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0 Introduction

In this paper we consider the following p(x)-Kirchhoff systems

wy — M(g(t)Apyu+ [uP@~2u = f(t,z,u), nRJ xQ,
u(t,x) =0, on R x I, (0.1)
ug = —[M(g(1))|DulP®=20,u + Q(t,z,u,uz)], on RS x I'y,

where p(x) > pn, pn is a critical value smaller than 2. « = (u1,---,uny) = u(t,z) is the
vectorial displacement, N > 1, Ry = [0,00). Q is a regular and bounded domain of R™,
with boundary 9Q = ToUTy, To NT1 = ¢, pn—1(To) > 0, where u,—1 denotes the (n — 1)-
dimensional Lebesgue measure on 0f), while p, is the n-dimensional Lebesgue measure on 2.
Moreover, v is the outward normal vector field on 9. A,y denotes the vectorial p(z)-Laplacian

operator defined as div(|Du|P®)~2Du), and the associated p(z)-Dirichlet energy integral is
= | [Du(ta)[P 4

Q p(w) ’
d1831pat1ve term and an external damping term, respectively. We further suppose that

The functions f, M and @ represent a source force, a Kirchhoff

(Q(t,z,u,v),v) = 0for all (t,x,u,v) € Rf x 1 x RV x RV,
Qe CR xT1 xRY xRN - RY), f e O(R{ x @ x RY - RN),

ft,z,u) = Fu(t,z,u), F(t,x,0) =0,

so F(t,x,u) = fé(f(t,x,Tu),u)dT is a potential for f. The Kirchhoff dissipative term M is

assumed to be of the standard form
M(1)=a+byr" 1 a,b>0,a+b>0v>1ifb>0. (0.2)

We choose M(7) = at + br?, so M(7) = [; M(z)dz, where v > 1if b > 0.

The boundary conditions cons1dered in (0.1) are usually called dynamic boundary con-
ditions and they arise in several physical applications (for example, see [1]). Some important
and interesting results about Kirchhoff equations can be found, for example, in [2]. The study
of Kirchhoff type equations has already been extended to p-Kirchhoff equations[®. In [3], the
global nonexistence results are proved for scalar Kirchhoff equations, when Eu(0) < E; and
all the exponents are constant, with p(z) = 2. In particular, they considered the p-Kirchhoff

system
uye — M(||Du(t, )B)Apu+ plufP~?u = f(t,z,u), nRf xQ,

u(t,z) =0, on R{ x Iy, (0.3)
M (||Du(t,-)|[5)| DulP~28,u = Q(t, z, u, uy), on Ry x I'y,

and obtained that any local solution u of (0.3) cannot be continued in R x €, whenever the
initial energy is controlled by a critical value.
The p(z)-Laplacian possesses more complicated nonlinearities than the p-Laplacian; for

example, it is inhomogeneous. We recall that the nonhomogeneous p(z)-Kirchhoff operator has
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been used in the last decades to model various phenomenal?:!

, such as the image restoration
problem, the motion of electro-rheological fluids. In particular, in [6], they considered the

dissipative anisotropic nonhomogeneous p(z)-Kirchhoff system

Ut — M(g(t))AP(w)u + /L|u|p(x)72u + Q(ta T, U, ut) = f(tv T, U’)’ in 1:{'(J)r x €1, ( )
0.4
u(t,z) =0, on R x 09,

and showed the nonexistence of global solutions of (0.4), when the initial energy is controlled
by a critical value.

This paper will be organized as follows. In Section 1, we will give some preliminaries on
the variable exponent space. In Section 2, we will give the main theorem and its proof. In

Section 3, we will show the applications of the main theorem.

1 Preliminaries

Let h € C(Q), where C4(Q) = {h € C(Q) : minh(z) > 1}, and define
€N

hy =suph(z), h_ = inf h(x).
z€Q zeQ
Fix p € C;(Q), then the variable exponent Lebesgue space, denoted by LP()(Q) = [LPO) (Q)]V,
consisting of all the measurable vector-valued functions u : 2 — R” such that IQ |u(z) P dx

is finite, is endowed with the Luxemburg norm

u(x) p(z)
A

lullpey = inf{)\ >0: J dz < 1}.

€

Since here 0 < |Q] < oo, if ¢ € C1(Q) and p < ¢ in 2, then the embedding L) (Q) — LP()(Q)
is continuous (see [5, Theorem 2.8]).

Now, we define a p(-)-modular function of the LP()(Q) space, that is
(@) = |_Ju@) P
If u € LP()(Q), since p; < 0o, then the following relations hold:

[ullpey < H=1>1) & ppy(u) < 1(=1>1),

lullpy > 1= llallZZ, < ppy () < [l (1.1)
lulloy < 1= [ull2f) < ooy (w) < [lull%g,. (1.2)

The variable exponent Sobolev space WP()(Q) = [WLPO(Q)]V, consisting of functions
u € LPO)(Q), is endowed with the norm

lullepey = lullpey + 1Dulpy-
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Define Wll(’)p(')(Q) = [Wlf[’)p(')(Q)]N as the Sobolev space of the functions u € W1HP()(Q) with
ulr, = 0. If p1 < n and some conditions satisfied, then the embedding Wlf[’)p(')(Q) — L7 0)(Q)

is continuous, where p* is the critical variable exponent related to p, defined by the relation

np(x)

for all x € Q.
n —p(z)

p(x) =
We refer to more details about Sobolev space in [7]. Hereafter, we assume that
p(z) € C+(Q) and 1 < p_ < py < n.

