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Abstract In this paper, methods of mechanical deriving of formulas from a set of differential
polynomial equations and a set of differential polynomial inequations are presented. The meth-
ods have been used successfully to many problems in space curve theory and mechanics. In
particular, a mechanical derivation of Newton’s gravitational law from Kepler’s laws has been
given without knowing Newton’s laws in advance. We also give a partial method to derive
algebraic relations from a set of differential polynomial equations.

1. Introduction

In the third paper of this series, we will present methods for mechanical formula derivation
in differential geometry and mechanics using Ritt–Wu’s decomposition algorithm for differential
polynomials described in the first paper of this series [1]. For a closely related topic, mechanical
theorem proving in differential geometry, see [8, 2, 5].

In [3], we give a precise formulation and complete methods of mechanical formula derivation
in elementary geometry. In this paper, the formulation and the method based on Ritt–Wu’s
decomposition algorithm have been extended to the differential polynomial case with several
modifications. The extended method has been used to solve quite a few examples in differential
geometry and mechanics successfully. But for some problems the method fails to give the
desired results. For example, Newton’s gravitational law can not be derived from Kepler’s laws
by the method. Wu gave a derivation of the Newton’s law from Kepler’s laws in [7], but the
desired relations do not occur in the final ascending chain obtained by Ritt–Wu’s well ordering
algorithm, instead they occur in the middle steps of the process. In our point of view, this is
not an automated process. More human interactions must be involved: one has to check the
differential polynomials (ab. d-pols) produced in each step carefully, and the occurrence of the
desired formula cannot be guaranteed.

The problem is that some relatively simple relations (i.e., with lower orders) among certain
variables are what we actually seek. Therefore, we further reformulate the problem and present
a new method which can be used to find such simple relations mechanically. The method is

1The work reported here was supported in part by the NSF Grant CCR-917870.
2On leave from Institute of Systems Science, Academia Sinica, Beijing.
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used to plane mechanics and differential geometry and are quite successful for certain problems
in mechanics. In particular, we give an automated derivation of Newton’s square inverse
gravitational law from Kepler’s laws in the sense that the formula representing Newton’s law
occurs as the first element of the ascending chain of the non-degenerate component. The
derivation procedure is carried out without human assistant. About ten problems in mechanics
are solved in this way [4].

Unlike in the elementary geometry, in the case of d-pols, the relations we find are gener-
ally some differential equations. But generally, what we really want is the solutions of these
differential equations. So, to make the algorithm more complete, we need a method of solving
multivariate algebraic differential equations. In this paper, we give a partial method to decide
whether the general solution of a multivariate algebraic differential equation is a polynomial
equation with constant coefficients. We also present a partial method to decide whether some
variables in a geometric problem satisfy a polynomial equation with constant coefficients.

We assume the reader is familiar with Ritt–Wu’s zero decomposition theorem for d-pols a
detailed description of which can be found in [1].

The paper is organized as follows. In Section 2, we present an algorithm of mechanical
formula derivation. In Section 3, a method of finding algebraic relations from a geometric
problem is given. In Section 4, we shall show the defect of the derivation algorithm when we
try to derive Newton’s laws from Kepler’s laws and a solution to the problem in this concrete
case. In Section 5, we give a refined method based on the idea of Section 4.

2. Methods of Mechanical Formula Derivation (1)

2.1. Formulation of the Problem

Let K be a computable field with characteristic zero (in practice, K = Q(t)) and x1, ..., xn be
indeterminates. We use K{x1, ..., xn}, or K{x} to denote the d-pol ring of the indeterminates x
with coefficients in K. For convenience, we often rename the x as two groups of indeterminates
u1, ..., uq and y1, ..., yp where q + p = n.

Definition 2.1. Let D be an ideal in K{u1, ..., uq, y1, ..., yp}. Then {u1, ..., uq} is called a
parameter set of D if (1) the u are algebraically independent with respect to (ab. wrpt) D,
i.e., D∩K{u} = {0}; and (2) each yi is algebraic dependent on the u, i.e., D∩K{u, yi} 6= {0}.

