文章编号: 1000-7032(2013)06-0702-09

Ho³⁺:LiYF₄晶体的中红外发光特性

彭江涛,夏海平*,汪沛渊,胡皓阳,唐 磊 (宁波大学光电子功能材料重点实验室,浙江宁波 315211)

摘要:用坩埚下降法制备了 Ho³⁺离子掺杂的 LiYF₄单晶。测定了 Ho³⁺:LiYF₄晶体的偏振吸收光谱。应用 Judd-Ofelt 理论分别计算了 Ho³⁺:LiYF₄晶体中 Ho³⁺离子的有效强度参数 $\Omega_{2,4,6}$ 、能级跃迁振子强度 f_{exp} 和 f_{eal} 、 自发辐射跃迁几率 A、荧光分支比 β 、辐射寿命 τ_{rad} 等光谱参数。测定了样品在 640 nm 光激发下的红外发射光 谱,观测到由 Ho³⁺离子的⁵I₆→⁵I₇ 跃迁所致的 2.8 ~ 3 µm 中红外发光,以及在 1.2 µm (⁵I₆→⁵I₈)和 2.0 µm (⁵I₇→⁵I₈)处较强的荧光。Ho³⁺:LiYF₄单晶样品的吸收峰线宽较宽,计算得到 1.2 µm 和 2.0 µm 的峰值发射 截面分别达到 0.20×10⁻²⁰ cm² 和 0.51×10⁻²⁰ cm²,同时测定了 1 191 nm(⁵I₆→⁵I₈)和 2 059 nm(⁵I₇→⁵I₈)发 射的荧光寿命。研究结果表明:Ho³⁺:LiYF₄晶体在 2.0~3 µm 波段的中红外激光器中有较大的应用前景。

关键词:偏振吸收光谱;LiYF₄:Ho³⁺晶体;中红外荧光;Jodd-Ofelt 理论
 中图分类号:TN248.1
 文献标识码:A
 DOI: 10.3788/fgxb20133406.0702

Mid-infrared Emission Properties of Ho³⁺ Doped LiYF₄ Single Crystals

 PENG Jiang-tao, XIA Hai-ping * , WANG Pei-yuan, HU Hao-yang, TANG Lei

(Key Laboratory of Photo-electronic Materials, Ningbo University, Ningbo 315211, China) * Corresponding Author, E-mail: hpxcm@nbu.edu.cn

Abstract: The Ho³⁺-doped LiYF₄ single crystals were grown by Bridgman method. The axial and transverse absorption spectra of Ho³⁺ ions in LiYF₄ crystals were measured. The Judd-Ofelt theory was applied to calculate the J-O effective intensity parameters $\Omega_{2,4,6}$, spontaneous radiative transition rate, branching ratio, radiative lifetime of σ transition and π transition. IR emission spectra of Ho³⁺: LiYF₄ single crystals were measured under 640 nm wavelength excitation, and the emission band around 2.9, 1.2 and 2.0 µm due to ${}^{5}I_{6} \rightarrow {}^{5}I_{7}$, ${}^{5}I_{6} \rightarrow {}^{5}I_{8}$, ${}^{5}I_{7} \rightarrow {}^{5}I_{8}$ transition were observed. Based on the absorption spectra, the maximum calculated emission cross section emission at 1.2 and 2.05 µm in LiYF₄: Ho³⁺ crystal are 0.20 × 10⁻²⁰ and 0.51 × 10⁻²⁰ cm², respectively. In the meantime, the emission lifetimes at 1 191 nm (${}^{5}I_{6} \rightarrow {}^{5}I_{8}$) and 2 059 nm (${}^{5}I_{7} \rightarrow {}^{5}I_{8}$) were determined to be 2.13 and 17.23 ms. The research results indicate that Ho³⁺: LiYF₄ crystal is a good candidate for mid-infrared laser media.

