石墨在固相剪切碾磨力场下的片层剥离及 与 PVC 的纳米复合

李侃社*,张升炎,牛红梅,康 洁,陈创前

(西安科技大学 化学与化工学院 高分子研究所,西安 710054)

摘 要: 采用固相剪切复合技术成功制备石墨-聚氯乙烯(PVC)复合粉体,实现了石墨的片层剥离和在 PVC 基体中的纳米分散及对 PVC 的抗静电改性。通过 XRD、SEM、TEM 等表征了石墨-PVC/PVC 复合材料的结构,研究了其抗静电性能。结果表明,石墨的片层厚度约 20 nm,径厚比超过 10。固相剪切碾磨技术制备的石墨-PVC/PVC 复合材料的导电性能有较大提高。在石墨质量分数为 2%时,表面电阻率为 4.6×10⁷ Ω・cm,已达到了抗静电材料的要求,实现了低填充。在石墨质量分数为 10%时,表面电阻率达到最低的 4.1×10⁴ Ω・cm。
 关键词: PVC;石墨;固相剪切复合技术;磨盘碾磨;纳米复合材料;抗静电
 中图分类号: TB332; TQ325.3 文献标志码: A

Exfoliating interlayer and nanocompositing of graphite with PVC through solid state shear compounding technology

LI Kanshe^{*}, ZHANG Shengyan, NIU Hongmei, KANG Jie, CHEN Chuangqian (College of Chemistry and Chemical Engineering, Polymer Research Institute, Xi'an University of Science and Technology, Xi'an 710054, China)

Abstract: The graphite – polyvinylchloride(PVC) compounding powders were successfully prepared by solid state shear compounding technology (S³C) at ambient temperature, and then the graphite – PVC/PVC nanocomposites were processed by moulding. The structure and antistatic performance of graphite – PVC compounding powder and nanocomposites prepared through S³C based on pan-milling were investigated by XRD, SEM, TEM and electrical resistivity tests. The results show that the conductivity properties of graphite/PVC nanocomposites prepared through S³C based on pan-milling 20 cycles at ambient temperature are remarkably improved. The surface resistivity of graphite – PVC/PVC nanocomposites with 2% mass fraction of graphite is 4. $6 \times 10^7 \ \Omega \cdot$ cm. The surface resistivity of graphite – PVC/PVC nanocomposites with 10% mass fraction of graphite reaches lowest as 4. $1 \times 10^4 \ \Omega \cdot$ cm. The strip flake of graphite particles with thickness less than 20 nm and the aspect ratio of 10 times disperses homogeneously in the PVC matrix.

Keywords: PVC; graphite; solid state shear compounding technology (S³C); panmilling; nanocomposites; antistatic

聚氯乙烯(PVC)具有难燃、抗化学腐蚀、耐磨、电绝缘性优良和力学强度较高等优点,被广泛应用于各领域中,是产量仅次于聚乙烯的第二大通用塑料。但 PVC 表面电阻高达 10¹⁴~10¹⁷ Ω,容易产生静电,易引起爆炸和火灾,因此提高 PVC 材料的抗静电能力,可拓宽其在化工、煤矿^[1]、电子等领域的应用。采用传统的加工方法,难以让 PVC

长期达到表面电阻率在 3.0×10⁸ Ω 以下的 GB/T 20105-2007 及煤矿行业 MT164-2007、MT165-2007 抗静电要求。导电填料的填充复合是实现高 分子材料抗静电要求的重要途径,低填充、高电导 率是抗静电高分子材料制备的关键^[2];导电填料包 括碳系、金属粉、导电聚合物等^[3-5]。碳系填料以 石墨具有片层结构、电导率高而具有优势,石墨纳

收到初稿日期: 2012-02-03; 收到修改稿日期: 2012-06-09; 网络出版时间: 2012-11-12 10:36:26 网络出版地址: www.cnki.net/kcms/detail/11.1801.TB.20121112.1036.024.html 基金项目: 陕西省 13115 科技创新工程重大科技攻关专项(2009ZDKG-62);高分子材料工程国家重点实验室开放课题基金 通讯作者: 李侃社,博士,教授,研究方向:高分子材料及其加工助剂、纳米材料 E-mail: likanshe@xust.edu.cn 米化、石墨烯化可以发挥纳米效应,是实现对高分子材料低填充、高电导率和高力学强度的技术 关键^[6-8]。

