一种用Duffing振子检测舰船辐射噪声线谱的新方法

郑思仪 郭红霞 李亚安 张鹏翼 王炳和

(① 武警工程学院,西安 710086; ② 西北工业大学航海工程学院,西安 710072. E-mail: <u>sisi725@hotmail.com</u>)

摘要 用 Duffing 振子混沌检测系统对舰船辐射噪声的特征线谱进行检测. 分析了 Duffing 振子混沌运 动轨迹, 通过对状态方程的改进, 建立了 Duffing 振子混沌检测系统, 使系统能够检测任意的弱周期信 号. 仿真实验证明了 Duffing 振子相轨迹变化对周期信号的敏感性, 对白噪声及与参考信号频差较大的 周期干扰信号具有一定的免疫力. 引入Lyapunov指数作为混沌判据, 解决了系统动力学行为相变在定 量上的判定依据问题, 并且能够较为准确地求出混沌临界状态的阈值. 由此提出了一种基于 Duffing 振 子的舰船辐射噪声特征线谱的检测方法, 用此方法对3组实船数据进行分析, 得到了各船型的特征线谱 值. 实验结果证明此方法具有高灵敏度、高分辨率的特点.

关键词 Duffing 振子 Lyapunov 指数 混沌判据 舰船辐射噪声 线谱

舰船辐射噪声是舰船性能的重要标志之一、它 包含舰船的类型、航速和吨位等各种信息,分析和研 究舰船辐射噪声的特征,对于设计水中兵器的声引 信、有效地识别和攻击敌方目标具有十分重要的国防 战略意义[1~3]. 舰船辐射噪声是由舰体上的各种振动 和声源引起的、主要来自推动系统、螺旋桨、辅机、 水动力效应或船体运动等方面、其中螺旋桨产生的 单频噪声(线谱)占较大一部分比例.不同类型的舰 船、同一类型不同航速的舰船、它们的线谱频率各不 相同. 由于舰船噪声低频(100 Hz以下)线谱成分含有 丰富的信息, 它比连续谱具有相对较高的强度和稳 定性、且在水中传输损失较小、传播距离较远、适用 于水下目标的被动探测、跟踪与识别. 另一方面、受 舰船航行状况及水声传输信道的种种影响产生幅度 和相位起伏、频移及频率扩展等、使线谱具有某种程 度的不确定性.

传统的目标探测主要是基于频谱分析和随机系 统理论的信号处理方法,当距离目标较远或目标信 号很弱时,具有一定的局限性.近10年来,混沌理论 的应用探索研究已逐渐深入医学、生态学、保密通信 和电子对抗等许多领域^[4],特别是近年来混沌振子在 弱信号检测中的应用发展较快,已成为当代非线性 科学研究中的一个热门课题^[5-7].本文将待测微弱信 号作为混沌系统的一种周期扰动,利用系统对参数 的敏感性,使其状态发生本质的变化,通过辨识系统 的相空间轨迹,将强背景噪声下的微弱周期信号检 测出来.理论计算和仿真实验证实了基于 Duffing 振 子的混沌检测系统在混沌状态和大尺度周期状态的 相轨迹图截然不同,由此可作为微弱信号的检测依 据.其次采用 Lyapunov 指数法用于混沌判据,在相 轨迹图定性判断的前提下,给出了一个定量的判据, 并能准确的求出混沌临界状态的阈值.在此基础上, 提出了一种基于 Duffing 振子的舰船辐射噪声特征线 谱的检测方法.最后用实船信号的检测实验证明此 方法具有高灵敏度、高分辨率的特点.

1 理论与方法

1.1 Duffing 振子混沌检测系统的建立

混沌态是某些非线性系统所特有的一种运动状态.虽然混沌运动具有随机性,但描述其运动的方程 是确定的,如著名的Duffing方程、Lorenz方程和 Vandpul方程等^[8.9],其中Duffing方程是非线性系统中 研究得比较充分的数学模型,因此选用基于该方程 的系统进行弱信号检测.