We shall consider geometric problems, after adopting an appropriate coordinate system,
whose geometric configurations can be expressed by several d-pol equations

h1(u1, ..., uq, y1, ..., yp) = 0 ∧ · · · ∧ hs(u1, ..., uq, y1, ..., yp) = 0

together with some d-pol inequations

d1(u1, ..., uq, y1, ..., yp) 6= 0 ∧ · · · ∧ dl(u1, ..., uq, y1, ..., yp) 6= 0.

Let HS = {h1, ..., hs} and DS = {d1, ..., dl}, then such a geometric problem can be represented
by S = (HS,DS). For the above geometric problem, let

(2.2) HD = Ideal{h1, ..., hs, z1d1 − 1, ..., zldl − 1}
where z1, ..., zl are distinct new variables. We say the u are a parameter set of S if they are a
parameter set of the ideal HD. The y are called dependent variables. The geometric meaning
of the parameter set may be explained below. In S, the parameters ui can generally take any
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value and the dependent variables yj can be determined as some functions of the u by the
geometric hypotheses.

Before formulating our problem, we introduce a new order among d-pols. For d-pols f and
g, we define an order f ≺ g inductively as follows: (1) if f is in K and g is not, f < g; (2)
otherwise, f ≺ g if either f is of lower rank than that of g or f and g have the same rank and
int(f) ≺ int(g). It is easy to see that the order ≺ is well-ordered, i.e. there exists no strictly
decreasing d-pol sequence under the order ≺. The maximal monomial of a d-pol P under the
order ≺ is called the leading term of P .

Definition 2.3. Let S = (HS, DS) be a geometric problem with parameters u1, ..., uq, and
let HD be defined as (2.2). For a dependent variable yi0 , the relation set among the u and yi0

is a set of d-pol equations r1(u, yi0) = 0, ....,rk(u, yi0) = 0, all containing yi0 , such that: (1) all
ri(u, yi0) are monic and irreducible; (2) there is a non-zero d-pol U containing the u only (We
will call such a d-pol a u–pol) such that U · r1(u, yi0) · · · rk(u, yi0) is in radical(HD); (3) the
d-pol

∏k
i=1 ri is minimal under the order ≺ to satisfy (2).

Theorem 2.4. Let the notations and conditions be the same as Definition 2.3, then

(2.4.1) ∀u, y[(h1 = 0 ∧ ... ∧ hs = 0 ∧ d1 6= 0 ∧ ... ∧ dl 6= 0 ∧ U 6= 0) → (r1 = 0 ∨ · · · ∨ rk = 0)]

where U is the u–pol in (2) of Definition 2.3.

Proof. From (2) of Definition 2.3, we have

∀xuz[(h1 = 0 ∧ ... ∧ hs = 0 ∧ d1z1 − 1 = 0 ∧ · · · ∧ dlzl − 1 = 0 ∧ U 6= 0) → (r1 · · · rk = 0)].

Since ∃zi(dizi − 1 = 0) is equivalent to di 6= 0, (2.4.1) is equivalent to the above formula.

Theorem 2.5. Let the notations be the same as Definition 2.3. Then the relation set for a
geometric problem S = (HS, DS) exists and is unique.

Proof. Let M be the d-pols in HD which involve the u and yi0 . Since the u are a parameter
set of HD, M is not empty. For a d-pol P in M , let

P = U · rs1
1 (u, yi0) · · · rsk

k (u, yi0)

where U is a u–pol, deg(ri, yi0) ≥ 1 and si ≥ 1 for all i = 1, ..., k, and the ri are distinct monic
irreducible d-pols. We have k > 0. Let R(P ) = {r1(u, yi0), ..., rk(u, yi0)}, then R(P ) satisfies
conditions (1)–(2) in 2.3 and all d-pol sets satisfying (1) and (2) of Definition 2.3 must be
the form R(P ) for some d-pol P in M . Since ≺ is well ordering, there is a minimal d-pol in
{∏h∈R(P ) h : P ∈ M}. Let a minimal d-pol be

∏
h∈R(P ) h for some P in M , then R(P ) is a

relation set.

