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Abstract: Singularly perturbed systems for which the reduced system has a manifold of

solutions are called singular singularly perturbed. Boundary value problems for such systems

were examined by geometric singular perturbation approach in this paper. Assumptions

were derived which ensure the existence of a locally unique solution which is near a singular

orbit of the dynamics of limiting fast and slow systems.
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0 Introduction

We consider singularly perturbed equations of the form

ǫ
dy

dt
= f(x, y, ǫ),

dx

dt
= g(x, y, ǫ), (1)

with fast variable y ∈ Rs+u+c, slow variable x ∈ Rm, sufficiently smooth functions f, g, and

small parameter 0 < ǫ ≪ 1. (s, c, u,m are nonnegative integers, and s + c + u = n.) These

equations can also be written in terms of time scale τ := t/ǫ as

dy

dτ
= f(x, y, ǫ),

dx

dτ
= ǫg(x, y, ǫ), (2)
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when ǫ 6= 0, the two systems are equivalent. Such equations possess singular orbits, which are

unions of the two limiting systems obtained from (1) and (2) by setting ǫ = 0.

The limiting fast system

dy

dτ
= f(x, y, 0),

dx

dτ
= 0,

has a manifold of equilibriums given by

S0 = {(x, y) | f(x, y, 0) = 0},

which is called the critical manifold. We say that a compact and simply connected region of

the critical manifold is normally hyperbolic if the number of eigenvalues normal to the critical

manifold equals to the codimension of the critical manifold. For each point on a normally

hyperbolic critical manifold there exist stable and unstable manifold with the dimension s of

eigenvalues with negative real parts, and u of eigenvalues with positive real parts, respectively[1].

The limiting slow system describes motions along the critical manifold S0 in the original time

scale t, and is given by

0 = f(x, y, 0),
dx

dt
= g(x, y, 0).

From the classic singular perturbation theory[2-4], one tries to find the asymptotic expan-

sions of each part of the solution, match them to form a global solution, and use some fix

point theorem in some Banach space or construct upper and lower solutions, etc., to get a

true solution near the asymptotic expansions for sufficiently small ǫ > 0. From the geometric

singular perturbation theory or dynamical system point of view, one tries to find the singular

orbit formed by solutions of limiting fast and slow systems and examine the possibility of lifting

the singular orbit to a true solution for sufficiently small ǫ > 0. With the development of the

theory of homoclinic and heteroclinic bifurcation[5] and invariant manifold theory[1], Shadowing

Lemma developed by Lin[6,7], and Exchange Lemma developed by Jones, Kopell[8-10], proved

to be successfully applied to the existence of the solution and the qualitative structure of this

problem.

In general, one requires the matrix fy(x, y, 0) is hyperbolic along the critical manifold S0,

i.e., eigenvalues of fy(x, y, 0) |(x,y)∈S0
are uniformly separated from the imaginary axis[3,4,6-10].

This assumption ensures the critical manifold can be given as a graph of y = u(x), x ∈ D ⊂ Rm,

i.e., the reduced equation has an isolated root y = u(x). In a variety of applied problems

leading to singularly perturbed equations, this assumption is violated. For example, one may

have det fy(x, y, 0) |S0
= 0, and the reduced equation f(x, y, 0) = 0, for each fixed x, does not

have an isolated root, but instead has a manifold of solutions. Such a case is called singular

singularly perturbed (the critical cases[3]).

Singular singularly perturbed problems can be found in chemical kinetics[3], semiconductor

devices[11], Poisson-Nernst-Planck system[12], etc., and gained many mathematicians’ attention.

In the work by Vasil’eva and Butuzov[3], initial value problem and a special structure boundary
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value problem of singular singularly perturbed systems were considered by the boundary func-

tion method. A general singular singularly perturbed boundary value problem was examined

by Schmeiser[11] using the same method as Vasil’eva’s. Within the framework of geometric

singular perturbation theory, Liu[12] studied steady-state Poisson-Nernst-Planck systems.

In this paper, we will use the geometric singular perturbation theory to study a general

singular singularly perturbed system. It turns out that under some quite general conditions,

the singular orbit shadows a real solution for the boundary value problem. The results are

equivalent to those of [11], but are accomplished with very different set of techniques that are

more geometrical. Different from the method used by Liu (using the change of variables)[12], to

construct the reduced system (slow flow) on the critical manifold for a general system directly,

we use a well-defined projection πS0 associated with the tangent space of the critical manifold.

1 A dynamical system framework and the main result

Our method used in this paper is the geometric singular perturbation theory. The main

idea of this approach for singularly perturbed boundary value problems are

(1) change the standard singularly perturbed boundary value problem to a “connection

problem”, which is convenient to use the dynamical approach, based on different time scale of

the system, to derive various limiting systems for ǫ = 0 and study their dynamics;

(2) use the limiting systems to construct singular orbits (zeroth order approximation)

which include regular layers, boundary layers, and, sometimes, internal layers;

(3) use exchange lemma to show that there are true solutions near singular orbits for ǫ > 0.