Duffing方程是一个含有立方项的二阶微分方程, 它在外部激励下发生振荡,产生周期运动和混沌运动,其中 Holmes 型 Duffing 方程的形式如下:

$$x''(t) + kx'(t) - x(t) + x^{3}(t) = F\cos(t),$$
(1)

其中 $F \cos(t)$ 为周期策动力(参考信号), k 为阻尼比, $-x(t)+x^{3}(t)$ 为非线性恢复力. 当外加信号确定时, 系

国家自然科学基金(批准号: 10474079)和国防科技重点预研(批准号: 41303080301)资助项目

统的特性主要取决于系统的非线性恢复力. 出于对 微弱信号的检测下限、混沌系统检测信噪比和系统 混沌判据的证明^[10]等多方面的综合考虑,将非线性 恢复力改为 $-x^{3}(t) + x^{5}(t)$ 、即

$$x''(t) + kx'(t) - x^{3}(t) + x^{5}(t) = F\cos(t),$$
⁽²⁾

但基于(2)式的检测系统具有一定的局限性:()只 能检测频率为 $\omega = 1$ rad/s 的周期信号;()只能检测 与参考信号 cos(*t*)具有相同波形的信号.解决方法 为()在(2)式中,令 $t = \omega \tau$,则

$$\frac{\mathrm{d}^2 x}{\mathrm{d}\tau^2} + k\omega \frac{\mathrm{d}x}{\mathrm{d}\tau} - \omega^2 x^3 + \omega^2 x^5 = \omega^2 F \cos(\omega\tau). \tag{3}$$

(3)与(2)式相比,相速度提高了 *ω* 倍,但分岔性质不 变. 在(2)式中加入系数 *c*₁, *c*₂, *c*₃和 *c*₄,则

$$x''(t) + kc_1x'(t) - c_2x^3(t) + c_3x^5(t) = c_4F\cos(\omega t).$$
(4)

令 $c_1 = \omega$, $c_2 = c_3 = c_4 = \omega^2$, (2)和(4)式的系统性质就 相同了.这样(4)式即可以检测任意频率的正弦信号, 但它还不能检测任意波形的周期信号.()利用混 沌抑制的方法^[11]来构造混沌检测系统.在Duffing方 程 x^5 项的系数中加入一个弱周期微扰项,方程变为

 $x'' + k \omega x' - \omega^2 x^3 + \omega^2 [1 + as(\omega t)] x^5 = \omega^2 F \cos(\omega t),$ (5) 其中 $as(\omega t)$ 为待测弱周期信号, $F \cos(\omega t)$ 为系统内 置参考信号. 当a = 0 时, 即无参数微扰时, 将系统置 于混沌临界状态, 此时加上非线性 x^5 项系数的弱周期 微扰, 就可以把混沌状态抑制掉, 进入大尺度周期状 态, 从而将待测弱周期信号检测出来. (5)式的动力 学方程为

$$\begin{cases} x' = \omega v, \\ v' = \omega^2 \{-kv + x^3 - [1 + as(\omega t)]x^5 + F\cos(\omega t)\}, \end{cases}$$
(6)

由(6)式建立Duffing振子混沌检测系统仿真模型,如 图 1. 在无外界信号输入(*a* = 0)时,逐渐增大参考信号 的幅度*F*,可得出在*k*固定的情况下,系统相轨迹状态 随*F*的变化而变化,历经了同宿轨迹、分叉轨迹、混 沌状态、混沌临界状态和大尺度周期状态^[12].通过观 察相轨迹图发现,在混沌状态和大尺度周期状态下, 系统的相图截然不同,因此可将其作为信号检测的 依据之一.

但是, 仅通过观察相轨迹图来判定系统混沌状 态改变是没有说服力的. 首先, 它是一种人为的识别 方法, 效率低, 特别是在仿真时间不够长的情况下容 易出现误判. 其次, 采用这种方法很难准确地求出系 统处于混沌临界状态的阈值. 因此, 需要定义一个适 当的指标来表示系统状态的改变.

1.2 Lyapunov 指数法用于混沌判据

Lyapunov指数法用于度量在相空间中初始条件 不同的两条相轨迹随时间按指数率吸引或分离的程 度,这种轨迹收敛或发散的比率称为Lyapunov指数. 它从统计特性上反映了一个系统的动力学特性. Lyapunov指数的定义如下^[13]:对于二维映射有

$$\begin{cases} x_{n+1} = X(x_n, y_n) \\ y_{n+1} = Y(x_n, y_n) \end{cases}$$
(7)

图 1 Duffing 振子混沌检测系统模型

它的 Jacobi 矩阵为

$$I(x_n, y_n) = \begin{bmatrix} \frac{\partial X}{\partial x_n} & \frac{\partial X}{\partial y_n} \\ \frac{\partial Y}{\partial x_n} & \frac{\partial Y}{\partial y_n} \end{bmatrix}.$$
 (8)