Key words: polarized absorption spectra; Ho3+: LiYF4 single crystal; mid-infrared luminescence; Jodd-Ofelt theory

基金项目:国家自然科学基金(51272109,50972061,61275180);浙江省自然科学基金(R4100364,Z4110072);宁波市自然科学基金(2012A610115);宁波大学王宽诚幸福基金资助项目

收稿日期: 2013-01-24;修订日期: 2013-04-03

作者简介:彭江涛(1986 -), 男, 湖南保靖县人, 主要从事稀土掺杂的中红外 LiYF₄ 单晶的研究。 E-mail: opticelectronic@foxmail.com

1引言

由于3 µm 中红外波段激光在军事领域、环 境监测、激光医疗等领域的重大应用前景[1-5],具 有丰富能级结构的稀土离子掺杂的固体激光材料 得到了大量的研究。近年来,人们围绕 Er³⁺离子 的2.7 μm (⁴I_{11/2}→⁴I_{13/2})中红外发射开展了大量 的材料制备与发光性能的研究^[69],这主要是考 虑以 Er³⁺为中心发光离子的材料可用成熟、廉价 的 808 nm 与 980 nm 波段的半导体激光器(LD) 作为激发泵浦源。随着激光技术的发展,半导体 激光波长逐渐向短波移动,640 nm 等波段的 LD 激光器已逐渐走向成熟。 Ho^{3+} 离子的⁵I₆→⁵I₇跃 迁也能发射较宽的 3 μm 波段荧光^[10]。640 nm 的泵浦光有利于 Ho³⁺ 的吸收,因此以 Ho³⁺ 为基 础的中红外激光器件有望得到较快发展,而研究 Ho^{3+} 离子在各种基质中的光谱参数及⁵L, \rightarrow ⁵L, 跃 迁的特性则极为重要。

激光基质材料对于激光输出以及最后的应用 具有重要的作用。通常,激光晶体由于热导率高、 荧光谱线窄、硬度较大等优良的物理化学性质而 成为全固体激光器最基本的激光工作物质。 LiYF₄单晶体是一种优秀的激光基质材料,它具 有声子能量低、热导率大、光透过性高、色心形成 量少、热透镜效应小、激光功率阀值低等优点,是 当前热门的激光活性基质。目前对 Ho³⁺掺杂的 激光晶体的研究基本上集中在 2.0 μ m (对应 Ho³⁺的⁵I₇→⁵I₈ 跃迁)^[11-16]方面,3 μ m 左右的中 红外发光研究只有少量报道^[17-19],而 Ho³⁺掺杂的 LiYF₄晶体在 3 μ m 左右中红外荧光的研究至今尚 鲜有报道。

本工作以 LiYF₄ 为活性基质、Ho³⁺ 为发光中 心,采用坩埚下降法生长出尺寸为 Φ 10 mm × 94 mm 的 1% Ho³⁺: LiYF₄单晶体,测试了样品的吸收 光谱和 640 nm 激光激发下的荧光光谱,运用 J-O 理论计算了 Ho³⁺在 LiYF₄ 晶体中的光谱参数,分 析了 1% Ho³⁺: LiYF₄的中红外荧光光谱性质。

2 实 验

实验中将纯度大于 99.99%的 LiF、YF₃、HoF₃ 3 种原料按照 n(LiF):n(YF₃):n(HoF₃) = 0.51: 0.475:0.01 的量比分别精确称量,再放入研钵中 充分研磨约1~2h。在无水 HF 气氛下,通过高 温氟化法在600~800 ℃下对以上原料脱水处理 6~8h,充分除去原料中的水分和杂质,得到满足 单晶生长需要的陶瓷状 LiYF₄: Ho³⁺多晶料。采 用坩埚下降法生长 Ho³⁺: LiYF₄单晶体(生长方向 为〈100〉)。将多晶料再充分研磨并装入尺寸为 Φ 12 mm×200 mm 的铂金坩埚中,坩埚底部先放 入长为3 cm 的不掺杂的 LiYF₄ 高纯晶种。将坩 埚焊接密封,按设定程序升温,炉体温度控制在 940 ℃(高于晶体熔点 120 ℃左右),生长时温度 梯度严格控制在25~30 ℃/cm。对于20 cm 长的 坩埚,下降速度采用1 mm/h,生长周期为8~10 d。待炉温降至室温后,将晶体从坩埚中剥离,在 中间部位沿垂直 a 轴方向切割出厚度为3 mm 的 样品,再抛光处理。