To prove the uniqueness, let R1 = {r1, ..., rt} and R2 = {f1, ..., fs} be two relation sets of
S. Since ≺ is a total order among the monomials,

∏
1≤i≤t ri and

∏
1≤i≤s fi must have the same

leading term. By (2) of Definition 2.3, there are u-pols U1 and U2 such that P1 = U1 ·
∏

1≤i≤t ri

and P2 = U2 ·
∏

1≤i≤s fi are in radical(HD). Let P = U2P1 − U1P2. If P 6= 0, the P must
involve the y and R(P ) also satisfies (1) and (2) of Definition 2.3. Since ri and fi have the
same leading terms,

∏
f∈R(P ) f must be less than

∏
g∈R1

g under the order ≺. This contradicts
to (3) of Definition 2.3. Thus we have P = 0, i.e. U1P2 = U2P1. Note that U1 and U2 are
u-pols, then

∏
1≤i≤t ri =

∏
1≤i≤s fi. By (1), we have R1 = R2.

2.2. A Method of Finding the Relation Set
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As an example, let us consider the relation set between the u and y1 for a geometric problem
(HS,DS). According to Ritt–Wu’s decomposition algorithm we have the following decompo-
sition in the variable ordering u < y1 < y2 < · · · < yp:

(2.6) E-Zero(HS/DS) = ∪a
i=1E-Zero(PD(ASC∗

i )/DS)
⋃
∪b

j=1E-Zero(PD(ASCj)/DS),

where all ascending chains ASC∗
i and ASCj are irreducible such that all ASC∗

i do not contain
any u-pol and each ASCj contains at least one u-pol.

Theorem 2.7. Let the notations be the same as in the previous paragraph and HD is defined
as (2.2). Then

(1) The u are algebraically independent wrpt HD iff a > 0.

(2) The variables yk are algebraically dependent on the u iff each yk appears as a leading
variable in each ASC∗

i .

(3) Assume that the u are a parameter set of HD. Let ri(u, y1) (i = 1, ..., a) be the first
d-pol in ASC∗

i . Then a minimal subset R of R′ = {r1(u, y1), ..., ra(u, y1)} which satisfies

(2.7.1) ∪I∈RE-Zero(PD(I)) = ∪J∈R′E-Zero(PD(J))

is the relation set of (HS, DS).

Proof. First we state the following repeatedly used fact: For a d-pol P in the u and y,

(2.7.1) E-Zero(HD) ⊂ E-Zero(P ) ⇐⇒ E-Zero(HS/DS) ⊂ E-Zero(P )

(1) Suppose a = 0, then according to decomposition (2.6), there is a u–pol U such that
E-Zero(HS/DS) ⊂ E-Zero(U). Thus E-Zero(HD) ⊂ E-Zero(U). Therefore, U is in Radical(HD);
hence for some k, Uk is in HD. The u are algebraically dependent. Now suppose that the u
are algebraically dependent, i.e., HD contains a u–pol U . Then E-Zero(HD) ⊂ E-Zero(U),
which is equivalent to E-Zero(HS/DS) ⊂ E-Zero(U). Since E-Zero(U) does not contain each
E-Zero(PD(ASC∗

i )/DS), a must be zero.

(2) Each yi appears as a leading variable in each ASC∗
j iff E-Zero(HS/DS) is of zero

dimension over K(u) which is equivalent to that for each yi there is a d-pol Pi of yi and the
u such that E-Zero(HS/DS) ⊂ E-Zero(Pi). By (2.7.1), this is equivalent to that each yi is
algebraically dependent on the u.

(3) From decomposition (2.6), there is a u–pol U such that E-Zero(HS/DS) ⊂ E-Zero(U ·
r1 · · · rk). Thus E-Zero(HD) ⊂ E-Zero(U · r1 · · · rk). By Hilbert Nullstellensatz in differential
case [6], U · r1 · · · rk is in Radical(HD), i.e., R satisfies (1) and (2) of Definition 2.3. The proof
of the minimal property of R is straight forward.

To the best of our knowledge, there is no method to delete the redundant components in
(2.7.1). Thus (3) of Theorem 2.7 is useless in practice. In practical case, we have.