石墨→氧化石墨→膨胀石墨→纳米石墨→石墨 烯,路径长、效率低,产业化难度大;磨盘形力化 学反应器^[9]能够提供强大剪切力场,可在室温固相 条件下有效剥离未经有机化处理的层状矿物,并同 时实现无机粒子表面力活化,从而制备层状纳米矿 物/聚合物复合材料^[6,10-11]。本文作者利用磨盘形 力化学反应器,采用其独特的三维剪切力场,将 PVC 与改性膨胀石墨共碾磨,使石墨纳米化并在 PVC 基体中均匀分散,赋予了 PVC 抗静电性能, 并同步实现增强增韧。

1 实验材料及方法

1.1 实验原料

PVC(SG-5):四川金路树脂股份有限公司;可 膨胀石墨:青岛南墅瑞英石墨有限公司;热稳定 剂:二月桂酸二丁基锡,成都科龙化工。

1.2 复合材料制备

1.2.1 膨胀石墨的制备及改性

用坩埚称取定量的可膨胀石墨放入已升温到 900℃的马弗炉中膨胀 30 s 左右取出,得到膨胀石 墨(EG)。

将制备的膨胀石墨与 75%(体积分数)的乙醇 溶液按质量比1:100混合,放到烧瓶内,60℃恒 温水浴加热搅拌4h,在搅拌的过程中加入 2%的 5%十六烷基三甲基溴化胺(CTAB)的乙醇溶液; 抽滤,并用乙醇洗涤产品,然后在 100℃真空干燥 4h,即得到用 CTAB 处理的石墨薄片。在石墨薄 片中加入 1%的钛酸酯偶联剂,高速搅拌 2 min 得 到偶联剂改性的石墨薄片。

1.2.2 石墨-PVC/PVC 复合材料的制备

在质量分数为 30%的石墨、PVC 混合物中加 入热稳定剂,在一定压力和转速下于磨盘形力化学 反应器中共碾磨 10~100 次得到石墨-PVC 复合粉 体,然后将上述复合粉体与 PVC 按一定比例混合, 加入各类助剂,在半自动压力成型机(HP - 63D, 上海西玛伟力橡塑机械有限公司)上,180℃下热压 成型,得到石墨-PVC/PVC 复合材料。

1.3 性能测试

XRD分析: X'Pert Pro XRD(荷兰 Philips 公

司), Cu 靶, K_a 射线辐射源, 加速电压 40 kV, 管电 流 40 mA, 波长 0.154 nm, 扫描范围 1°~40°(2 θ);

TEM 分析:加速电压 80 kV,切片厚度 50~60 nm;石墨-PVC 复合粉体,H-600 型透射电子显微镜上观察并拍照;

SEM 分析: 将液氮脆断后的样条断面进行表 面喷金处理,在 JSM - 5900LV 型扫描电子显微镜 下观察其断面形貌并拍照;

拉伸性能:应用万能材料试验机(Instron 5567,美国Instron公司),按GB/T1040-2006测 试,拉伸速率 50 mm/min。

2 结果与讨论

2.1 微观形态

表1为膨胀石墨粉体与固相剪切所制得的石 墨-PVC复合粉体(石墨质量分数为30%)的XRD 图解析结果。可见,随着碾磨次数的增加衍射峰强 度大幅度降低,未碾磨的石墨-PVC混合粉体在 20=26.468°处,衍射峰强度为13078,磨20次后 为11229,磨40次后为8782,磨50次后为8012, 磨100次为4973;衍射角度和半高宽变化很小,随 着碾磨次数的增加微晶的尺寸也在逐渐减小,表明 通过碾磨可以破坏石墨的晶体结构,片层面之间发 生解理,大部分发生剥离^[12]。