采用 XD-98X 型 X 射线衍射仪(XD-3, Beijing)测试样品的 XRD,辐射源为 Cu 靶 Kα 射线 (0.154 03 nm),测试角度范围为 10°~90°。用日 本日立公司的 U-4100 型双光束紫外/可见/近红 外光谱仪测量吸收光谱,通光方向为 a 轴,测试范 围为 200~2 500 nm。在 640 nm 光激发下,用法 国 Jobin-Yvon 公司的 Traix 320 荧光光谱仪测量 近红外荧光光谱,用 Zolix 公司 Omni-λ3015 型红 外单色仪(采用液氮制冷的 InSb 探测器) 和英国 Scitec 公司的 Model 420 型锁相放大器测量样品 的中红外荧光光谱。为进一步确定荧光寿命,通 过英国 Scitec 公司脉冲频率为 20 Hz 的 Model 300CD 光学斩波器和美国 Agilent 公司的 Infiniium 54833D 示波器来测量荧光曲线的衰减。以 上测试均在室温下进行。

3 结果与讨论

3.1 Ho³⁺:LiYF₄单晶的 XRD 谱

采用坩埚下降法生长得到透明光亮的 Ho^{3+} : LiYF₄单晶体,整根晶体颜色分布均匀,呈浅绿色, 晶体长度为 9.4 cm,如图 1(a)所示。打磨抛光 后的样品厚度变为 2.20 mm。

 $Ho^{3+}: LiYF_4$ 晶体的 XRD 谱如图 1(b) 所示, 与图 1(c) 中的 LiYF₄ 标准卡(JCPDS 77-0816) 的 衍射峰位置几乎一样,表明 1% Ho³⁺ 的掺杂没有 改变 LiYF₄ 的晶相结构。由于稀土离子在晶体中 的分凝现象,在晶体中不同高度处,稀土离子的 摩尔分数会不同于初始时的摩尔分数,参考不同

- 图 1 (a)Ho³⁺: LiYF₄晶体; (b)Ho³⁺: LiYF₄晶体的 XRD 谱; (c)LiYF₄晶体的 JCPDS 77-0816 谱线。
- Fig. 1 (a) Photo of Ho^{3+} : LiYF₄ crystal. (b) XRD pattern of Ho^{3+} : LiYF₄ crystal. (c) The standard line pattern of the orthorhombic phase LiYF₄ (JCPDS 77-0816).

稀土离子在 LiYF₄ 晶体中的有效分凝系数^[20], Ho³⁺的有效分凝系数为 0.996, 极为接近于 1, 表明 Ho³⁺在 LiYF₄ 晶体中分布较为均匀, 因此在所获晶体中可观察到均匀的浅绿色。

3.2 样品的偏振吸收光谱及 Judd-Ofelt 理论 分析

LiYF₄ 为单轴晶体,有各向异性效应^[21-22],平 均透射光强可用如下公式来表示:

$$I_{\iota}(\lambda) = I_0 \left\{ \frac{1}{3} \exp[-\alpha_{\pi}(\lambda)L] + \frac{2}{3} \exp[-\alpha_{\sigma}(\lambda)L] \right\}, \qquad (1)$$

式中, I_{t} , I_{0} 分别为透射光强和入射光强, $\alpha_{\pi}(\lambda)$ 、 $\alpha_{\sigma}(\lambda)$ 分别为稀土离子在波长 λ 为 π 跃迁和 σ 跃迁的吸收系数,L 为样品厚度。各向异性的 Ho³⁺: LiYF₄晶体的有效 J-O 强度参数可以通过下 式计算:

$$\Omega_{\rm eff} = \frac{\Omega_{\pi} + 2\Omega_{\sigma}}{3} \,. \tag{2}$$

图 2 为在室温下测量得到的 300~2 500 nm 波段的两种偏振吸收光谱, 通光方向为 a 轴。经 偏振系统后得到的图 2(a)为 π 偏振谱, 图 2(b) 为 σ 偏振谱。可以发现二者峰谷的强弱有所不 同,体现了 Ho³⁺: LiYF₄晶体的各向异性。波长为 2 010,1 145,637,535,482,470,448,415,360 nm 的吸收峰分别对应于 Ho³⁺ 从基态⁵I₈ 能级到激发 态⁵I₇、⁵I₆、⁵F₅、⁵S₂(⁵F₄)、⁵F₃、⁵F₂(³K₈)、⁵G₆(⁵F₁)、 ³G₅、³H₅(³H₆,⁵G₂) 的吸收跃迁。