Definition 2.8. For a statement (HS,DS), assume that the u are a parameter set of HD and
RS be the relation set among y1 and the u. A set of d-pols RS′ = {r1(u, y1), ..., rk(u, y1)} is
called a weak relation set of (HS, DS) if RS ⊂ RS′, and

∪I∈RSE-Zero(PD(I)) = ∪J∈RS′E-Zero(PD(J)).

Algorithm 2.9. For a geometric problem S = (HS,DS) where HS and DS are two finite
sets in K{u, y}, the algorithm decides whether the u are a parameter set of S, and if it is, finds
a weak relation set among y1 and u1, .., uq.
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Step 1. Use Ritt–Wu’s decomposition algorithm to obtain a decomposition as (2.6).

Step 2. If a = 0, then give the answer: “the parameters u are not algebraically independent.”

Step 3. Suppose a > 0. If each yj appears as a leading variable in all ASC∗
i , goto step 4.

Otherwise give the answer: “the u are not a parameter set of S.”

Step 4. By (3) of Theorem 2.7, the first d-pols of ASC∗
i , i = 1, · · · , a, consist of a weak relation

set for (HS,DS). The U in (2) of Definition 2.3 can be obtained as follows: U =
∏b

i=1 Pi where
Pi ∈ ASCi ∩K{u} (i = 1, ..., b).

Remark In the implementation, we do not need to compute the degenerate part

∪b
i=1E-Zero(PD(ASCi)/DS)

explicitly. During the decomposition process, whenever a u–pol appears in a d-pol set, we can
delete that d-pol set, and add that u–pol as a factor of the d-pol U in Definition 2.3. This
leads to a speedup of the process.

2.3. Two Examples

Example 2.10. Compute the curvature of a straight line.

Let the curve be C = (x, y, z), then the problem can be represented as (HS, DS) ([2]),
where DS = ∅, HS = {h1, ..., h5} and

h1 = z′2 + y′2 + x′2 − 1 C with its arc as parameter
h2 = z′′2 + y′′2 + x′′2 − k2 k = |C ′′|
h3 = y′z′′ − y′′z′

h4 = x′z′′ − x′′z′ (fix-line C)
h5 = x′y′′ − x′′y′.

There are no parameters for this problem. Using Ritt–Wu’s decomposition algorithm under
the variable order k < x < y < z, we have

E-Zero(HS) = ∪1≤i≤3E-Zero(PD(ASCi)) where

ASC1 = k x′ y′ + 1 z′

ASC2 = k x′′ y′′ z′2 + y′2 + x′2 − 1
ASC3 = k x′ + 1 y′ z′

The relation set is {k}, i.e., for a straight line k = 0.

Example 2.11. (Bertrand Curves) A pair of space curves having their principal normals in
common are said to be associate Bertrand curves. Find the relation between the curvature and
the torsion of a Bertrand curve.

Given two space curves C1 and C2 in a one to one correspondence, following [8], let us
attach moving triads (C1, e11, e12, e13) and (C2, e21, e22, e23) to C1 and C2 at the corresponding
points of C1 and C2 respectively. We denote the arcs, curvature and torsions of C1 and C2 by
s1, k11, t1 and s2, k2, t2 respectively. Then all the quantities introduced above can be looked as
functions of s1. Let r = ds2

ds1
. We have C2 = C1 + a2E12 and

e21 = u11e11 + u13e13

e22 = e12

e23 = −u13e11 + u11e13
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where h1 = u2
13 + u2

11 − 1 = 0. Using Frenet formulas for both curves, the problem can be
represented as (HS,DS).

HS = {h1, ..., h10} where
h2 = ru13 − t1a2

h3 = a′2
h4 = ru11 + k1a2 − 1
h5 = u′13

h6 = rk2 + t1u13 − k1u11

h7 = ru11t2 − ru13k2 − t1
h8 = ru13t2 + ru11k2 − k1

h9 = u′11

h10 = rt2 − k1u13 − t1u11

DS = {k1, t1, k2, a2}
By Algorithm 2.9, we get a relation set between k1 and t1: {k′1t′′1 − k′′1 t′1}.