Since limiting systems have lower order than the full system, it is easier to study which

makes it useful. The understanding of the limiting fast system gives the dynamics of boundary

layers or internal layers. When the matrix fy(x, y, 0) is hyperbolic along the critical manifold S0,

the dynamics of the limiting slow system is easily found. The case, when the matrix fy(x, y, 0)|S0

is nonhyperbolic, is quite different, however, as some information of the fast variables is lost.

Hypothesis 1 The critical manifold S0 appears as the graph of y1 = ϕ(x, y2), where

y =
( y1

y2

)

, x ∈ D1 ⊂ Rm, y1 ∈ Rs+u, y2 ∈ D2 ⊂ Rc, ϕ ∈ Cr(Rm+c,Rs+u), r > 1, Di is

compact and simply connected, i = 1, 2.

Hypothesis 2 The matrix fy(x, y, 0)|S0
= fy(x, ϕ(x, y2), y2, 0) has an c-dimensional ker-

nel, u eigenvalues with positive real parts and s eigenvalues with negative real parts.

Remark 1 This assumption rules out the existence of turning points, pure imaginary

eigenvalues and multiple roots.

1.1 Fast dynamics and boundary layers

We consider singularly perturbed equation (3) with boundary conditions

B0(y(0), x(0), ǫ) = 0, B1(y(1), x(1), ǫ) = 0, (3)

where Bi has values in Rdi , d0 + d1 = m+ n, and assume that the function Bi are of maximal

rank, i = 0, 1. It is convenient to change this into a form that the boundary conditions can
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be described as manifold, and without worrying the time it takes the orbit to move from one

boundary to the other. System (1), (3) become

ǫ
dy

dt
= f(x, y, ǫ),

dx

dt
= g(x, y, ǫ),

dξ

dt
= 1,

Bǫ
L = {B0(y(0), x(0), ǫ) = 0, ξ = 0}, (4)

Bǫ
R = {B1(y(1), x(1), ǫ) = 0, ξ = 1}.

Thus the boundary value problem changes into a “connection problem” that requires a trajec-

tory starts at Bǫ
L and hits Bǫ

R at some finite time t. It follows from d0 + d1 = m + n that

dimBǫ
L + dimBǫ

R = m+ n.

We start with the study of boundary layers governed by the limiting fast system of (4)

dy

dτ
= f(x, y, 0),

dx

dτ
= 0,

dξ

dτ
= 0,

B0
L = {B0(y(0), x(0), 0) = 0, ξ = 0}, (5)

B0
R = {B1(y(1), x(1), 0) = 0, ξ = 1}.

From Hypothesis 1, the critical manifold S0 = {y1 = ϕ(x, y2)} consisting equilibrium of system

(5) is a m + c+ 1-dimensional manifold of the phase space Rm+n+1. From Hypothesis 2, the

linearization of system (5) on the critical manifold has m + c + 1 zero eigenvalues equal to

the dimension of S0, and s + u eigenvalues in directions normal to S0. Thus, S0 is normally

hyperbolic, every equilibrium p ∈ S0 has a s-dimensional stable manifold W s(p), and a u-

dimensional unstable manifold Wu(p).

Hypothesis 3 The stable manifold W s(S0) intersects B0
L transversely, and the un-

stable manifold Wu(S0) intersects B0
R transversely, where W s(S0) =

⋃

p∈S0

W s(p), Wu(S0) =
⋃

p∈S0

Wu(p).

Let NL = B0
L ∩W s(S0), NR = B0

R ∩Wu(S0). The intersection has dimension

dimNL = dimB0
L + dimW s(S0) −m− n− 1 = dimB0

L − u,

dimNR = dimB0
R + dimWu(S0) −m− n− 1 = dimB0

R − s.

1.2 Slow dynamics and regular layers

We now study the slow flow on the critical manifold S0 = {y1 = ϕ(x, y2)} for regular

layers. Set ǫ = 0 in system (6), we get

y1 = ϕ(x, y2),
dx

dt
= g(x, y1, y2, 0),

dξ

dt
= 1,

the information on y2 is lost. Because of Hypothesis 1, 2, for each p ∈ S0 the kernel of fy |p,ǫ=0

has a unique invariant complement, so there is a well-defined projection on the kernel. Follow

Fenichel’s notes[1], we denote this projection by πs0 , and it is associated with the tangent space

of S0. Fenichel defines the reduced vector field XR on S0 by

XR(p) = πS0
∂

∂ǫ
Xǫ(p) |ǫ=0,
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where p ∈ S0, X
ǫ denotes the fast vector field. The following lemma, proved by Fenichel [1],

gives the reduced system in local coordinates in which S0 appears as the graph of a function

y = u(x).