- 图 2 单晶 Ho³⁺: LiYF₄样品的 π 偏振谱(E//C) (a)和 σ 偏振谱(E⊥C) (b)
- Fig. 2 The polarized absorption spectra of ${\rm Ho}^{3\,*}$: LiYF4. (a) E//C. (b) E \perp C.

由吸收光谱可得到 Ho³⁺的实验振子强度,计 算公式为^[23]:

$$f_{\exp} = \frac{mc^2}{\pi N e^2 \lambda^2} \int \alpha(\lambda) \, \mathrm{d}\lambda = \frac{mc^2}{\pi N e^2 \lambda^2} \cdot \frac{2.303}{L} \cdot \int D(\lambda) \, \mathrm{d}\lambda, \qquad (3)$$

式中m、e分别为电子的质量和电量,c为光速, λ 为谱线中心波长(单位为 nm),N为单位体积的 离子个数, $\alpha(\lambda)$ 为样品吸收系数(分 π 和 σ 跃 迁), $D(\lambda)$ 为光密度(分 π 和 σ 跃迁),L为样品 厚度(2.20 mm)。根据 Judd-Ofelt 理论^[24-25], Ho³⁺理论振子强度由如下公式计算:

$$f_{cal}^{p} = f_{ed}^{p} + f_{md}^{p}, \qquad (4)$$

其中 $f_{\rm ed}$ 、 $f_{\rm md}$ 分别为电偶极矩和磁偶极矩跃迁的 振子强度,p为两种偏振光谱(π 光谱和 σ 光谱) 的标识符。其中:

$$f_{\rm ed} = \frac{8mc\pi^2}{3h\lambda(2J+1)} \cdot \chi_{\rm ed} \cdot \sum_{t=2,4,6} \Omega_t \cdot U_{(t)} = \frac{8mc\pi^2}{3h\lambda(2J+1)} \cdot \frac{(n^2+2)^2}{9n} \cdot \sum_{s=2,4,6} \Omega_t |\langle 4f^{\rm N}[S,L]J || U^{(t)} || 4f^{\rm N}[S',L']J' \rangle |^2,$$
(5)

式中 h 为普朗克常数, χ_{ed} 为电偶极矩跃迁折射率 因子,n 为折射率。结合文献[26]中的 LiYF₄ 折 射率数据, 拟合得到折射率随波长变化的函数为: $n_o(\lambda) = A + B\lambda^2/(\lambda^2 - C) + D\lambda^2/(\lambda^2 - E)$,其中 A = 1.164 8, B = 0.282 7, C = 0.008 1, D = $0.157 1, E = 115.794 7; n_e(\lambda) = A + B\lambda^2/(\lambda^2 - C) + D\lambda^2/(\lambda^2 - E)$,其中 A = 1.177 3, B = $0.292 4, C = 0.008 5, D = 0.274 0, E = 195.460 3_o$ Ω_i 为振子强度参数,其值与基质结构、配位场的 对称性和有序性密切相关^[27],反映电子波函数和 能级分裂等特性^[28]。Ho³⁺从基态 *SLJ* 到各个激发 态 *S'L'J*'的约化矩阵元的平方 $U_{(t)} = | < [S,L]J \cdot$ $||U^{(t)}|| [S',L']J > |^2 (式中 U^{(t)})$ 为单位张量算 符,区别于 $U_{(t)}$)与稀土离子跃迁能级有关,随基 质晶体的差别变化很小,这里直接引用文献[29] 中的数据。

$$\mathcal{L}_{\mathrm{md}} = \frac{h}{6mc\lambda(2J+1)} \cdot \chi_{\mathrm{md}} \mid \langle 4f^{\mathbb{N}}[S,L]J \parallel L + 2S \parallel 4f^{\mathbb{N}}[S',L']J' \rangle \mid^{2} = \chi_{\mathrm{md}} \cdot f', \qquad (6)$$