3. Methods of Finding Algebraic Relations

As we mentioned in Section 1, Algorithm 2.9 usually gives a relation set consisting of d-
pol equations of y1, u1, ..., uq. We further want to know the general form of the solution of
these differential equations. For example, in Example 2.11, Algorithm 2.9 gives a relation
k′1t′′1 − t′1k′′1 = 0 between k1 and t1. Now we want to know if there exists any algebraic relation
between k1 and t1. In this section, we will answer this question.

Problem 3.1. If x1, ..., xn satisfy a d-pol equation: P (x1, ..., xn) = 0, decide whether the x
satisfy a relation R(a1, ..., am, x1, ..., xn) = 0 where R is a polynomial with coefficients in Q
and a1, ..., am are constants.

Lemma 3.2. Variables x1, ..., xn satisfy a polynomial equation of degree d with constants
coefficients iff

LDd = ld(1, x1, ..., xn, x2
2, ..., x

2
n, ..., xd

1, ..., x
d
n) = 0

Proof. This is a consequence of Lemma II.3.1 (i.e., Lemma 3.1. in Part II [2]).

Here we only have a partial solution to Problem 3.1: if such a relation exists, our method
can find it in a finite number of steps, but if such relation does not exit, our method will not
stop.

Algorithm 3.3. A partial solution to Problem 3.1.

Step 1. For i = 1 to infinite, decide whether prem(LDi, P ) = 0.

Step 2. Let i0 be the first number such that prem(LDi0 , P ) = 0, then by Lemma 3.2, the x
satisfy a polynomial equation of degree i0 with constant coefficients.

Step 3. By lemma II.3.1, we can go further to decide which monomials effectively occur in the
polynomial relation (for an example, see Example 3.7.).

Example 3.4. (Continuation of Example 2.11.) Algorithm 2.9 gives a relation h1 = k′1t′′1 −
t′1k′′1 = 0 between k1 and t1. Following Algorithm 3.3, LD1 = ld(1, k1, t1) = k′1t′′1 − t′1k′′1 = h1,
then k1 and t1 satisfy a linear relation ak1 + bt1 + c = 0 for arbitrary constants a, b and c.

We may combine the ideas used in Algorithm 2.9 and Algorithm 3.3 and ask whether cer-
tain variables in a geometric problem (HS,DS) satisfying polynomial equations with constant
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coefficients. Precisely, we propose

Problem 3.5. Let (HS, DS) be a geometric problem where HS = {h1, ..., hs}, DS =
{d1, ..., dl} and the hi and di are d-pols in K{x1, ..., xn}. We ask whether there is a poly-
nomial P ∈ Q[a1, ..., am, x1, ..., xn] such that

∀a, x[(h1 = 0 ∧ ... ∧ hs = 0 ∧ d1 6= 0 ∧ ... ∧ dl 6= 0 ∧ a′1 = 0 ∧ ... ∧ a′m = 0) ⇒ P = 0]

Algorithm 3.6. A partial solution for Problem 3.5.

Step 1. By Ritt-Wu’s decomposition algorithm (Here the variable order is not important), we
have

E-Zero(HS/DS) = ∪t
i=1E-Zero(PD(ASCi)/DS)

Step 2. For k = 1 to infinite, let k0 be the first number such that prem(LDk0 , ASCi) = 0 for
i = 1, ..., t. By Lemma 3.2, the x satisfy a polynomial equation of degree k0 with constant
coefficients.

Step 3. By lemma II.3.1, we can go further to decide which monomials effectively occur in the
polynomial equation.

Remark. If the relations of a geometric problem cannot expressed as polynomial equations,
then Algorithm 3.6 will not stop and we have to use Algorithm 2.9. But for some geometric
problems, e.g., Example 3.7., which have no relations according to Definition 2.3, we can find
polynomial relations using Algorithm 3.6.

Example 3.7. If a particle moves in a plane under a central force which is proportional to the
radius drawn from the particle to the force center, find the orbit of the particle.