For all h € C(Q), with 1 < h < p* in €, we denote by An(.y the Sobolev constant, of the
continuous embedding Wll(’)p(')(ﬂ) — LM)(Q), that is

[ellney < Aney 1Dullpq.y - (1.3)
For simplicity in notation, we write
. . 1,p(- 1,p(-
PO = [LPO@Y, WO @) = @)Y,

which are endowed with the norms || - ||,y and [|[Dul|,., respectively. The usual Lebesgue
space L?(Q) = [L2(Q)]" is equipped with the canonical norm [[¢||2 = ([, lp(x)|2dz) 2, while
the elementary bracket pairing (o, ) = IQ x),¥(x))dx is clearly well defined for all ¢,
such that (¢,%) € L'(Q). Analogously, also (w ¢ = IFI (2))dpn—1 is well defined
for all w, ¢ such that (w,¢) € L'(T'1). Finally

K =CRy — WpV Q) nC RE — L2(92))
denotes the main solution and test function space.

2 The main theorem

Before we state our main theorem, we first assume that for all ¢ € K

(F1) F(t (), (Fltolt, ), olt, ) € LHQ) for all t € RE: (f(t, -, 6(t,-)), (2, ) €
L (R{).
Next, we assume the following monotonicity condition
(Fa) Fo>0in Ry x WP (),
where F; is the partial derivative with respect to ¢t of F = F(t, ¢) IQ (t,z, o(t, x))dx, with
(t, ) in R{ x Wgop( )(Q), and Fo(t) = F(t,¢) is the potential energy of the field ¢ € K, which
is well defined by (F;). Moreover, the natural total energy of the field ¢ € K, associated with

(0.1), is

E(t) = L (I0u(t. )1 + 100t 2y, + () — Folt).
(2.1)
7))
Ag(t) = M(go(t)) + j %dx >0,

where gy is the p(-)-Dirichlet energy integral. E¢ is well defined in K.
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Finally, we consider the following condition:

(F3) There exists a function ¢ € C4(2) satisfying the restriction

np(z)

. (@)’ (2.2)

max{2,yp4} < q— < p*(z),p*(z) =

with the property that for all ¢y > 0 and ¢ € K for which infteR[T Fo(t) = ag, there exist
c1 = c1(ag, ») > 0 and g9 = gg(ag, ) > 0, such that
(1) Fo(t) < crpg)(p(t,-)) for all t € RY,
and for all € € (0,g¢) there exists ca = c2(ag, ¢, €) > 0, such that
() (fn 0t ), 0l ) — (0 — ©)FG(E) > capyy (6(2,)) for all ¢ € Ry
Following [8], if u € K satisfies the two following properties:
(A) Distribution Identity

[(ur, 3)]f = L{wt, ¢r) — M(go(t)){(|DulP)~2Du, Dg) — (jul’)~2u, ¢)
+<f(7—7 "y ’U,), ¢> - <Q(7—7 U, ut) + U, ¢>F1 }dT

for all t € R§ and ¢ € K.
(B) Energy Conservation
(i) Du(t) = <Q(t7 ) u(t7 ')7 ut(t7 ))7 ut(t7 ')>F1 + ftu(t) € Llloc(Rg_)v
(i) Bu(t) < Bu(0) — [} Du(r)dr, for allt € Ry,

we say that u is a (weak) solution of (0.1).

Moreover, by (2.2), there exists a constant ¢, such that for all u € K, we have

Pa() () < Cqpp( (D).

In this paper, we show that any local solution u of (0.1) cannot be continued in Ry x €,
whenever the initial energy is controlled above by a critical value. Now we state our main
theorem as follows.

Theorem 2.1 Take p € (pp,n). Assume (F1)—(F3) and the following conditions are
satisfied.

e Fu(0) < (1-— %)wl = Ey, where wy = infteRgAu(t).

e Thereexist T' > 0, ¢ > 0, m,(, with 1 < m < {—kq, 0 < ko §p+(1—%) and 2 < ¢ < (o
with (o will be defined in Lemma 2.5, and non-negative functions § € L (J), ¥,k € Wli’cl(J),

loc

J=1T,00), with ¥ >0, ¢ > 0in J and ¢'(t) = o(¢)(t)) as t — oo, such that

k
e (2.3)