Lemma 1 (Fenichel) Consider a system

x′ = f(x, y, ǫ), y′ = g(x, y, ǫ),

defined for (x, y) in an open set M in Ru × Rv, for ǫ near zero. Let y = u(x) be a function

defined for x near x0, such that

f(x, u(x), 0) = 0, g(x, u(x), 0) = 0.

Suppose (x0, u(x0)) ∈ SR, so that the matrix

(

α β

γ δ

)

=

(

D1f(x0, u(x0), 0) D2f(x0, u(x0), 0)

D1g(x0, u(x0), 0) D2g(x0, u(x0), 0)

)

has rank v. Let κ = Du(x0). Then the projection has the form

πS0 =

(

I + β(δ − κβ)−1κ −β(δ − κβ)−1

κ+ κβ(δ − κβ)−1κ −κβ(δ − κβ)−1

)

.

Using the formulas of Lemma 1, we can compute the projection and the slow flow for y2.

Corollary 1 The slow flow on the critical manifold S0 = {y1 = ϕ(x, y2)} for regular

layers has the form

dx

dt
= g(x, y, 0),

dξ

dt
= 1,

dy1
dt

= ϕxg + ϕy2

dy2
dt

,

dy2
dt

= f2y1
κϕxg + (f2y1

κϕy2
+ I)f2ǫ − f2y1

κf1ǫ,

(6)

where y =

(

y1

y2

)

, f =

(

f1

f2

)

, κ = (f1y1
− ϕy2

f2y1
)−1.

Proof This can be calculated directly.

To identify the slow motion of the singular orbit on S0, we need to examine the ω− limit

(respect, the α − limit) set of NL (respect, NR). Due to the uniqueness of the flow, the map

NL → ω(NL) (NR → α(NR)), which takes each point of NL (NR) to its limit point on S0, is

one-to-one, and ω(NL), α(NR) are submanifolds of S0 with the same dimension as NL, NR,

respectively. The slow orbit should be one given by (6) that connects ω(NL) and α(NR). Let

ω(NL) · t be the forward flow of ω(NL) under the slow flow (6).

Hypothesis 4 ω(NL) · t intersects α(NR) transversally on S0.

The intersection has dimension

dimω(NL) · t ∩ α(NR) = dimB0
L − u+ 1 + dimB0

R − s− (m+ c+ 1) = 0.

Thus, there exists a locally unique slow orbit on S0, and two unique fast orbits on NL · t and

NR · t, respectively.
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1.3 Main result

Based on the study of the limiting fast and slow system, we have construct a singular orbit

of the boundary value problem. To show that there indeed exists a solution near the singular

orbit for ǫ > 0, we apply the exchange lemma to show Bǫ
L · t and Bǫ

R · t intersect transversally

near the singular orbit.

Theorem 1 Assume Hypothesis 1-4. For ǫ > 0 sufficiently small, the connection problem

(4) has a unique solution near a singular orbit. The singular orbit is the union of two fast orbit

of (5) and one slow orbit of (6); more precisely

(1) the fast orbit representing the boundary layer at t = 0 lies on B0
L · t∩W s(S0) from B0

L

to ω(NL) ⊂ S0;

(2) the fast orbit representing the boundary layer at t = 1 lies on B0
R · t ∩Wu(S0) from

B0
R to α(NR) ⊂ S0;

(3) the slow orbit on S0 connecting the two boundary layers from t = 0 to t = 1 governed

by (6) from ω(NL) to α(NR).

Proof All conditions for the exchange lemma[8] are satisfied, and hence, Bǫ
L · t and Bǫ

R · t
intersect transversally. The intersection has dimension

dimBǫ
L + 1 + dimBǫ

R + 1 − (m+ n+ 1) = 1,

which is the orbit of the unique solution for the connection problem near the singular orbit.

2 Example

We consider the fundamental semiconductor device equations for the case of symmetric

p− n junction with piecewise constant doping. The singular perturbation for this problem has

been examined by Vasil’eva[13], Schmeiser[11], etc. The governing equations are

ǫψ′ = E, ǫE′ = n− p− 1, ǫn′ = nE +
ǫJ

2
, ǫp′ = −pE − ǫJ

2
,

ψ(0) = 0, n(0) = p(0), p(1) =
1

2
(−1 +

√
1 + 4δ4) = p1, n(1) = p1 + 1.

