流程智能应用案例 一呼叫中心故障处理流程分析

赵卫东 博士 复旦大学软件学院

wdzhao@fudan.edu.cn

配套教材

《流程智能》

■ 作者: 赵卫东

■ 出版社:清华大学出版社

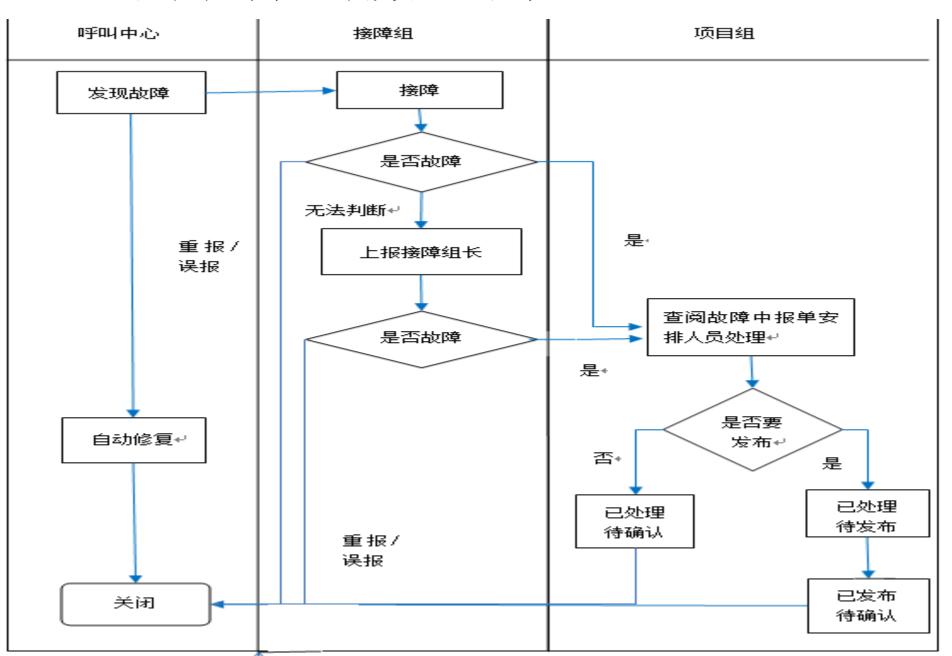
■ 出版日期: 2012年4月

■ 开本: 16开

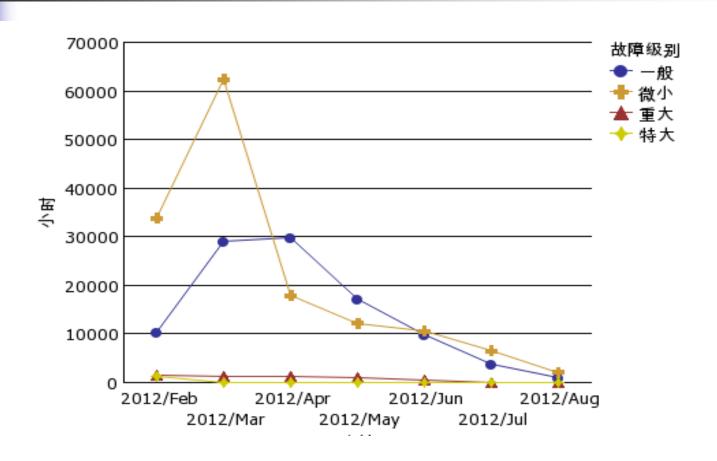
■ 页数: 178

▶ 价格: 23元

ISBN:978-7-302-28194-8

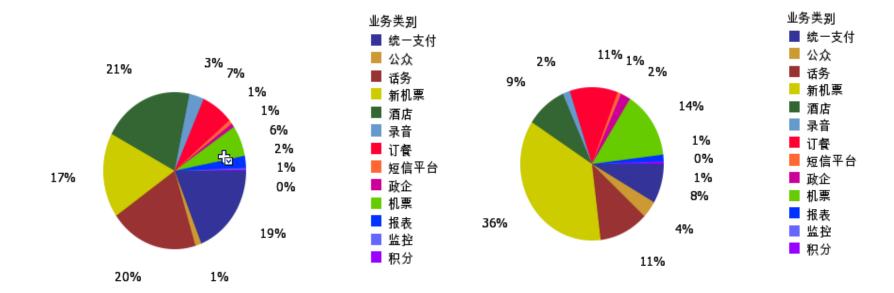

呼叫中心故障处理流程分析

- 在流程设计时,业务流程的决策点设定的规则未必合理 或者能够应对各种情况的处理,这就需要搜集流程运行 的数据,应用多维分析、数据挖掘等商务智能技术进行 分析,提升流程在各个决策点的决策质量。
- 以D公司呼叫中心故障处理系统为例,说明如何利用多维分析技术和数据挖掘技术对流程进行分析和优化,以提高企业流程管理的质量。
- 通过对各系统故障点,发生频率等运行数据的分析,结合智能流程技术(如数据挖掘)可以发现系统潜在故障趋势、系统瓶颈和组织问题,为流程优化提供参考,实现流程绩效管控。


D公司呼叫中心业务简介

- D公司主要业务是提供商旅产品及服务,依托呼叫中心以及服务支撑系统 (监控系统、报表系统和故障系统等)为客户提供机票、酒店和餐馆等 服务。
- 呼叫中心可以理解为工作平台,在该平台上集成了多种组件或者说是功能模块,如机票系统、酒店系统、订餐系统等。故障系统用于管理呼叫中心以及相关业务系统故障。通过按系统对故障进行归类:
- 话务:录音异常、报表异常和监控异常等。
- 机票(分为新机票、公众和政企): 航班查询异常、客户认证异常、下单异常和PNR异常等。
- 酒店:系统无法使用、酒店查询异常、客户认证失效、下单异常、传真 异常、订单确认异常、报表异常和酒店信息异常等。
- 订餐:系统无法使用、餐馆查询异常、下单异常、订单确认异常、短信 发送异常、报表异常和公告发布异常等。

D公司呼叫中心故障处理流程


故障发生时间(1)

故障发生时间(2)

■ 把D公司一年内的所有故障数据在时间维度上钻到月份,并把故障发生时间限定在2月到8月。可以看出,微小故障和一般故障占据了多数,且在前两个月保持增长趋势,随后持续下降。微小故障的处理时间在3月份达到峰值,远远高于其他故障。而重大和特大故障的处理时间相对较少且走势稳定。D公司处理应关注于一般故障和微小故障的发生原因,尤其是探究2、3月份故障高发期的原因。

各业务发生的故障次数和时间分布(1)

各业务发生的故障次数和时间分布(2)

- 可以发现故障主要集中在酒店(21%)、新机票(17%)、话务(20%)和统一支付(19%)等业务。新机票、统一支付作为公司的新业务,故障较多的原因在于客户对业务流程和业务内容不够熟悉、服务人员经验欠缺等。D公司可以加强对员工的新业务培训,加速员工技能的提升。
- 新机票业务的故障处理时间达到36%,远高于其他业务。 新机票业务虽然发生次数只有17%,但故障处理时间高达 36%。这说明为了有效地解决故障问题,需要综合考虑故 障次数和故障处理时间等给出合理的解决方案。

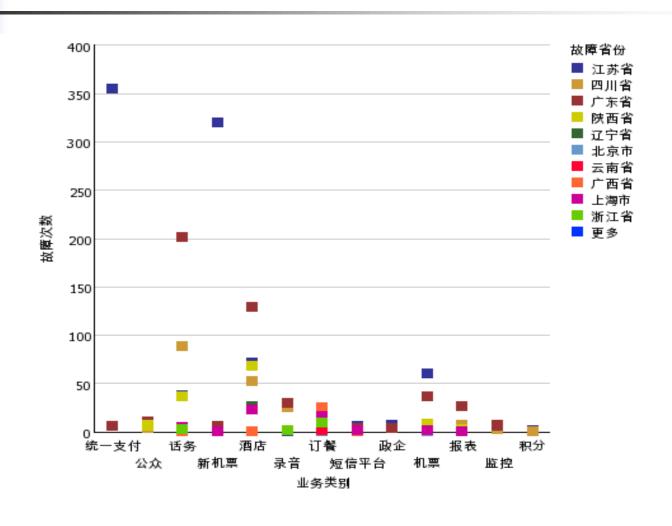
各类故障平均处理时间(1)