(Q(t, - ult, ), uelt, ), ult, ))r, < @)= Dult)™ |lult, )

forallt € J, and
5 < ()" [ wwmath, ¢t = s, (24)

for some appropriate constant 6 € (0, 6p), where

(
. q-—2 T _7l 1—s 5 _n n—1
90_mm{q,+2’1—7}’ =2 ( — +p+)e(0,1), s= oo -t €01 (29)
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Then there are no solutions u € K of (0.1) in R§ x Q.
Remark 2.2 For all p € K and (t,2) € Ry x €, we define pointwise

Ap(t,x) = =M (9p(1) Ay p(t, ) + |p(t, 2) PO~ 20(t, z), (2.6)

so that A is the Fréchet derivative of A with respect to ¢. By (0.2), (2.1), we have, as v > 1,

2)|P)
%dx} < P+ AB(E). (2.7)

Remark 2.3 If u € K is a solution of (0.1) in R x , then by (2.1) there exists always
w1 > 0 such that Au(t) > w; for all t € Ry. Moreover, by (2.1), (B)—(ii) and (F3) we get
Fu(t) = wi — Bu(0) > —FEu(0) for all t € R7, in other words Fu is bounded from below in
Rar along any solution u € K.

Lemma 2.4 Assume (0.2), (F}) and (F2) hold. If u € K is a solution of (0.1) in R x
then we = infteR[T}'u(t) > —oo. If there exists W > —1 such that Fu(0) < @Wws, then wy > 0.
Moreover, if also (F3) — (i) holds, then wy > 0.

Proof Letu € K be a solution of (0.1) in R x €. Clearly, Au and Fu are bounded from
below in Rg as shown in Remark 2.3. In particular ws > —oo and infteRJ Au(t) = w1 2 0.
Assume that Eu(0) < Wwg, with @ > —1. Then Fu(t) > w; — Fu(0) > w; — Wwe, which gives
w2>1‘f;—15>0andsow2>0.

Suppose that also (F3)(i) holds. In correspondence with ayp = we > 0,0 = u € K,

<o+ {os(M(go(0) + |

there exist ¢1 = c¢1(we,u) > 0 and g = go(we,u) > 0 for which (F3)(i) is valid along wu,
so for all t € RS, pyy(ult,) = é > 0, pp)(Du) > %, where ¢; = £ by embedding
theorems. Hence by (0.2) and (2.1), Au(t) > a(gu(t)) + b(gu(t))’ " tgu(t) > aipy)(Du), for
Ay—1
a = ﬁ +b chlpw > 0. In particular, wi > a1p,.y(Du) > 0, and the lemma is proved.
cq i
Lemma 2.5 If p > p,, % < pp = %[\/(n+1)2+4n+ 1 —n] < 2, then ¢y =
pyq—(n—1+py)—p} 9 o
n(q77p+)+pi € (max{ 7p+}7mln{p (‘T)7Q—})
The proof similar with the proof of Proposition 3.1 in [4], so we omit it.

Proof of theorem 2.1 Suppose as a contradiction that there exists a global solution
u € K of (0.1) in R§ x . By Lemma 2.4. and (2.2), we have E; > 0. Fix E2 > 0 such that
E; € (Fu(0), F1) and take g9 > 0 so small that

cowr < (- —Ypy)w1 — q—Es. (2.8)

This choice is possible since w; > 0 and Ey < E;. Note that (2.8) forces g9 < ¢— — yp4+ as
E5 > 0. Define the function H(t) = Es — Eu(0) + fé Du(7)dr for each t € Ry. Of course H is
well defined and non-decreasing by (B)—(i) and (F3), being D > 0 and finite along u. Hence,
by (B)—(ii),

Ey — Eu(t) > H(t) > Hy = Ea — Eu(0) > 0 for t € R, (2.9)
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where Hy = H(0). Moreover, by (2.8), (2.1), the choice of Ea, the definition of ws and the
inequality wo > %, it follows that for all t € R,

H(t) < By — Eu(t) < By + Fult) < (7‘171 1) Fu(t) + Fult) = %fu(t). (2.10)

Fix € € (0,¢0), if we put ¢ = w in the Distribution Identity, we obtain by (2.1)

d
dt

(e w) gy w)ry } = Hlue(t, )5 = (Ault ), ult, ) + (F(E - u),w) = QU u, ), wr,
+ llua(t, )3,
= c(llua(t, I3 + et )ll5p,) + (a- — ) Au(t) = (Au(t, ), ult, )
+ (fts ), u) = (g —e)Fu(t) — (¢ —e)Bu(t) — (Q(F, - u, ue), u)r,

where ¢3 = 1+ 4= > 0 by the choice of e. Using (2.7) and (F3)(ii) with c; = ca(wa,u,e) > 0,
we obtain for all t € R,

g Wuesw) + (ug, whr, 2 es([luet, W + et ) 5.p,) + c2pgry (ult, ) — (g — £)Eult)
—(Q(, -, u,ur), u)r, + (g— — & — yp+)Au(t).