假设由初始点 $P_0(x_0, y_0)$ 出发逐次映射而得到的点列 为 $P_1(x_1, y_1)$, $P_2(x_2, y_2)$,…, $P_n(x_n, y_n)$, 则前 n-1 个点处 的 Jacobi 矩阵为

在混沌判据中,一个系统是否处于混沌状态,可 以由它的Lyapunov指数是否有正值来确定^[14].如果 两个Lyapunov指数至少有一个为正,则说明系统处 于混沌状态;如果两个Lyapunov指数都为负,则说明 系统处于大尺度周期状态;如果其中有一个为0或者 近似为 0,则说明系统处于从混沌状态向大尺度周期 状态过渡的混沌临界状态.因此,分析混沌检测系统 的Lyapunov指数,可以清楚地判断系统瞬时动力学 运动状态,从而确定待测信号是否存在,并且可以较 为准确地求出系统处于混沌临界状态的阈值.

2 仿真实验及分析

2.1 实验1

以周期信号为例, 实验中选择频率为 10 Hz的正 弦信号 s_1 和方波信号 s_2 , 叠加得到待测周期信号 $as(\omega t)$, 如图 2. 将系统参考信号的频率定为 10 Hz, 阻尼比k = 0.5, 由相轨迹图可初步判定在 $F \approx 0.5$, 系 统进入混沌状态. 在F = [0.5, 1]内取约 100 个点, 计 算其Lyapunov指数(用符号 L_1 和 L_2 表示). 取其中 30 个典型数值列于表 1 中, 并绘出系统的 Lyapunov 指 数曲线, 如图 3.

图 3 是Lyapunov指数与参考信号幅值 F 的关系 曲线. 横坐标"*"处对应的一个Lyapunov指数最接近 于零($L_1 = -0.0069$),即可得出混沌临界状态的阈值 $F_d = 0.7395$. 故在图 3 中,当F小于阈值 F_d 时,至少

图 3 Lyapunov 指数和参考信号幅值 F 的关系曲线

表 1 Duffing 振子检测系统的 Lyapunov 指数

编号	F	L_1	L_2	编号	F	L_1	L_2	编号	F	L_1	L_2
1	0.5200	0.1355	-0.6355	11	0.7100	0.1770	-0.6770	21	0.8200	-0.1959	-0.3041
2	0.5400	0.1241	-0.6241	12	0.7200	0.1702	-0.6702	22	0.8400	-0.2165	-0.2835
3	0.5600	0.1426	-0.6426	13	0.7300	0.1877	-0.6877	23	0.8600	-0.1829	-0.3171
4	0.5800	0.1780	-0.6780	14	0.7359	-0.0069	-0.4931	24	0.8800	-0.1884	-0.3116
5	0.6000	0.0344	-0.5344	15	0.7400	-0.1470	-0.3529	25	0.9000	-0.1152	-0.3848
6	0.6200	0.1451	-0.6451	16	0.7500	-0.0448	-0.4552	26	0.9200	-0.1901	-0.3526
7	0.6400	0.1734	-0.6734	17	0.7600	-0.1259	-0.3740	27	0.9400	-0.2217	-0.2783
8	0.6600	0.1800	-0.6800	18	0.7700	-0.2094	-0.2906	28	0.9600	-0.2280	-0.2719
9	0.6800	0.1785	-0.6785	19	0.7800	-0.1782	-0.3218	29	0.9800	-0.2064	-0.2937
10	0.7000	0.1594	-0.6594	20	0.8000	-0.2110	-0.2889	30	1.0000	-0.2049	-0.2951

有一个Lyapunov指数为正,说明系统处于混沌状态; 当F大于阈值 F_d 时,两个Lyapunov指数都为负,说明 系统处于大尺度周期状态.

2.2 实验 2

() 调整系统参考信号幅值F =F_d = 0.7359, 使系统处于混沌临界状态.将信号n(t)作为白噪声并入系统,不断调大n(t)的功率,系统仍然处于混沌状态(图 4);若同时加入待测周期信号和白噪声 as(20πt)+n(t),则系统的相轨迹马上由混沌状态跃迁到大尺度周期状态(图 5).由此可得,系统对外界同频率的周期信号非常敏感,而对白噪声具有一定的免疫力.