小时	小时	故障次数	平均故障处理时间		
监控	399	10	39.900		
统一支付	20951	361	58.036		
酒店	23095	396	58.321		
报表	2863	47	60.915		
适务	27800	382	72.775		
录音	4709	61	77.197		
短信平台	2083	16	130.188		
订餐	26862	140	191.871		
新机票	91592	332	275.880		
机票	36141	121	298.686		
公众	9337	27	345.815		
积分	1329	3	443.000		
政企	5994	13	4 61.077		
业务类别	253155	1909	132.611		

各类故障平均处理时间(2)

不同业务的故障平均处理时间差异很大。监控和统一支付等业务的平均故障处理时间只需要3-5天,而积分、政企等业务需要18-19天。因此,D企业需要优化故障处理时间过长的流程,减少不必要的审核。D公司还应关心短信平台、订餐和新机票等处理时间不是过长,但故障发生频率较大的业务。

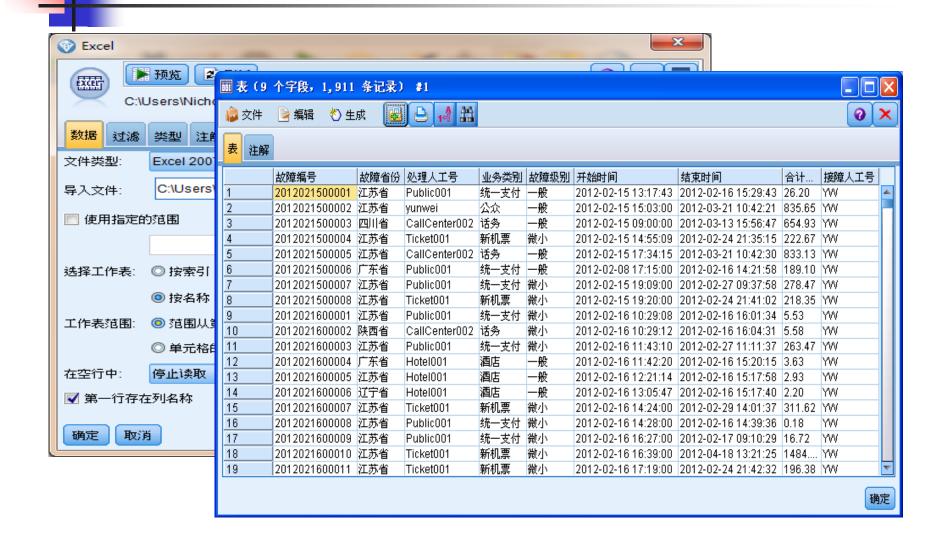
业务人员处理故障情况(1)


故障次数	小时	故障次数	平均处理故障时间		
Hotel002	641	14	45.786		
Restaurant001	945	7	135.000		
CallCenter001	1692	13	130.154		
Public002	1886	17	110.941		
Hotel001	19433	358	54.282		
Public001	22113	361	61.255		
Restaurant002	25638	129	198.744		
Ticket002	31679	77	411.416 70.671 271.258		
CallCenter002	34417	487			
Ticket001	108503	400			
小计 (包括)	246947	1863	132.553		

小时	统一支付	公众	话务	新机票	酒店	订餐	短信平台	政企	小计 (包括)	业务类别
yunwei	0	2285	1	130	3021	279	25	420	6161	6208
溴极率	0.00%	24.47%	0.00%	0.14%	13.08%	1.04%	1.20%	7.01%	2.97%	2.45%

业务人员处理故障情况(2)