Since € < ¢_ — yp4 by (2.8) and Fu < Ey — H by (2.9),
d
3 e w) + {ue, hr, > ea(fJue(t, M + et ) 5 0,) + 200 (ult )

+ (g— — e — yp4)Au(t) — (Q(t, -, u, up), u)p, +yp+H(t) — (q— — ) Es.

Now set Cy = (q’*s;# > 0, so

(a- == =) Au(t) = (@ = ) > (- — = — ) (1= ==2)Au()

+(g- —e— '7p+)q_ wi—(g- —e)E2 > CQpp(-)(Du(tv ),

by Au(t) > a1ppy(Du(t,-)) in Lemma 2.4 and the fact (a- 75)[(‘1’75;7”)“’17‘1’&] > 0 thanks

o (2.8). Consequently, putting ca = min{cg, Ca} > 0, we get
d
3 L) + (ww)r,} > ea(llua(t, )15 + luat,lI3r,) + ea(pgcyult, )
+ ppyDult,-)) = (Q(t, -, u,us), u)r, +yp+ H(2). (2.11)

Since ¢ < (o there exists Sp > 0 such that ||u(t,-)|l¢c.r, < Sollu(t,)|l¢co,r.- On the other hand,
by the choice of s in (2.5), as (o > p(-) by Lemma 2.4, we have

Hu(tv )

< Sllut, I Dult, e, (2.12)



156 RO R IR) 2013 4

q-
where S is an appropriate constant. The proof see [4]. Furthermore, pl — T <s< %
P+

as ( < (p. Let a1, as and By, (2 denote the numbers

Lo ) il B ()
et ()

We can prove that 1 < a3 < ag and 31 < (2 < 0. Hence, using (2.3) and (2.12), we get for all
teJ,

k

+ 20

(Q(t, - uyup), uhr, < qu(8() 7= Du(t)) = (S fult, )|y 1Du(t, 15"

1 a 1-s)(1+20) s(1+%0
= q2(8(t) 7 Du(t))w u(t, )|\ IDuge, )|
& s(1452) E
= go(8(6) 7T Du(t)) 7 ult, oy IDut, o™ flu(t, )15,

k
where gu = ¢ S'" m. Letle (0,1). Applying Young’s inequality, then it gives

@t uur, < (210) " Duo) + 1 lute N, + 31 IDu

Pt )5

< o1 8() w1 Du(t) + Ut V55, + 1Dut ) el
(2.13)

where ¢ = qﬂﬁ max{1, (¢1)#1=72} > 0. By direct calculation, we have 7 = —ﬁ—f € (0,1).
Moreover, by (F3)(i), if [|u(t,-)[lq) = 1 then Fu(t) < ¢ ||u(t,~)|q() by (1.1). On the

other hand, if |Ju(t,-)||4¢) < 1 then wy < ¢1(t,-)q(-)" by (F3)(i), the definition of wy and (1.2).

Hence [|u(t,)|ly) = (w2/c1)/% > 0, so that Fu(t) < c1pyy(ult,-)) < ci(L )‘: [ (2, )Hg(f)

by (F3)(i). In conclusion, if u is the solution of (0.1), then we have for all t € Ry,
[

Fu(t) < ) ||ult, -)Hz(f) with ¢; = max{cl,cl(f)—;)q_f}. Since [|ul|q(.) is finite, we get Fu(t) <

cq ||ul(t, )||q() 1 ||u(t, -)HZ(’_), for some ¢; > 0. Then by (2.10), we have

e, 58y = e < ehrun < (2 ) o)

TP+

Therefore, for all t € J,

771,

Qs ), ubr, < eall™ 5 60T Du(t) + Ulult, %5, + 1 Dult, )T IHE)

where ¢4 = q~2( Put

P+ )T
- q%} (2.14)

N)I)—l

ro = mln{?
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Note that 6y in (2.5) can be expressed as 6y = 130, and take from now on r = %, so that
r € (0,r9). Consequently, we get
(QUt. -, ur), wr, < eaflHy "(lu(t, )%, + [1Dutt, )|2)
17 E HI TS () 7 [H ()] Dult)} (2.15)

where in the last step we have used that 0 < r < rg < T by (2.14) and H > Hj by (2.9).

Define the auxiliary function
Z(t) = MNe(t)[H O] + () {{ue(t, ), ult, ) + (uelt, ), ult, ) }
for all t € J, and A > 0 to be fixed later. Clearly Z € W, (J), so a.e. in J. On the one hand
Z'(t) = MNe(1L = r)H™"H' + XN"H'" + " {{ug (¢, ), u(t, ) + (ue(t, ), ult,-))ry }

fod

dt{<ut(t7 ')7 ’U,(t, )> + <ut(t7 ')7 ’U,(t, ')>F1 } (216)

Since Cauchy’s and Young’s inequalities, and the definition of K, we get

[t ), ut, D) < Nluelt, ll2llul, Yz < fuelt, )3 + llut, )3

Consider now the relation 2* < z +1 < (1 + %)(2 + 1), which holds for all z > 0, £ € [0, 1],
n >0, and take z = ||lu(t,-)||5 , £ = T < 1, since g— > 2 by (2.2), and n = Hy. We obtain that
lu(t,)]|3 < (1+ HO)(HU( 4= + Hy). Since the embedding L) (Q) — L?(Q) is continuous by
(2.2), there exists a positive constant B, independent of u, such that |[u(t,-)||2 < Bllu(t,-)||q(.)-