图 5 系统处于大尺度周期状态的相轨迹图

() 调整系统参考信号幅值 $F = F_d$, 使系统处于 混沌临界状态. 加入含有两种频率的周期信号 $a(t) = a_1s(10\pi t) + a_2s(20\pi t)$, 当 $a_1 = 0 \pm a_2 \neq 0$ 时, $a(t) = a_2s$ (20 πt), 系统由临界状态变为大尺度周期状态; 当 $a_1 \neq 0$

www.scichina.com

且 $a_2 = 0$ 时, $a(t) = a_1 s(10\pi t)$, 系统仍然处于混沌状态; 当 $a_1 \neq 0$ 且 $a_2 \neq 0$ 时, $a(t) = a_1 s(10\pi t) + a_2 s(20\pi t)$,

系统由临界状态变为大尺度周期状态. 实验结果表 明, Duffing 振子检测系统只对与本系统参考信号频 率一致的信号敏感,而对其他频率的信号具有免疫 力.事实上,系统是把与参考信号频率不一样的周期 信号当成了噪声.实验测得输入信号 *a*₂*s*(20π*t*)和 *a*₁*s*(10π*t*)的功率比约为

$$\frac{S_i}{N_i} = 10 \lg \frac{a_2^2}{a_1^2} = 10 \lg \frac{(8 \times 10^{-7})^2}{(10^{-3})^2} = -71 \text{ dB}$$

3 实船线谱检测结果

分析的 3 种舰船分别拟定为 A 型船、B 型船和 C 型船. 实船数据采样率均为 48 kHz,分别从这 3 种舰 船噪声样本中随机选取一段时间为 1 s 的样本,每个 样本数据有 48000 个点. 先对这 3 组数据进行 FFT 变 换,初步得出 0~100 Hz 的频谱分布范围,如图 6.

图 6(a)和(d)分别为 A 型船的时域波形和 A 型船 160 Hz 以下的频谱分布图. 从图 6(d)中可初步判定 A 型船线谱分布在 20~30 Hz, 其中 50 和 100 Hz 附近的 线谱可能是受附近电网干扰产生,在此暂时不做考 虑. 将 A 型船数据作为待测信号并入图 1 的 Duffing 振子检测系统中做进一步的线谱检测,其步骤如下:

() 将系统参考信号频率设为 20 Hz, 调整参考 信号的幅值F至系统处于混沌临界状态,通过观察相 轨迹图和计算Lyapunov指数、确定临界状态的阈值 F.: () 将实船数据并入系统, 逐渐增大实船信号的 幅值a至系统的相轨迹由混沌临界状态变为大尺度周 期状态,并记录此时a值的大小;() 求系统的 Lyapunov指数, 若两个Lyapunov指数均为负, 则从定 量上证实了系统确实从临界状态进入了大尺度周期 状态;若两个Lyapunov指数不都为负,说明系统还没 完全进入大尺度周期状态,则继续增大a值至系统完 全进入周期状态; () 改变系统的参考信号频率, 从 20~30 Hz每隔 1 Hz检测一次, 重复以上 3 个步骤, 以 每次记录下的a值大小为依据、判定特征线谱的具体 分布位置. 从表 2 中 A型船第一次线谱检测所得的 数据中显示, A型船线谱的粗略位置在 26~27 Hz. 从 26~27 Hz每隔 0.1 Hz进行第二次线谱检测, 可进一步 判定特征线谱的精确位置在 26.2 Hz.

同理, 先从图 6(e)和(f)中初步判定 B 型船线谱大 致分布在 65~75 Hz, C 型船线谱大致分布在 75~85 Hz.

图 6 三种船型的舰船辐射噪声信号

(a) A 型船时域波形; (b) B 型船时域波形; (c) C 型船时域波形; (d) A 型船频谱分布; (c) A 型船频谱分布; (f) C 型船频谱分布