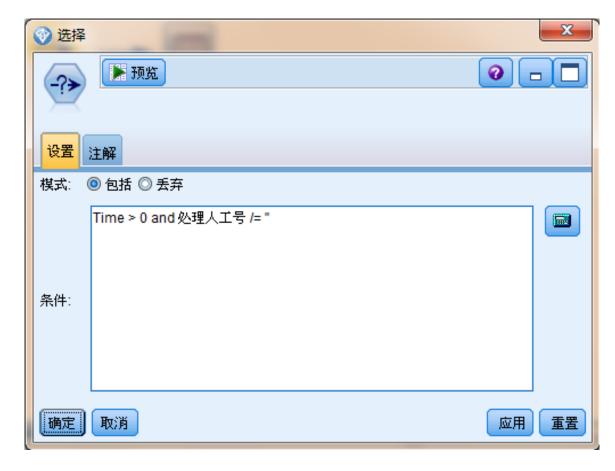
- 各个员工处理故障的次数、总时间和平均故障处理时间情况。其中Hotel001、Public001和Callcenter002等员工表现较为出色,处理故障次数较多且所用时间较少。D公司可以合理安排人员,均衡分配任务,并制定相关的激励政策,提高员工的故障处理效率。
- 名为yunwei的员工误报和重报情况,尽管总的平均误报率不高,但造成了6208小时不必要的故障处理时间,其中以公众(24.47%)、酒店(13.8)的误报率最高。针对此类问题,D公司应加强对业务人员的培训,提高他们对故障的识别能力,降低误报率,节省审查故障的时间。


各类故障在多省份的分布(1)

各类故障在多省份的分布(2)

江苏省的统一支付、新机票等故障次数较高。多个省份的故障主要集中在统一支付、话务、新机票和酒店等业务,这与前面分析的结果一致。D公司可以对江苏省、广东省等故障发生比较频繁进行分析,减少故障的发生。

导入数据源


数据源概况

对源数据进行初步的探查。在数据源节点后,添加表节点,运行后如图9。源数据包括故障编号、故障省份、处理人工号、业务类别、故障级别、开始时间、结束时间、合计小时和接障人工号等9个字段,共1911条记录。可以发现,有一条记录的处理人工号字段为空值,有一条记录的合计小时字段为负值,这些错误数据应该剔除。