So we have

Jutt, 113 < es{llutt, G, + I Dult, VEF + H®)
where ¢5 = (1 + Hio)max{l,Bq*} > 0, as H > Hp in J by (2.9). Analogously, using again
Cauchy’s and Young’s inequalities, we get

[Cwe(t, ), ut, )ey < lluelt, 2t e, < Juelt )3, + lult, )z,

Fix a = . By the choice (2.14) of r and ro, € (1,2). Put v = 2 so that v > 1. Take
2 = llult, g%, € = 2 and 5 = Ho. We get [[u(t, )|, < (1+7)(Ho+ u(t, )|$¥,). Using
the proof in [4], we have

lut. )15, < collult. )%, + IDult, )%}, -
lu(t, N3 .r, < ese{llult, I + [ Dut, )15, + HE)},

with ¢g > 0, s > 0. Combining these facts with (1.6), and inserting them into (2.16), we have
Z' > MNe(1 = r)H7"H' + N H'7 = ! {Jlua(t, )13 + [Jue(t, )13 r,
s + esr) (ult, M, + [ Dult, ZE + H )} + v es(ualt, ) + et )

+02(pq(')(u(ta )) + pp(,)(D’U,(t, ))) - <Q(ta 5 U, ut)v ’U,>p1 + 'YerH(t)}'
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If t € R and py()(u(t,)) = 1, then pyoy(u(t,-)) > ||u(t,-)||g(’,)7 by (1.1). On the other
hand, pgy(u(t,-)) < 1, then wy < cl||u(t,-)||g(’,) by (F3)(i), by w2 and (0.2). Hence
[ut, gy = (w2/c1)%= > 0, so that pyey(ult,-)) > C—1||u(t,-)||g(’,). Hence for all t € Ry,
we get pg(y(u(t, ) = min{l, 2 }Hlu(t, )Hq() = co|u(t, )Hq() with ¢g = min{1, £

Likewise, if t € R{ and pp(.)(Du(t,-)) > 1, then p,y(Du(t,)) = 1, by (1.1). Otherwise
pp(y(Du(t,-)) <1 & [[Du(t,-)|[p) < 1, which gives to

G
IDuEEE, > oy (Dutt, ) > & > 0
a
by ppy(Dult,)) > i—; in Lemma 2.4. We get [[Du(t,-)|,.) = (Q)P% > 0, so that

Cq
Pp(y(Du(t, ")) = Z—;’HDu(t, )||g(’) Hence for all t € R{, we get

ooy (Du(t, ) > min{ L, 2 HDult, V55, > CollDutt 7,

for some Cy > 0, since [|u(t,-)||p(.) is finite. Putting co = min{co, Co}. By (2.4) and (2.14) and
the fact that Ak’ H'~" > 0, it follows that a.e. in J

/

sl

> k{1 —7r)—cll™m HT "VH"H' + 1/){7p+ — (5 +c5)

{ea = | [Hhuste 03 + e M3,
{

!
bt VI, + 1Du(e, V).
Now, since ¢'(t) = o(¢)(t)) as t — oo, there exists 71 € J such that

(0
. { TP+ C2C0 }
C3,

)
cs+¢C5 ¢c5+cCs

+1p
+1p

caco — cal Hy ™ — (c5 + c5/)

for all t € J; = [T1,00). Moreover, we take [ > 0 so small such that 4cyl < CQCQHg and A > 0

so large that A > max{f:,Hi, 1} and Z(T1) > 0. Therefore, for a.e. t € Jy,
I'm (1—r)

Z'(t) = ep(OLH ) + lue(t, )3 + e, Nz r, + lult, lgey + [1Dult, I} (2.18)

where 2¢ = min{vyp,, c3, &2 }. Since k(T1), H(T1) > 0, in particular Z(t) > Z(T1) > 0 for all
teJr.
On the other hand, from the definition of Z, we obtain

Z(t) < AR(EVH (1)« + (&) {[(ue(t, ) ult, )] + (et ), ult, ))r, [}

(2.19)

S MO H ()= + (O {ua(t,allult, Vo + et )2, fult, )z, }-
Using once more the relation 2* < z +1 < (1 + %)(z +n), with 2 = [Ju(t,-)||3", £ = —/ and
n = Hy. Sinceuz%,azl—ir, :%:é—%:%—r>q%,then§<l. Itfollows

by (2.9) that

Ju(t, 5 < (1+ 5 ) (Ho+ e, )lI3) < es(HE + ult, i) (2.20)
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where c; defined as before. Hence using (2.17) and (2.20), from (2.19), we get
2 < 427 [max{ Ak(8), Y ()} LH (8) + [fua (8, I8Y + [lult, )15+ lut,)Ish, + lult )l )
< Blmax{Mk(t), (O () + st )3 + et 3, + e L, + 1Dutt, V2L ),

where B = 4°7!(c5 + max{1,cs}) for a.e. t € Ji.
Combing this with (2.16) and A > 1, we obtain a.e. in J,

- cp(t)
222 B aTmax (ko)

Finally, since « = 1+ 6, as r = we see that Z cannot be global by (2.4). We finish the

0
i+6°
proof.