Let the the coordinates of the particle be (x(t), y(t)) where t is the time. We assume the
force center is the origin point (0, 0). Let a be the magnitude of the acceleration of the particle
and r be the length of the radius vector drawn from the particle to the force center. The
problem can be represented as (HS,DS) where

HS = {h1, h2, h3, h4}
h1 = r2 − x2 − y2 = 0
h2 = a2 − x′′2 − y′′2 = 0
h3 = x′′y − y′′x = 0 the force is toward the origin,
h4 = ld(a, r) = a′r − r′a a is proportional to r.

DS = {d1}
d1 = ld(1, x, y) = x′y′′ − y′x′′ 6= 0 The orbit is not a straight line.

By Ritt-Wu’s decomposition algorithm, under the variable order x < y < r < a we have

E-Zero(HS/DS) = ∪1≤i≤2E-Zero(PD(ASCi)/DS)

where ASC1= {xx′′′ − x′x′′, xy′′ − x′′y, r2 − y2 − x2, a2 − y′′2 − x′′2} and ASC2 = {x′′, y′′, r2 −
y2 − x2, a}. The least k such that prem(LDk, ASC1) = prem(LDk, ASC2) = 0 is 2. Thus the
orbit is a conics. We can further check that prem(ld(1, x2, xy, y2), ASCi) = 0, i = 1, 2 and by
deleting any terms from {1, x2, xy, y2} the conics will not vanish on E-Zero(HS/DS). Thus
the orbit is a conics with (0, 0) as its center, i.e. ax2 + bxy + cy2 = 1 for arbitrary constants a,
b, and c.

4. Mechanical Derivation of Newton’s Law from Kepler’s Laws
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Suppose we have known Kepler’s laws which were obtained by experimental observation.
We want to know whether these laws imply certain relations between the acceleration a and
the radius r. Use the same coordinate system and differential equations for Kepler’s laws as in
[2]. The geometric problem can be expressed as (HS,DS) where

HS = {h1, h2, k1, k2}
h1 = r2 − x2 − y2 = 0
h2 = a2 − x′′2 − y′′2 = 0
k1 = ld(1, x, r) = x′′r′ − r′′x′ = 0 K1
k2 = x′′y − y′′x = 0 K2

DS = {d1, d2}
d1 = ld(1, x, y) 6= 0 The orbit is not a straight line.
d2 = a 6= 0 The force is not zero.

We want to find the relations between a and r. By Algorithm 2.9, using Ritt–Wu’s decompo-
sition algorithm under the following order r < a < x < y, we know that E-Zero(HS/DS) =
E-Zero(PD(ASC1)/DS) where ASC1 is

r2r′r′′′′ + (−r2r′′ + 6rr′2)r′′′ + 6r′3r′′

r′a− rr′′′ − 3r′r′′ (4.1)
(r′2a− rr′′2 − r′2r′′)x2 + r3r′′2

y2 + x2 − r2

From (4.1), we know that there is no relation between a and r according to Definition 2.3,
because neither r nor a is a parameter of the statement.

The relation we want to find is ld(1, ar2) = r(a′r + 2r′a) = 0 in which the highest order for
a and r is one. But in (4.1), the highest order for r is four. We want to find a relation between
r and a with lower orders. This suggests that if only a, a′, r and r′ are allowed during the
decomposition, we may hopefully get the relation we want.

Note that r′′ occurs in k1. We eliminate it by taking the pseudo remainder of k1 wrpt h1.
The remainder is

k11 = (x′y3 + x2x′y)y′′ + x2x′y′2 + (−x′′y3 + (−x2x′′ − 2xx′2)y)y′ + x′3y2

which involves x and y alone.