A 型船第一次		A 型船第二次		B 型船第一次		B 型船第二次		C 型船第一次		C 型船第二次	
频率/Hz	$a(10^{-7})$	频率/Hz	a (10 ⁻⁷)	频率/Hz	$a(10^{-7})$	频率/Hz	$a(10^{-7})$	频率/Hz	$a(10^{-7})$	频率/Hz	<i>a</i> (10 ⁻⁷)
20	-	26.0	0.30	65	-	68.0	0.20	75	-	81.5	0.57
21	-	26.1	0.23	66	12	68.1	0.20	76	-	81.6	0.53
22	-	26.2	0.21	67	1.3	68.2	0.20	77	40	81.7	0.56
23	20	26.3	0.29	68	0.2	68.3	0.18	78	3.0	81.8	0.51
24	4.2	26.4	0.39	69	0.26	68.4	0.15	79	4.1	81.9	0.47
25	3.4	26.5	0.45	70	4.1	68.5	0.22	80	2.5	82.0	0.40
26	0.3	26.6	0.48	71	6.3	68.6	0.23	81	0.6	82.1	0.35
27	0.6	26.7	0.51	72	17	68.7	0.24	82	0.4	82.2	0.33
28	32	26.8	0.56	73	-	68.8	0.24	83	0.7	82.3	0.49
29	-	26.9	0.63	74	-	68.9	0.24	84	2.0	82.4	0.57
30	-	27.0	0.60	75	-	69.0	0.26	85	4.8	82.5	0.62

表 2 3 种船型线谱分布的混沌检测^{a)}

a) "--"表示待测信号无法使该频率下的系统由混沌变为大尺度周期状态, 即该处的频率成分比较微弱

接着用混沌检测系统判定 B 型船和 C 型船低频线谱 的精确位置. 从表 2 中可判断, B 型船线谱的精确位 置在 68.4 Hz, C 型船线谱的精确位置在 82.2 Hz.

4 结论

() Duffing 振子的非平衡相变对弱周期信号具 有敏感性,及对白噪声和与参考信号频差较大的周 期干扰信号具有免疫力.

() Lyapunov 指数作为混沌判据, 可较为准确地

求出系统处于混沌临界状态的阈值,从定量上给出了系统动力学行为相变的依据,且算法简单,易于实现.

()基于 Duffing 振子的舰船辐射噪声混沌检测 是一种新的有效检测舰船辐射噪声特征线谱的方法, 与传统的功率谱检测方法相比,具有高灵敏度和高 分辨率的特点.该方法首次实现了在时域上直接对 舰船辐射噪声进行线谱检测,简化了工程实现的复 杂程度,对进一步展开水下目标信号的识别和分类 等研究具有重要的参考价值.

第52卷第3期 2007年2月 斜 冷 追 报

参考文献

- Zhu X Q, Wu W S. Prediction of line-spectrum noise induced by high speed vehicle contra-rotating propellers in water. J Ship Mech, 1997, 1(1): 44-56
- 2 Lourens J G. Classification of ships using underwater radiated noise. In: Proceedings of IEEE Communications and Signal Processing. Pretoria: IEEE Press, 1988. 130-134
- 3 Vaccaro R J. The past present and future of underwater acoustic signal processing. IEEE Signal Proc Mag, 1998, 15(4): 21-51[DOI]
- 4 Mo X H, Tang G N. Study on phase synchronization of chaotic oscillators with many rotational centers based on amplitude coupling. Acta Phys Sin, 2004, 53(7): 2080–2083
- 5 Gao X, Yu J B. Chaos in the fractional order periodically forced complex Duffing's oscillators. Chaos Soliton Fract, 2005, 24: 1097— 1104[DOI]
- 6 李月,杨宝俊,袁野,等. 混沌振子检测系统的弱有效地震信号 检测能力. 科学通报, 2006, 51(14): 1710—1716

- 7 李月,杨宝俊.检测强噪声背景下周期信号的混沌系统.科学通报,2003,48(1):19-20
- 8 王树禾.微分方程模型与混沌.合肥:中国科学技术大学出版社, 1992.465—500
- 9 陈士华,陆君安. 混沌动力学初步. 武汉:武汉水利水电大学出版社,1998.226-233
- 10 刘曾荣. 混沌的微扰判据. 上海: 上海科技教育出版社, 1994. 36—48
- 11 Ciraolo G, Chandre C, Lima R. Controlling chaotic transport in a Hamiltonian model of interest to magnetized plasmas. J Phys A Math Gen, 2004, 37: 3589—3597[DOI]
- 12 Wang G Y, He S L. A quantitative study on detection and estimation of weak signals by using chaotic duffing oscillators. IEEE Trans Circuits Syst, 2003, 50(7): 945-953[DOI]
- 13 Wolf A, Swift J B, Swinney H L, et al. Determining Lyapunov exponents from a time series. Physica, 1985, 16: 285–317[DOI]
- 14 Michael T R, James J C, Carlo J D. A practical method for calculating largest Lyapunov exponents from small data sets. Physica D, 1993, 65(1-2): 117—134[DOI]

论文