3 Applications

In this section we provide some concrete examples of functions f and @, and give useful

applications to the main Theorem 2.1. Assume that
flt,z,u) = g(t,z) |u|‘7(m)_2 u+c(x) |u|q(w)_2 u, (3.1)

where 0,q € C(Q), ¢ € L>(Q) is a non-negative function, g € C(Rg x Q) is differentiable
with respect to t and g € C(R{ x Q). Moreover, assume

o4 < g-,max{2,7p4} <q- < g <p*in Q,c= [, > 0;

0< —g(t,r),9:(t,r) < h(z) in R x Q, forsome h € L'(); (3.2)

q(2)/lq(x) —o(2)], if oy <q-,

g(t,-) € L"O(Q) in R{ x Q, where n(-) = { )
00, if op =q_.

The next lemma says that the function f given in (3.1)—(3.2) satisfies the principal
structural assumptions (F1)—(F3).

4,Lemma 4.1]

Lemma 3.1! Assume that the external force f is of the type given in (3.1)

and (3.2). Then (F1)—(F2) and (F3)(i) hold. Furthermore, if in addition

oy <q- and ¢=ess infc(x) >0, (3.3)
Q

then (F3)(ii) is verified, and in particular

<f(t7 K (b(t? ))7 (b(t? )> > Q—]:¢(t)7 (34)

forall € K and t € Ry
In the same manner as for f, we provide a concrete function ) which represents the typical
nonlinear boundary damping for (0.1). This is done with the following:

4,Lemma4.2]

Lemma 3.2! Assume that the continuous damping function @ given in the

Introduction verifies also the following pointwise condition:
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(Q) There exist constants tg > 0,m,( satisfy 1 <m < { — ko, 0 < ko < p4(1 — %) and

2 < ¢ < (o, (o is defined in Lemma 2.5, and non-negative function d € C(Rg — L&/C—Ro=m(T))
such that

Q(t,z,u,v)| < (d(t, @) [ul™)/™(Q(t, 2, u,v), )™, (3.5)

where (t,z,u,v) € [tg,00) x T'1 x RY x RY. Then (2.3) is satisfied along any solution u of the
problem (0.1), with T" > tq, 6(t) = ||d(t, )ll¢ /¢ —ko—m,r, » Provided that (F2) holds.

Lemma 3.3/4Temmat3] - Agqume (3.1)-(3.2). If u € K is a solution of (0.1) in R x (),
then for all t € R,

Eu(t) > o min {v(t)P~,v(t)P+}7 — o~ max {v(t)P~,v(t)P+},

where o(t) = Jlu(t, ).
A= max{)\gz), /\Zq)(f), (sy/epl MYy, (3.6)
and Ay is the constant introduced in (1.3).

From Lemma 3.3 we obtain
Eu(t) > ¢(v(t)) forall t € R{, (3.7)

where ¢ : R — R is defined by ¢(v) = ¢1(v) if v € [0,1], while p(v) = @a(v) if v > 1, with

J— S C — — S — C
P1(v) = wp V"t — v e2(v) = et - v

It is easy to see that ¢ attains its maximum at

— M=) Ghere ay = P+ 3.8

v = a , where ay By (3.8)

The choice of A in (3.6) guarantees that v; € (0,1]. Clearly @2 takes its maximum at vy =
a;/('”_w’), where ay = p_q_a1/pyq, < ap < 1. Hence ¢ is strictly decreasing for v > vy,

with ¢(v) — —o0 as v — oo. Finally,

P+
sv]

(Apy )Y

> 0. (3.9)

o(n) = (1 — &)wo = Fy >0, where wy =
q

Put £ = {(v,E) € R?:v > v, E < Ep}.

Theorem 3.4 Assume(3.1), (3.2) and (Q). If u is a solution of (0.1) in R{ x €, then
wy = inf, g+ Fu(t) > —oo. If, moreover, Eu(0) < Ej, with Fy given in Theorem 2.1, then
wo > 0 and (v(t), Eu(t))eX for all t € R{, where

E:{(U,E)€R221)>1)1,E<E1}, (3.10)

and vy is defined in (3.8). Consequently, if in addition (3.3) holds, then there are no solutions
u € K of the problem (0.1) in Rd x Q, with Eu(0) < Ey, for which there exist positive functions
¥, k verifying (2.4), (2.5) as in Theorem 2.1.