Now the problem can be understood as follows: k11 = 0 and k2 = 0 determine the motion
completely by giving the differential equations for x and y, and we want to find the relations
between two functions of x and y: r2 = x2 + y2 and a2 = x′′2 + y′′2 under the condition of
k11 = 0 and k2 = 0. To do this, our first step is to determine the relation among x and y
defined by k11 = 0 and k2 = 0. By Ritt–Wu’s decomposition algorithm, E-Zero({k11, k2}/DS)
= E-Zero(PD(ASC2)/DS) where ASC2 is

3x2x′x′′x′′′′ − 4x2x′x′′′2 + (−3x2x′′2 + 2xx′2x′′)x′′′ + 2x′3x′′2 (4.2)
3x′′2y2 + x2x′x′′′ + 2xx′2x′′

Since we want to find relations among a, a′, r and r′, we have to represent r′ and a′ as functions
of x and y. This can be done by taking the pseudo remainders of h′1 and h′2 wrpt ASC2. Taking
the pseudo remainders of h1, h′1, h2, and h′2 wrpt ASC2, and deleting some factors which are
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contradict to DS, we have

x2x′x′′′ + (−3x2 + 3r2)x′′2 + 2xx′2x′′

x2x′x′′′2 + (−3x2x′′2 + xx′2x′′)x′′′ + (3xx′ − 9rr′)x′′3 − 2x′3x′′2 (4.3)
xx′x′′′ − 3xx′′2 + 2x′2x′′ + 3a2x
2x2x′x′′′2 + (−6x2x′′2 + 2xx′2x′′)x′′′ + 6xx′x′′3 − 4x′3x′′2 + 9aa′x2x′′

We want to keep the order of r and a less than one which can be done by treat the d-pols
in (4.2) and (4.3) as ordinary polynomials in the variables x, x′, x′′, x′′′, a, a′, r, r′. Applying
Algorithms in [3] (or Algorithm 2.9 in the sense of ordinary polynomials) to find the relation
among a, a′, r and r′ defined by statement ((4.3), DS). Under the variable order: r < r′ < a <
a′ < x < x′ < x′′ < x′′′, we have

E-Zero((4.3)/DS) = E-Zero(PD(ASC3)/DS) ∪ E-Zero(PD(ASC4)/DS)

where
ASC3 = ASC4 =
ra′ + 2r′a ra′ + 2r′a
rx′2 − r′xx′ − ax2 + ar2 rx′2 − r′xx′ + ax2 − r2a
rx′′ − ax rx′′ + ax
x2x′x′′′ + (−3x2 + 3r2)x′′2 + 2xx′2x′′ x2x′x′′′ + (−3x2 + 3r2)x′′2 + 2xx′2x′′

The first equation of ASC1 and ASC2 actually means that a is reversely proportional to
r2. This fact can also be obtained by Algorithm 2.12. Hence we have derived N1 from K1
and K2 mechanically. The crucial point is that we only allow r′, a′ occurring in the process
and all higher orders are forbidden. We do this by treating the elements in (4.3) as ordinary
polynomials of the new variables: a, a′, r, r′x, x′, x′′, and x′′′. In Section 5, we will give a general
method based on this idea.
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5. Methods of Mechanical Formula Derivation (2)

Based on the idea of Section 4, we propose the following problem.

Problem 5.1. Given two sets of d-pol equations

h1(x1, ..., xn) = 0, ..., hr(x1, ..., xn) = 0
q1(w1, x1, ..., xn) = 0, ..., qs(ws, x1, ..., xn) = 0

and a set of d-pol inequations

d1(x1, ..., xn) 6= 0, ..., dt(x1, ..., xn) 6= 0

Find the relations among w1, ..., ws with the lowest order for each wi under the above conditions.
Precisely, let

(5.1.1) ID = Ideal(h1, ..., hr, q1, ..., qs, z1d1 − 1, ..., ztdt − 1)

where zi are some new distinct variables. We want to find a set of d-pols RS = {r1, ..., rl} of
the w such that (1) the ri are irreducible d-pols of the w; and (2) r1...rl is in the radical(ID);
and (3) the ri are the d-pols with least order in each wj to satisfy (2).

Algorithm 5.2. A solution to Problem 5.1. For convenience, we assume that the order of wi

in qi is 0. Let V S = {w1, ..., ws},HS = {h1, ..., hr}, QS = {q1, ..., qs}, DS = {d1, ..., dt}.
Step 1. Use Algorithm 2.9 to find relations among ws and w1, ..., ws−1 determined by S =
(HS ∪QS,DS). If {w1, ..., ws−1} is algebraicly independent wrpt ID (defined as (5.1.1)) and
ws is dependent on {w1, ..., ws−1}, then we can find a weak relation set among the w and
the algorithm terminates. If w1, ..., ws are algebraic independent wrpt ID, then there are no
relations among the w and the algorithm terminates. Otherwise w1, ..., wq−1 are not algebraic
independent wrpt ID. Goto Step 2.