(7)

The variables ψ,E, n, and p are scaled and proportional to the potential, the electric field, the

electron density and the hole density in the device. ǫ and δ result from the scaling. ǫ is equal

to the Debye length, and is small when the doping is large. Thus (7) is singularly perturbed

in this situation. To use geometric singular perturbation theory, we will recast the singularly

perturbed semiconductor systems into a connection problem:

ǫψ′ = E, ǫE′ = n− p− 1,

ǫn′ = nE +
ǫJ

2
, ǫp′ = −pE − ǫJ

2
, x′ = 1.

(8)

System (8) will be treated as a dynamical system with the phase space R5, and the

independent variable t will be viewed as time. The boundary condition becomes

BL = {ψ = 0, n = p, x = 0}, BR = {p = p1, n = p1 + 1, x = 1}.
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By setting ǫ = 0 in (8), we get the critical manifold

S0 = {E = 0, n = p+ 1}.

With the change of variable τ = t/ǫ, we derive the fast system

ψ̇ = E, Ė = n− p− 1,

ṅ = nE + ǫJ
2 , ṗ = −pE − ǫJ

2 , ẋ = ǫ.
(9)

Setting ǫ = 0 in (9), we get the limiting fast system

ψ̇ = E, Ė = n− p− 1,

ṅ = nE, ṗ = −pE, ẋ = 0.
(10)

The critical manifold S0 consisting entirely of equilibria of system (10) is a three-dimensional

manifold of the phase space R5. For each equilibrium, the linearization of (10) has three zero

eigenvalues corresponding to the dimension of S0, and two eigenvalue λ±= ±√
2p+ 1 not on

the imaginary axis, so S0 is a normally hyperbolic manifold. Thus every equilibrium has a

one-dimensional stable manifold and a one-dimensional unstable manifold.

System (10) possesses a complete set of integrals

H1 =
E2

2
− n− p+ lnn, H2 = ψ − lnn, H3 = np, H4 = x,

thus the stable and unstable manifold can be characterized in detail. The stable and unstable

manifold W s(S0) and Wu(S0):

E2

2
− n− p+ lnn = −2n∗ + 1 + lnn∗, ψ − lnn = ψ∗ − lnn∗,

np = n∗(n∗ − 1), x = x∗, (n∗ = p∗ + 1),

where (ψ∗, 0, p∗ + 1, p∗, x∗) ∈ S0.

The stable manifold W s(S0) intersects BL transversally at point

ψ = 0, E =

√

4
√

p∗(p∗ + 1) − 4p∗ − 2 + 2 ln

√

p∗ + 1

p∗
,

p =
√

p∗(p∗ + 1), n =
√

p∗(p∗ + 1), x = 0.

The unstable manifold Wu(S0) intersects BR transversally at point

E = 0, ψ = ψ∗, p = p1, n = p1 + 1, x = 1.

Let NL = BL ∩W s(S0), NR = BR ∩Wu(S0) then

ω(NL) =

(

ln

√

p∗ + 1

p∗
, 0, p∗ + 1, p∗, 0

)

,

α(NR) = (ψ∗, 0, p1 + 1, p1, 1).
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We now examine the slow flow in the vicinity of the critical manifold S0:

ż = πǫDǫh(z, 0),

where z = (ψ, p, x, E, n)T and

πǫ =

































1
1

2p+ 1
0 0 − 1

2p+ 1

0
p+ 1

2p+ 1
0 0

p

2p+ 1

0 0 1 0 0

0 0 0 0 0

0
p+ 1

2p+ 1
0 0

p

2p+ 1

































.

Thus we get the reduced system (slow flow)

ψ′ = − J

2p+ 1
, p′ = − J

4p+ 2
,

x′ = 1, E′ = 0, n′ = − J

4p+ 2
.

(11)

The slow orbit should be one given by (11) that connects ω(NL) and α(NR):

x = t, E = 0, n = p+ 1, p =
−1 +

√

2J − 2Jt+ 4p2
1 + 4p1 + 1

2
,

ψ =
√

2J + 1 − 2Jt+ 4p2
1 + 4p1 −

√

2J + 1 + 4p2
1 + 4p1 + ln

√

1 + 2J + 4p2
1 + 4p1 + 1

√

2J + 4p2
1 + 4p1

,

and

p∗ =
−1 +

√

1 + 2J + 4p2
1 + 4p1

2
,

ψ∗ = 2p1 + 1 −
√

2J + 1 + 4p2
1 + 4p1 + ln

√

1 + 2J + 4p2
1 + 4p1 + 1

√

2J + 4p2
1 + 4p1

.

Based on the study of the limiting behavior of fast and slow system, we construct a singular

orbit of the boundary value problem. All conditions for Theorem 1 are satisfied, and hence,

there is a orbit of the unique solution for the connection problem near the singular orbit.

Remark 2 The results are equivalent to those of [11], but are accomplished with very

different set of techniques that are more geometrical.
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