Proof Clearly Lemmas 3.1 and 3.2 are available, so that assumptions (F1), (Fz2), (F3)(i)
and (Q) of Theorem 2.1 are satisfied along any solution u of (0.1). The fact that ws is finite and
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positive are an immediate consequence of Theorem 2.1. By (F2), (Q) and (B)(ii) clearly Fu(t) <
Eu(0) < E; for all t € Ry . Suppose now that there exists t; € Ry such that v(¢;) < v;. Then,
by (1.2) we have wo < Fu(t1) < cv(t1)? /g—. On the other hand, Au(t1) > sv(t1)"?+/(Ap4)”.
Now, by (2.1), (F2), (Q) and (B)—(ii), it follows that

(1 - VQﬁ)Au(tl) > (1 - Z’i)wl = By > Bu(0) > Au(ty) — Fult) > Au(ty) — qiv(tl)qa

That is v(t1) > [syp+/c(Apy)?]Y/(@==7P+) = u; by (3.8). This is an obvious contradiction.
Therefore v(t1) > vy and (v(t), Eu(t)) € ¥ for all t € Ry, as required.

The last part of the theorem is again a direct consequence of Theorem 2.1.

Theorem 3.5 Assume (3.1), (3.2) and (Q). Let u € K be a solution of (0.1) in R x £,
such that Eu(0) < Ep, with Ey given in (3.9). Then v; ¢ v(R{) and w; = inf, g+ Au(t) # wo,
where v; and wg are defined in (3.8) and (3.9), respectively. Moreover, wy; > wy if and only if
v(Ry) C (v1,00).

Proof Let u € K be a solution of (0.1) in Rj x , with Fu(0) < Ep. Proceed by
contradiction and suppose that v; € v(Rg ). It follows that there exists a sequence (¢;); in Ry
such that v(t;) — v1 as j — oco. By (3.7) we have Ey > Eu(0) > Eu(t;) > ¢(v(t;)), which
provides Ey > Ep by the continuity of ¢ o v, then we prove that v; ¢ v(Ry).

We show that w; # wy. Otherwise, Au(t) > wp for all t € Ry§. Therefore, by (2.1) and
(3.9), we have

(1 - %)Au(t) > (1 - ”’i)wl = By > Eu(0) > Au(t) — Fu(t) > Au(t) — qi_v(t)qa

Hence, if + € R{ and v(t) < 1, then So(t)i- > 222 Au(t) > 2220 that is v(t) > v,

On the other hand, if v(¢) > 1, then automatically v(t) > v1, being v < 1. Hence, v(t) > vy

for each t € Ry. Consequently, the first part of the theorem yields v(R{) C (v1,00). On
the other hand, there exists a sequence (¢;); such that Au(t;) — w1 = wp as j — o0, so
lim sup;_,, v(t;) < limjﬁoo[w]ﬁ = v1 by (3.9), which contradicts the fact that
v(R{) C (v1,00). Hence wy # wo.

If wy > wo, then Eu(0) < E; and v(t) > vy for all t € R{ by Theorem 3.4, so v(R{) C
(v1,00), since v; ¢ v(RY).

On the other hand, if v(Rg) C (v, 00), then v(t) > vy and Au(t) > S(”/&):;: = wp for all
te Rar . Hence w1 > wy, since the case w; = wp cannot occur by the argument above.

In the next corollary we present an application of both Theorems 2.1 and 3.4. In par-
ticular, we provide sufficient conditions under which assumptions (2.4), (2.5) of Theorem 2.1
are satisfied. Let @ = Q(¢,x,u,v) be a continuous damping function as in the Section 0 and
assume also that there exists t* > 1 such that for all (¢, z,u,v) € [t*,00) x T'1 x RY x RV,

Q(t, z,u,v) = d(t,z) |ul* |v]™ v, (3.11)
where m,(, ko,d satisfy condition (Q), with d(t,x) > 0 in R x I'y. Put §(t) =
1d(t, ¢ jc—ko—my,r, forallte R{. Hence

1Q(t, &, u,0)| < [d(t, @) [ul* ]/ ™ [(Qt, 2, u,v), 0)] Y™
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for all (t,x,u,v) € [t*,00) x 1 x RY x R¥, so that (Q) holds with to = t*.

Corollary 3.6 Assume (3.1)—(3.3), (3.11) and that §(¢) < 6;(1+¢) for each ¢ € [t*, o0),
for some appropriate numbers §; > 1 and I < m — 1. Then there are no solutions v € K of
(0.1) in R{ x Q, with Eu(0) < Ej.

This corollary is similar with Corollary 4.1 in [6], so we omit the proof here. From now on
in this section we assume the assumptions (3.1), (3.2), (3.3), and (3.11), with §(¢) < d1(1 + ¢)!
for each t € [t*,00) and some 61 > 1 with I <m — 1.

Corollary 3.7 Problem (0.1) does not possess solutions v € K in R x €, with

where Fy is defined in (3.9).

Proof Assume as a contradiction that u € K is a solution of (0.1) in Ry x €, verifying
(3.12). By Theorem 3.5 then wy > wy. Hence Fu(0) < Ey < E7, and the contradiction follows
at once by an application of Corollary 3.6.