表 1 石墨质量分数 30%时,石墨-PVC 复合粉体 中石墨微晶结构的变化

 Table 1
 Variation of crystallite dimension of graphite – PVC compounding powder with 30% mass fraction of graphite

Pan-milling	$2A/(^{\circ})$	Peak height	Peak FWHM*	Crystallite/
cycles	20/()	I cak neight	I Cak I WIIIWI	nm
0	26.468	13078	0.328	30.6
20	26.550	11229	0.329	29.2
40	26.501	8782	0.338	27.0
50	26.513	8012	0.343	25.9
100	26.556	4973	0.302	25.8

FWHM* : Full width at half maximum

图 1 为石墨- PVC 共碾磨 20 次和 50 次的 SEM 照片。表明:石墨- PVC 复合粉体具有薄片状形貌 特征,且随着碾磨次数的增加,片层逐渐拉长,粉末 更为蓬松,长径比、径厚比越来越大。另一方面,独 立存在的片状膨胀石墨逐渐消失,表明 PVC 与膨胀 石墨已相互嵌入,均匀分散,形成石墨- PVC 复合 粉末。

图 1 石墨质量分数为 30%时石墨-PVC 复合粉体的 SEM 照片((a)、(b): 20 次; (c)、(d): 50 次) Fig. 1 SEM images of graphite - PVC compounding powder with 30% mass fraction of graphite ((a), (b): 20 pan-milling cycles; (c), (d): 50 pan-milling cycles)

图 2 为石墨质量分数为 5%时石墨-PVC/PVC 复合材料的 TEM 照片。可以看出,石墨(图中深 色部分)在 PVC 基体中已经形成了通路,大部分石 墨的片层厚度约 20 nm。结合 XRD 分析可知,在 固相剪切碾磨时,石墨片层之间逐步剥离,晶体结 构破坏,且部分达到完全剥离,导致 XRD 谱图上 特征衍射峰强度大大降低。由此得出,固相剪切碾 磨方法实现了石墨的纳米化,并在 PVC 基体中达 到纳米级分散,产生了纳米效应,成功制备了石 墨/PVC 纳米复合材料;石墨在 PVC 基体中形成 了相通的网络状结构,为 PVC 的抗静电性能奠定 了基础。

图 2 石墨质量分数为 5%时石墨-PVC/PVC 复合材料的 TEM 照片 Fig. 2 TEM photos of graphite - PVC/PVC composites with 5% mass fraction of graphite

2.2 石墨-PVC 复合粉体的粒度

表 2 为石墨-PVC 复合粉体在不同碾磨次数下 的粒度变化。可以看出,随着碾磨次数的增加复合 粉体的粒度逐渐减小,比表面积不断增大;但是在 碾磨 40~80次过程中粒度的变化很小。这表明碾 磨次数在 40 遍以上时,石墨-PVC 复合粉体出现 了少量的团聚。

表 2 石墨质量分数为 30%时石墨-PVC 复合粉体的粒度 Table 2 Particle size of graphite - PVC compounding

powder with 30% mass fraction of graphite						
Pan-milling	$D_{0.1}/\mu\mathrm{m}$	$D_{0.5}/\mu\mathrm{m}$	$D_{0.9}/\mu\mathrm{m}$	Specific surface		
cycles				area/($cm^2 \cdot g^{-1}$)		
0	77.156	172.654	392.320	477		
10	61.360	141.967	276.879	572		
20	48.586	115.007	225.585	706		
30	43.479	100.671	194.858	800		
40	38.504	89.174	172.013	904		
50	35.100	80.574	155.036	995		
60	34.129	80.407	160.272	999		
80	31.220	73.287	145.917	1100		
100	28.514	62.255	117.990	1230		