转换合计小时类型格式

剔除Time小于0的记录选项

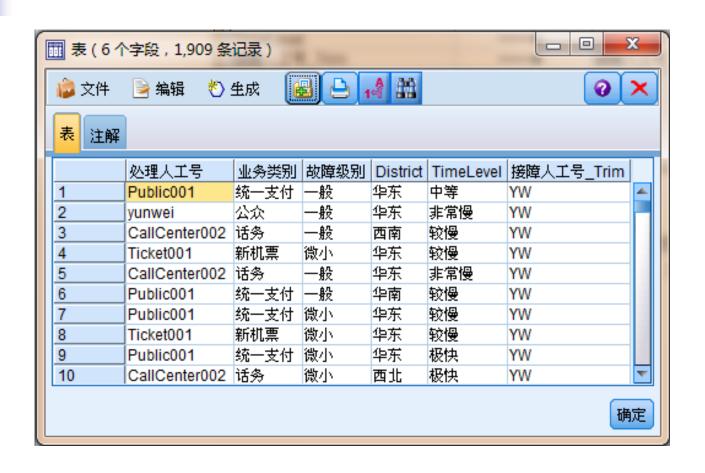
去除故障省份的前后空格

导出District字段

添加导出节点 到数据流中, 把字段名命名 为District。

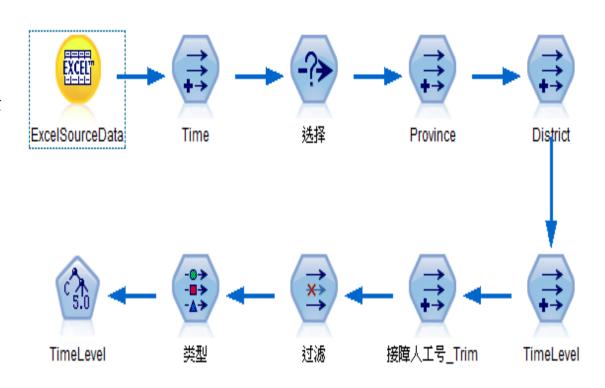


Time字段离散化

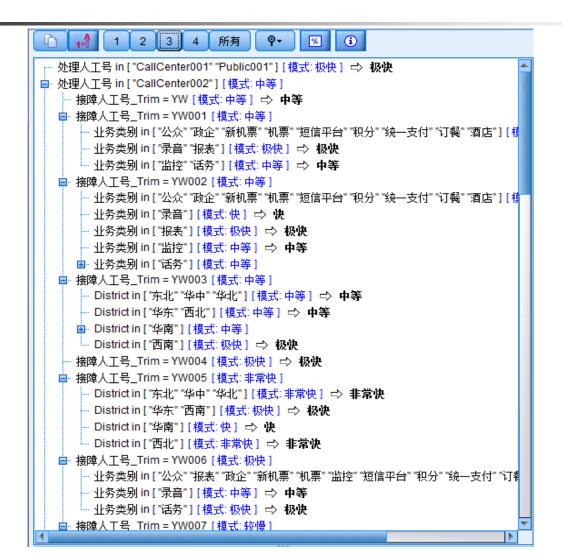

■ Time字段离散化。Time字段离散化。Time字段的类型是连续型的,需要离散化。这里把Time字段离散成六个值。

过滤不参与建模的字段

预处理后的数据

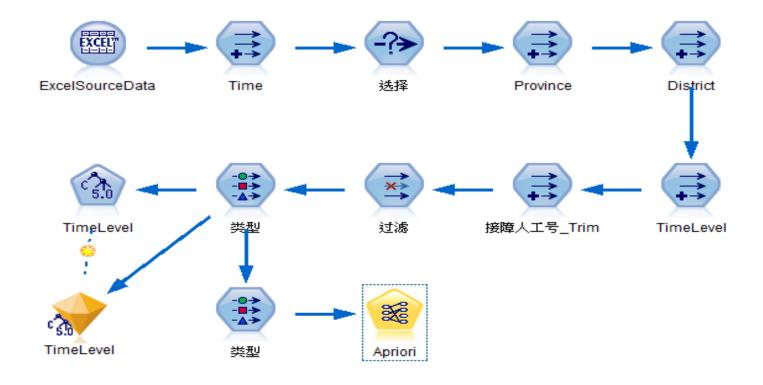


设置字段角色

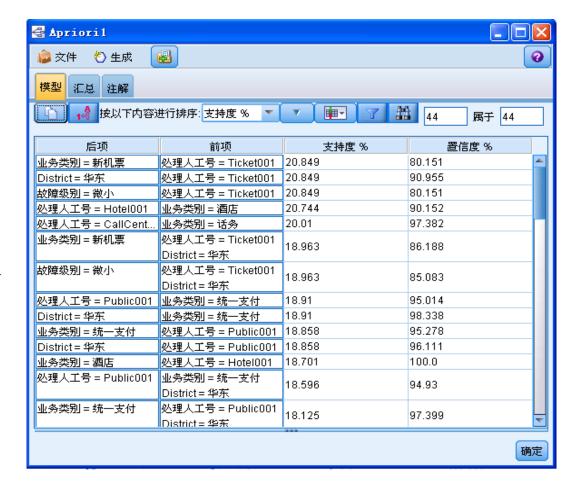


决策树数据流图

使用IBM SPSS
Modeler 14.2的
决策树, C5.0决
策树算法。


决策树模型

关联分析设置字段角色



关联分析数据流

关联分析结果

■ 工号为Ticket001处理 人比较经常处理的业务 类型:新机票类别、华 东地区和微小故障,酒 店的故障经常由工号为 Hotel001的员工处理, 话务的故障主要由工号 为CallCenter002的员工 处理。。

- 由决策树分析得到,处理人工号、接障人工号、业务类别、District和故障级别对影响故障处理流程的重要性逐渐减小,影响故障处理流程的主要因素是人为因素(处理人和接障人)。
- 由关联分析得到,每个处理员工主要处理类别、地理区域和故障级别是比较固定的。因此,D公司可以对员工在其相关领域进行培训,加强员工解决故障的能力,减少故障处理的时间,优化流程。此外,对于接障人工号,也可以对接障员工进行相关的经验培训,以增强他们区分故障级别等方面的能力。

实验

■ 某公司的呼叫中心故障处理流程分析实验