Proposition 3.8 If u € K is a solution of (0.1) in Ry x Q, with Fu(0) < Ey, where Ej
is defined in (3.9), then

w1 < wp. (3.13)

Proof Otherwise wy > wo, so Eu(0) < E7, and u could not be global by Corollary 3.6.

In the rest of this section we assume also:

(D) There exists ¢, > 0 such that either

(1) g:(t,x) = go(t) > 0 for each (t,z) € [0,ts] x £, or

(ii) ¢ € K and (Q(t, -, &, ¢t), d¢)p, = 0 in [0,¢.] implies either ¢(t,-) = 0 or ¢(t,) = 0 for
all t € [0,¢,].

Theorem 3.9 Problem (0.1) does not possess solutions u € K in Ry x (2, with

[w(0, )[4y > v1,  Eu(0) = Eo. (3.14)

Proof Assume by contradiction that u € K is a global solution of (0.1) in R§ x €,
verifying (3.14). By Proposition 3.8 we have w; < wg. We first claim that w; < wp cannot
occur. As a matter of fact, if w1 < wg there would exist ¢y such that Au(tg) < wo, and this is
possible only if v(tg) < v1; indeed if v(tg) > v1 we would immediately have Au(tg) > wo. Hence
to > 0 by (3.14) and by the continuity of v there exists s € (0,%p) such that v(s) = v;. Thus

Ey = Eu(0) = Eu(s) > wo — iv‘f’ = Fy
q—
by (3.7). In other words, Fu(s) = Ey and fg Du(r)dr = 0 by (B)(ii). Consequently Du =0 in
[0, s] and so, by (F2) and (3.11), we obtain (Q(t, -, u(t, ), us(t,-)), ue(t, -))p, = 0 and Fu(t) =0
for all ¢ € [0, s].
Now, if (D)(i) holds, then

u(t,z)|”@
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for each t € [0, s0], where so = min {t,s}. Therefore p,(.y(u(t,-)) = 0 and in turn 4 = 0 in
[0, s0]x € by (1.1) and (1.2). But this occurrence is impossible, since [|[u(0,-)|,.) = v(0) > v1 >0
by (3.14), so we reach a contradiction.

However, if (D)(ii) holds, since (Q(%, -, u(t, "), us(t, ), ut(t,-))p, = 0 for all ¢ € [0, so], we
get that either u(t,-) = 0 or w(t,-) = 0 for all ¢ € [0, so], where as above sg = min {¢,, s}.
Again, as already shown, the first case u(f,-) = 0 cannot occur since v(0) > v;. In the
latter, u is clearly constant with respect to ¢ in [0, so], and so w(t,z) = u(0,x) for each ¢ €
[0, so. Taking (b(t x) = u(0, x) in the Distribution Identity (A), then for each ¢ € [0, s¢] we
have ¢ (Au(0, fo 7, u(0,-)), (0, -))dr, since (Q(t,-,u(0,-),0),u(0,-))p, =0, as
Du =0 in [0,30]. Therefore <Au( 9, u(0,)) = (f(t,-,u(0,-)),u(0,-)) for each t € [0, so], and
o (40,40 = 710,00, u0,). Now 394 A0) 3 g Fu0) by (1) s (7).
On the other hand, Ey = Fu(0) = Au(0) — Fu(0), since u,(¢,0) = 0. By (3.9) we have
Au(0) > wo > 0, and so

B (1 — ”Yq’i)Au(O) (1 _ ”’i)wo — B,

by (3.9). This contradiction shows the claim.

Hence wy = wp. In particular Au(t) > wy for all t € R} and we assert that equality cannot
occur at a finite time. Indeed, if there is a 7 such that Au(7) = wg, then v(7) < v;. On the
other hand, as shown in the proof of Theorem 3.5, we get v(7) > v1. This contradiction shows
that it remains to consider only the case wq = wo, Au(t) > wp and v(t) > vy for all t € RJ. A
continuity argument shows at once that litnl ioglf Au(t) = wo, 1igg iolgf v(t) = v1.

Indeed, since infteR[T Au(t) = w1 = wp there exists a (tx)r € Rar such that
klingo Au(ty) = wo and (tx)r cannot be bounded because Au reaches its infimum at infinity.
Hence litnliogf Au(t) < wo and this forces tillgoAu(t) = wp, as Wy = infteR()* Au(t). Put now
v = litniioa}fv(t). Since Au(t) > mv(t)'yp+ for all t € Ry, then wy > m(vﬁ)'m*, which
gives v] < v by (3.9). On the other hand v} > v, as v(t) > vy for all t € RJ and in turn
v} = vy, as required.

Now, by (2.1) and (B)(ii) we have wg — Fu(t) < Eu(t) < Ey, so 11?1 sup Fu(t) = Ey. Hence

—o0

fgo Du(7)dT = 0 by monotonicity. In particular Du = 0 in R, which is again impossible by
(D), using the argument already produced. This completes the proof.
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