2.3 石墨-PVC/PVC 复合材料的导电性能

图 3 为不同质量分数石墨-PVC 共同碾磨 20 次时,石墨-PVC /PVC 复合材料的导电性能。可 知,随着石墨含量的增加复合材料的表面电阻率降 低,在石墨质量分数 2%时,已降至 4.6×10⁷ Ω·cm, 达到了抗静电的要求。当石墨质量分数为 10%时, 达到最小值为 4.1×10⁴ Ω·cm。在石墨质量分数 为 3%~4%时,复合材料的表面电阻出现了急剧下 降,当石墨质量分数超过 4%小于 5%时表面电阻 的变化已很小。表明当复合材料中的石墨质量分数 在 3%(体积分数约 1.29%)时,石墨粒子在 PVC 中分散已达到了临界值,在石墨质量分数达到 4% 时已形成较稳定的网状导电通路。从图 3 可以看 出,石墨-PVC /PVC 复合材料的导电逾渗阈 值——石墨质量分数低于 3%。

导电聚合物复合材料有导电通道、隧道效应和 场致发射3种导电机制,其导电性是这3种机制相 互竞争共同作用的结果。在低导电填料含量、低外 加电压条件下,隧道效应机制发挥主要作用;在低 导电填料含量、高外加电压条件下,场致发射机制 变得显著;在高导电填料含量条件下,导电粒子间

図 5 石塗-FVC/FVC寺屯住能随石塗呂重的交化 Fig. 3 Effect of graphite content on the conductivity of graphite - PVC /PVC composites

距小,形成链状导电通路的几率大,这时导电通道 机制更加明显。石墨是 0.335 nm 片层由范德华力 叠合而成的团聚体,在磨盘碾磨强大的剪切力场作 用下,石墨片层剥离,因挤压嵌合作用与聚合物形 成具有插层纳米结构的石墨/PVC 复合材料。这种 具有纳米间隙的石墨网络,容易形成隧道电流,因 此,电导率较高,导电逾渗阈值较小。纳米插层结 构可形成彼此并联的导电通路^[6],对制备低填充高 电导率的聚合物导电复合材料具有重要意义。

固相剪切复合(S³C)技术是制备石墨/聚合物 导电复合材料的有效途径,所得石墨/PVC复合材 料具有纳米插层复合结构,石墨纳米片层的相互搭 接可形成导电网络,具有纳米间隙的石墨网络,可 形成隧道电流,从而大幅度降低复合体系的导电逾 渗阈值,实现低填充和高电导率。

2.4 石墨-PVC/PVC 复合材料的力学性能

表 3 为碾磨 20 次石墨-PVC/PVC 复合材料的 力学性能。可知,石墨质量分数在 3%到 15%时拉 伸强度变化不大,10%时达到最大值,比 PVC 增 加了 78%;随着石墨的加入弹性模量有大幅度的增 加,在 3%时达到最大值,比 PVC 增加了近 500%; 断裂伸长率也有提高,在石墨质量分数为 4%时, 提高了 66%,10%时提高了 107%。这是因为在碾 磨过程中,PVC 和片状石墨在机械力场的剪切、冲 击、挤压等作用下,石墨发生层间解理,并与 PVC 相互嵌入;CTAB 和钛酸酯偶联剂使两种活性体界 面相互作用增强,复合材料的力学性能提高,也是 石墨片层纳米增强效应的结果^[12]。

Tabla 3	Machanical properties of graphite - PVC/PVC
	compositos

composites							
Mass fraction	Tensile	Modulus of	Elongation at				
of graphite/%	strength/MPa	elasticity/GPa	break/%				
0	20.36	0.28	3.30				
2	27.95	0.95	5.29				
3	35.42	1.26	4.65				
4	32.68	1.25	5.32				
5	31.86	0.84	4.96				
10	36.33	0.85	6.84				
15	31.34	0.85	4.75				

3 结 论

(1)通过磨盘碾磨固相剪切技术成功制备了石墨/聚氯乙烯(PVC)复合材料。由于 PVC 与石墨磨盘共碾磨实现了石墨的层间剥离,石墨以小于20 nm尺寸片层均匀分散在 PVC 基体中。

(2) 赋予了 PVC 抗静电性能,在石墨质量分数 2%时,表面电阻率降至 4.6×10⁷ Ω•cm,达到 了抗静电的要求。当石墨质量分数为 10%时,表面 电阻率达到最小值为 4.1×10⁴ Ω•cm。

