.1). This is done with the following:

Lemma 3.2[4,Lemma4.2] Assume that the continuous damping function Q given in the

Introduction verifies also the following pointwise condition:
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(Q) There exist constants tQ > 0,m, ζ satisfy 1 < m < ζ − k0, 0 6 k0 6 p+(1 − m
ζ ) and

2 6 ζ < ζ0, ζ0 is defined in Lemma 2.5, and non-negative function d ∈ C(R+
0 → Lζ/ζ−k0−m(Γ1))

such that

|Q(t, x, u, v)| 6 (d(t, x) |u|
k0)1/m(Q(t, x, u, v), v)1/m′

, (3.5)

where (t, x, u, v) ∈ [tQ,∞)×Γ1 ×RN ×RN . Then (2.3) is satisfied along any solution u of the

problem (0.1), with T > tQ, δ(t) = ‖d(t, ·)‖ζ/ζ−k0−m,Γ1
, provided that (F2) holds.

Lemma 3.3[4,Lemma4.3] Assume (3.1)—(3.2). If u ∈ K is a solution of (0.1) in R+
0 × (Ω),

then for all t ∈ R+
0 ,

Eu(t) >
s

(Λp+)γ
min {v(t)p− , v(t)p+}

γ
−

c

q−
max {v(t)p− , v(t)p+} ,

where v(t) = ‖u(t, ·)‖q(·),

Λ = max{λ
p+

q(·), λ
p−

q(·), (sγ/cp
γ−1
+ )1/γ}, (3.6)

and λq(·) is the constant introduced in (1.3).

From Lemma 3.3 we obtain

Eu(t) > ϕ(v(t)) for all t ∈ R+
0 , (3.7)

where ϕ : R+
0 → R is defined by ϕ(v) = ϕ1(v) if v ∈ [0, 1], while ϕ(v) = ϕ2(v) if v > 1, with

ϕ1(v) = s
(Λp+)γ v

γp+ − c
q−
vq− , ϕ2(v) = s

(Λp+)γ v
γp− − c

q−
vq+ .

It is easy to see that ϕ attains its maximum at

v1 = a
1/(q−−γp+)
1 , where a1 =

sγp+

c(Λp+)γ
. (3.8)

The choice of Λ in (3.6) guarantees that v1 ∈ (0, 1]. Clearly ϕ2 takes its maximum at v2 =

a
1/(q+−γp−)
2 , where a2 = p−q−a1/p+q+ 6 a1 6 1. Hence ϕ is strictly decreasing for v > v1,

with ϕ(v) → −∞ as v → ∞. Finally,

ϕ(v1) =
(
1 −

γp+

q−

)
ω0 = E0 > 0, where ω0 =

sv
γp+

1

(Λp+)γ
> 0. (3.9)

Put Σ =
{
(v,E) ∈ R2 : v > v1, E < E0

}
.

Theorem 3.4 Assume(3.1), (3.2) and (Q). If u is a solution of (0.1) in R+
0 × Ω, then

ω2 = inft∈R
+
0
Fu(t) > −∞. If, moreover, Eu(0) < E1, with E1 given in Theorem 2.1, then

ω2 > 0 and (v(t), Eu(t))∈Σ for all t ∈ R+
0 , where

Σ =
{
(v,E) ∈ R2 : v > v1, E < E1

}
, (3.10)

and v1 is defined in (3.8). Consequently, if in addition (3.3) holds, then there are no solutions

u ∈ K of the problem (0.1) in R+
0 ×Ω, with Eu(0) < E1, for which there exist positive functions

ψ, k verifying (2.4), (2.5) as in Theorem 2.1.

Proof Clearly Lemmas 3.1 and 3.2 are available, so that assumptions (F1), (F2), (F3)(i)

and (Q) of Theorem 2.1 are satisfied along any solution u of (0.1). The fact that ω2 is finite and



1 3 Ï o[7, �µ��5 p(x)-Kirchhoff �§3Ä�>.^�e���Û�35 (=) 161

positive are an immediate consequence of Theorem 2.1. By (F2), (Q) and (B)(ii) clearly Eu(t) 6

Eu(0) < E1 for all t ∈ R+
0 . Suppose now that there exists t1 ∈ R+

0 such that v(t1) 6 v1. Then,

by (1.2) we have ω2 6 Fu(t1) 6 cv(t1)
q−/q−. On the other hand, Au(t1) > sv(t1)

γp+/(Λp+)γ .