Step 2. By Ritt–Wu’s decomposition algorithm, we have

E-Zero(HS/DS) = ∪t
i=1E-Zero(ASCi/DS ∪ Ji)

where Ji are the initial and separant sets of ASCi.

Step 3. For each component E-Zero(ASCi0/DS ∪ Ji0), let QS1 be the set of the pseudo
remainders of the d-pols in QS wrpt ASCi0 .

Step 4. Treat the d-pols in PS1 = QS ∪ QS1 ∪ ASCi0 as ordinary polynomials in variables
w1, ..., ws, u1, u

′
1, ..., xp, x

′
p.... Use the algorithms in [3] or Algorithm 2.9 in the sense of ordinary

polynomials to find the relation set among the variables in V S determined by the geometric
problem (PS1, DS ∪ Ji0).

Step 5. If we can find a relation set among the variables in V S, the algorithm terminates.
Otherwise goto Step 6.

Step 6. For j = 1 to infinite, i = 1 to s do: adding wi,j (the j-th derivation of wi) to V S,
adding qi,j (the j-th derivation of qi) to QS, and repeating step 3, 4, and 5 for the new V S
and QS. As there are actually some relations among w1, ..., ws by step 1, the process must
terminate at a finite number of steps.

Note that the Step 1 of Algorithm 5.2 is actually Algorithm 2.9. Newton’s law can be
described from Kepler’s automatically by using Algorithm 5.2.
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Example 5.3. (The inverse of Example 3.7.) If the orbit of a particle described under a
central attractive force is an ellipse having its center at the center of the force. Find the
relation between the force and the radius drawn from the particle to the force center.

Use the same notations as example 3.7. Let the equation of the ellipse be ax2 + by2 + c = 0
for constants a, b, and c, or equivalently h5 = ld(1, x2, y2) = 0. The problem here is to find the
relation of a and r under the condition h5 = 0∧ h3 = 0∧ d1 = ld(1, x, y) 6= 0, i.e., in the terms
of Problem 5.1, HS = {h3, h5}, QS = {h1, h2}, and DS = {d1}.

Using Theorem 2.7, we find that neither r nor a is a parameter, hence there are no relations
between r and a according to Definition 2.3. We have to use Algorithm 5.2. First using Ritt–
Wu’s decomposition algorithm, we have E-Zero(HS/DS) = E-Zero(PD(ASC1)/DS) where
ASC1 = {x′′′x−x′′x′, x′y′−yx′′}. The pseudo remainders of h1, h′1, h2, and h′2 wrpt ASC1 are

y2 + x2 − r2

y2x′′ + x′2x− r′r (5.3.1)
y2x′′2 + x′′2x2 − x2a2

y2x′′3 + x′′2x′2x− x′x2 − a′a.

Set an order for the variables: a < a′ < r < r′ < x < x′ < x′′ < x′′′ < y < y′ < y′′. In the sense
of ordinary polynomials, we have

E-Zero(ASC1 ∪ (5.3.1) ∪ {h3, h5}/DS) = E-Zero(PD(ASC2)/DS) ∪ E-Zero(PD(ASC3)/DS)

where
ASC2 = ASC3 =
r′a− ra′ r′a− ra′

x′2 + xr − x′r′r2 − x3a + xr2a x′2 + xr − x′r′r2 + x3a− xr2a
x′′r − xa x′′r + xa
x′′′x− x′′x′ x′′′x− x′′x′

y2 + x2 − r2 y2 + x2 − r2

y′x′ − yx′′ y′x′ − yx′′

xy′′ − x′′y xy′′ − x′′y

The first d-pol of both ascending chains is ld(a, r) = a′r − r′a, i.e., a is proportional to r by
Algorithm 3.3.

For more examples from mechanics, see [4].
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