(3) 机械力化学效应增强了 PVC 与石墨的界 面相互作用,也提高了材料的力学性能,与简单填 充复合相比,在 PVC 与石墨共碾磨 20 次,石墨填 充量为质量分数 5%时,综合性能达到最佳,在 2%~15%的范围内, PVC 的综合性能都有较大幅 度的提高。

参考文献:

- 周百良,李慧香.煤矿中阻燃抗静电管道的重要性及阻燃抗 静电 PVC 管材的应用 [J].聚氯乙烯,2011,38(8):22-27. Zhou Bailiang, Li Huixiang. Importance of antiflaming and antistatic pipes in coal mines and application of antiflaming and antistatic PVC pipes [J]. Polyvinyl Chloride, 2011, 38(8):22-27.
- [2] 孙业斌,张新民.填充型导电高分子材料的研究进展[J].特 种橡胶制品,2009,30(3):73-78.

Sun Yebin, Zhang Xinmin. Research progress of conductive filled polymer composites [J]. Special Purpose Rubber Products, 2009, 30(3): 73-78.

- [3] Srivastava A, Singh V, Chandra A, Witte K, Scherer U W, Singh T V. Electrical conductivity studies of swift heavy ion modified PVC and PVC - PANI composite [J]. Nuclear Instruments and Methods in Physics Research B, 2006, 245: 277-280.
- [4] Potts J R, Dreyer D R, Bielawski C W, Ruoff R S. Graphenebased polymer nanocomposites [J]. Polymer, 2011, 52: 5-25.
- [5] 曹清华,孟庆荣,贾伟灿,等.高比表面积炭黑/聚丙烯导电复合材料[J].复合材料学报,2012,29(2):59-64.
 Cao Qinghua, Meng Qingrong, Jia Weican, et al. Conductive composites of high surface area carbon black/polypropylene
 [J]. Acta Materiae Compositae Sinica, 2012, 29(2):59-64.
- [6] 李侃社,王 琪,陈英红. PP/石墨纳米复合材料的导电性能研究 [J]. 高分子学报,2005(3):393-397.
 Li Kanshe, Wang Qi, Chen Yinghong. Electrical conductivity of PP/Graphite composites [J]. Acta Polymerica Sinica, 2005 (3):393-397.
- Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick A K. A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites
 [J]. Progress in Polymer Science, 2011, 36: 638-670.
- [8] 程 博,齐暑华,何 栋,等.纳米石墨微片/聚氯乙烯复合 材料的制备与性能[J].复合材料学报,2012,29(1):8-15.
 Cheng Bo, Qi Shuhua, He Dong, et al. Fabrication and properties of graphite nanosheet/poly (vinyl chloride) composites [J]. Acta Materiae Compositae Sinica, 2012, 29 (1):8-15.
- [9] 徐 僖,王 琪.力化学反应器:中国,95111258.9 [P]. 2001-04-19.

Xu Xi, Wang Qi. A pan-milling type of equipment: China, 95111258.9 [P]. 2001-04-19.

- [10] 王 琪,李侃社,敖宁建,等.聚合物/层状无机物纳米复合材料及其磨盘剪切制备方法:中国,02133588.5[P].2005-08-24.
 Wang Qi, Li Kanshe, Ao Ningjian, et al. Nanocomposites of polymer/layer organic fillers and their preparation method through solid state shearing based on pan milling: China, 02133588.5 [P]. 2005-08-24.
- [11] 王 琪,徐 僖. 磨盘形力化学反应器及其在高分子材料制 备中的应用[J]. 高等学校化学学报,1997,18(7):1197-1201.

Wang Qi, Xu Xi. A pan-milling type of equipment and its application in developing polymer materials [J]. Chemical Journal of Chinese Universities, 1997, 18(7): 1197-1201.

[12] Awad W H, Beyer G, Benderly D, et al. Material properties of nanoclay PVC composites [J]. Polymer, 2009, 50: 1857-1867.