Now, by (2.1), (F2), (Q) and (B)—(ii), it follows that
(
1 −

γp+

q−

)
Au(t1) >

(
1 −

γp+

q−

)
ω1 = E1 > Eu(0) > Au(t1) −Fu(t1) > Au(t1) −

c

q−
v(t1)

q− .

That is v(t1) > [sγp+/c(Λp+)γ ]1/(q−−γp+) = v1 by (3.8). This is an obvious contradiction.

Therefore v(t1) > v1 and (v(t), Eu(t)) ∈ Σ for all t ∈ R+
0 , as required.

The last part of the theorem is again a direct consequence of Theorem 2.1.

Theorem 3.5 Assume (3.1), (3.2) and (Q). Let u ∈ K be a solution of (0.1) in R+
0 ×Ω,

such that Eu(0) < E0, with E0 given in (3.9). Then v1 /∈ v(R+
0 ) and ω1 = inft∈R

+
0
Au(t) 6= ω0,

where v1 and ω0 are defined in (3.8) and (3.9), respectively. Moreover, ω1 > ω0 if and only if

v(R+
0 ) ⊂ (v1,∞).

Proof Let u ∈ K be a solution of (0.1) in R+
0 × Ω, with Eu(0) < E0. Proceed by

contradiction and suppose that v1 ∈ v(R+
0 ). It follows that there exists a sequence (tj)j in R+

0

such that v(tj) → v1 as j → ∞. By (3.7) we have E0 > Eu(0) > Eu(tj) > ϕ(v(tj)), which

provides E0 > E0 by the continuity of ϕ ◦ v, then we prove that v1 /∈ v(R+
0 ).

We show that ω1 6= ω0. Otherwise, Au(t) > ω0 for all t ∈ R+
0 . Therefore, by (2.1) and

(3.9), we have
(
1 −

γp+

q−

)
Au(t) >

(
1 −

γp+

q−

)
ω1 = E1 > Eu(0) > Au(t) −Fu(t) > Au(t) −

c

q−
v(t)q− .

Hence, if t ∈ R+
0 and v(t) 6 1, then c

q−
v(t)q− >

γp+

q−
Au(t) >

γp+

q−

sv(t)γp+

(Λp+)γ , that is v(t) > v1.

On the other hand, if v(t) > 1, then automatically v(t) > v1, being v1 6 1. Hence, v(t) > v1

for each t ∈ R+
0 . Consequently, the first part of the theorem yields v(R+

0 ) ⊂ (v1,∞). On

the other hand, there exists a sequence (tj)j such that Au(tj) → ω1 = ω0 as j → ∞, so

lim supj→∞ v(tj) 6 limj→∞[
(Λp+)γAu(tj)

s ]
1

γp+ = v1 by (3.9), which contradicts the fact that

v(R+
0 ) ⊂ (v1,∞). Hence ω1 6= ω0.

If ω1 > ω0, then Eu(0) < E1 and v(t) > v1 for all t ∈ R+
0 by Theorem 3.4, so v(R+

0 ) ⊂

(v1,∞), since v1 /∈ v(R+
0 ).

On the other hand, if v(R+
0 ) ⊂ (v1,∞), then v(t) > v1 and Au(t) > sv(t)γp+

(Λp+)γ = ω0 for all

t ∈ R+
0 . Hence ω1 > ω0, since the case ω1 = ω0 cannot occur by the argument above.

In the next corollary we present an application of both Theorems 2.1 and 3.4. In par-

ticular, we provide sufficient conditions under which assumptions (2.4), (2.5) of Theorem 2.1

are satisfied. Let Q = Q(t, x, u, v) be a continuous damping function as in the Section 0 and

assume also that there exists t∗ ≫ 1 such that for all (t, x, u, v) ∈ [t∗,∞) × Γ1 × RN × RN ,

Q(t, x, u, v) = d(t, x) |u|
k
|v|

m−2
v, (3.11)

where m, ζ, k0, d satisfy condition (Q), with d(t, x) > 0 in R+
0 × Γ1. Put δ(t) =

‖d(t, ·)‖ζ/(ζ−k0−m),Γ1
for all t ∈ R+

0 . Hence

|Q(t, x, u, v)| 6 [d(t, x) |u|k]1/m[(Q(t, x, u, v), v)]1/m′

,
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for all (t, x, u, v) ∈ [t∗,∞) × Γ1 × RN × RN , so that (Q) holds with tQ = t∗.

Corollary 3.6 Assume (3.1)—(3.3), (3.11) and that δ(t) 6 δ1(1+t)l for each t ∈ [t∗,∞),

for some appropriate numbers δ1 > 1 and l 6 m − 1. Then there are no solutions u ∈ K of

(0.1) in R+
0 × Ω, with Eu(0) < E1.

This corollary is similar with Corollary 4.1 in [6], so we omit the proof here. From now on

in this section we assume the assumptions (3.1), (3.2), (3.3), and (3.11), with δ(t) 6 δ1(1 + t)l

for each t ∈ [t∗,∞) and some δ1 > 1 with l 6 m− 1.

Corollary 3.7 Problem (0.1) does not possess solutions u ∈ K in R+
0 × Ω, with

‖u(0, ·)‖q(·) > v1, Eu(0) < E0, (3.12)

where E0 is defined in (3.9).

Proof Assume as a contradiction that u ∈ K is a solution of (0.1) in R+
0 × Ω, verifying

(3.12). By Theorem 3.5 then ω1 > ω0. Hence Eu(0) < E0 < E1, and the contradiction follows

at once by an application of Corollary 3.6.

Proposition 3.8 If u ∈ K is a solution of (0.1) in R+
0 ×Ω, with Eu(0) < E0, where E0

is defined in (3.9), then

ω1 6 ω0. (3.13)

Proof Otherwise ω1 > ω0, so Eu(0) < E1, and u could not be global by Corollary 3.6.

In the rest of this section we assume also:

(D) There exists t∗ > 0 such that either

(i) gt(t, x) > g0(t) > 0 for each (t, x) ∈ [0, t∗] × Ω, or

(ii) φ ∈ K and 〈Q(t, ·, φ, φt), φt〉Γ1
= 0 in [0, t∗] implies either φ(t, ·) = 0 or φt(t, ·) = 0 for

all t ∈ [0, t∗].

Theorem 3.9 Problem (0.1) does not possess solutions u ∈ K in R+
0 × Ω, with

‖u(0, ·)‖q(·) > v1, Eu(0) = E0. (3.14)

Proof Assume by contradiction that u ∈ K is a global solution of (0.1) in R+
0 × Ω,

verifying (3.14). By Proposition 3.8 we have ω1 6 ω0. We first claim that ω1 < ω0 cannot

occur. As a matter of fact, if ω1 < ω0 there would exist t0 such that Au(t0) < ω0, and this is

possible only if v(t0) < v1; indeed if v(t0) > v1 we would immediately have Au(t0) > ω0. Hence

t0 > 0 by (3.14) and by the continuity of v there exists s ∈ (0, t0) such that v(s) = v1. Thus

E0 = Eu(0) > Eu(s) > ω0 −
c

q−
v

q−
1 = E0

by (3.7). In other words, Eu(s) = E0 and
∫s

0
Du(τ)dτ = 0 by (B)(ii). Consequently Du ≡ 0 in

[0, s] and so, by (F2) and (3.11), we obtain 〈Q(t, ·, u(t, ·), ut(t, ·)), ut(t, ·)〉Γ1
= 0 and Ftu(t) = 0

for all t ∈ [0, s].

Now, if (D)(i) holds, then

0 = Ftu(t) =

∫
Ω

gt(t, x)
|u(t, x)|

σ(x)

σ(x)
dx >

g0(t)

σ+
ρσ(·)(u(t, ·)) > 0
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for each t ∈ [0, s0], where s0 = min {t∗, s}. Therefore ρσ(·)(u(t, ·)) = 0 and in turn u = 0 in

[0, s0]×Ω by (1.1) and (1.2). But this occurrence is impossible, since ‖u(0, ·)‖q(·) = v(0) > v1 > 0

by (3.14), so we reach a contradiction.

However, if (D)(ii) holds, since 〈Q(t, ·, u(t, ·), ut(t, ·)), ut(t, ·)〉Γ1
= 0 for all t ∈ [0, s0], we

get that either u(t, ·) = 0 or ut(t, ·) = 0 for all t ∈ [0, s0], where as above s0 = min {t∗, s}.

Again, as already shown, the first case u(t, ·) = 0 cannot occur since v(0) > v1. In the

latter, u is clearly constant with respect to t in [0, s0], and so u(t, x) = u(0, x) for each t ∈

[0, s0]. Taking φ(t, x) = u(0, x) in the Distribution Identity (A), then for each t ∈ [0, s0] we

have t 〈Au(0, ·), u(0, ·)〉 =
∫t

0 〈f(τ, ·, u(0, ·)), u(0, ·)〉dτ , since 〈Q(t, ·, u(0, ·), 0), u(0, ·)〉Γ1
= 0, as

Du = 0 in [0, s0]. Therefore 〈Au(0, ·), u(0, ·)〉 = 〈f(t, ·, u(0, ·)), u(0, ·)〉 for each t ∈ [0, s0], and

so 〈Au(0, ·), u(0, ·)〉 = 〈f(0, ·, u(0, ·)), u(0, ·)〉. Now γp+Au(0) > q−Fu(0) by (2.7) and (F3).

On the other hand, E0 = Eu(0) = Au(0) − Fu(0), since ut(t, 0) = 0. By (3.9) we have

Au(0) > ω0 > 0, and so

E0 >

(
1 −

γp+

q−

)
Au(0) >

(
1 −

γp+

q−

)
ω0 = E0,

by (3.9). This contradiction shows the claim.

Hence ω1 = ω0. In particular Au(t) > ω0 for all t ∈ R+
0 and we assert that equality cannot

occur at a finite time. Indeed, if there is a τ such that Au(τ) = ω0, then v(τ) 6 v1. On the

other hand, as shown in the proof of Theorem 3.5, we get v(τ) > v1. This contradiction shows

that it remains to consider only the case ω1 = ω0, Au(t) > ω0 and v(t) > v1 for all t ∈ R+
0 . A

continuity argument shows at once that lim inf
t→∞

Au(t) = ω0, lim inf
t→∞

v(t) = v1.

Indeed, since inft∈R
+
0
Au(t) = ω1 = ω0 there exists a (tk)k ∈ R+

0 such that

lim
k→∞

Au(tk) = ω0 and (tk)k cannot be bounded because Au reaches its infimum at infinity.

Hence lim inf
t→∞

Au(t) 6 ω0 and this forces inf
t→∞

Au(t) = ω0, as ω0 = inft∈R
+
0
Au(t). Put now

v′1 = lim inf
t→∞

v(t). Since Au(t) >
s

(Λp+)γ v(t)
γp+ for all t ∈ R+

0 , then ω0 >
s

(Λp+)γ (v′1)
γp+ , which

gives v′1 6 v1 by (3.9). On the other hand v′1 > v1, as v(t) > v1 for all t ∈ R+
0 and in turn

v′1 = v1, as required.

Now, by (2.1) and (B)(ii) we have ω0−Fu(t) < Eu(t) 6 E0, so lim sup
t→∞

Eu(t) = E0. Hence∫∞

0 Du(τ)dτ = 0 by monotonicity. In particular Du ≡ 0 in R+
0 , which is again impossible by

(D), using the argument already produced. This completes the proof.
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