式中 χ_{md} 为磁偶极矩跃迁折射率因子,等于晶体的 折射率 n; Ho³⁺的f'值已经被计算,直接引用文献 [29]。磁偶极矩跃迁的选择定则是 $\Delta L = \Delta S = 0$; $\Delta J = 0, \pm 1; \Delta M = 0, \pm 1$ 。按照这一规则,在吸收 跃迁中只有⁵I₈→⁵I₇的跃迁含有磁偶极矩跃迁。 结合公式(4),通过线性最小二乘拟合法, π 光谱 和 σ 光谱相应的的强度参数 $\Omega_{i}(t = 2, 4, 6)$ 被求

出。拟合的差异程度用均方根偏差来衡量:

$$\delta = \sqrt{\frac{\sum_{i=0}^{M} (f_{cal} - f_{exp})^{2}}{M - 3}},$$
 (7)

其中 M 为列入计算中的吸收带的个数。并通过 公式(2)计算出有效强度参数 Ω_{eff} ,相应结果及相 关文献中的强度参数值列于表 1 中。

表1 晶体中 Ho³⁺的 Judd-Ofelt 强度参数对比

Table 1 Comparison of the Judd-Ofelt intensity parameters for Ho³⁺ doped crystal

晶体			Ref.			
		$\Omega_2/(10^{-20} { m cm}^2)$	$\Omega_4/(10^{-20} { m cm}^2)$	$\Omega_{6}/(10^{-20} { m cm}^{2})$	δ⁄ 10 ⁻⁶	
	$arOmega_{\pi}$	0.94	0.84	1.44	0.44	Current
Ho ³⁺ :LiYF ₄	$arOmega_{\sigma}$	1.24	0.77	1.27	0.42	work
	$arOmega_{ m eff}$	1.14	0.79	1.33		
Ho: YAG		0.04	2.67	1.89	_	[30]
Ho ^{3 +} : LiYF ₄		1.04	1.21	1.37	0.139	[31]
Ho: YLF		1.16	1.62	1.60	_	[32]
Ho: YLF		1.03	2.32	1.93	0.13	[33]

	表 2	Ho ³⁺	的实验和计算振子强度
--	-----	------------------	------------

Table 2	The	experimental	and	calculated	osillator	strengths	of H	[0 ³⁺
---------	-----	--------------	-----	------------	-----------	-----------	------	------------------

Transition		π		σ			
$J {\rightarrow} J'$	λ /nm	$f_{\rm exp}/10^{-6}$	$f_{\rm cal}/10^{-6}$	λ/nm	$f_{\rm exp}/10^{-6}$	$f_{\rm cal}/10^{-6}$	
${}^{5}I_{8} \rightarrow {}^{5}I_{7}$	1 934	1.04	1.007(ed) 0.433(md)	1 932	0.906	0.883(ed) 0.427(md)	
${}^{5}I_{8} \rightarrow {}^{5}I_{6}$	1 148	0.518	0.756	1 150	0.497	0.66	
${}^{5}I_{8} \rightarrow {}^{5}F_{5}$	638	1.384	1.543	638	1.207	1.357	
${}^{5}I_{8} \rightarrow {}^{5}S_{2}$, ${}^{5}F_{4}$	536	2.134	2.413	536	1.991	2.11	
${}^{5}I_{8} \rightarrow {}^{5}F_{3}$	482	0.367	0.865	482	0.345	0.753	
${}^{5}I_{8} \rightarrow {}^{5}F_{2}$, ${}^{3}K_{8}$	470	0.184	0.982	472	0.232	0.867	
${}^{5}I_{8} \rightarrow {}^{5}G_{6}$, ${}^{5}F_{1}$	448	4.361	4.38	448	4.939	4.987	
${}^{5}I_{8} \rightarrow {}^{3}G_{5}$	414	1.246	0.908	416	1.052	0.814	
${}^{5}I_{8} \rightarrow {}^{3}H_{5}$, ${}^{3}H_{6}$, ${}^{5}G_{2}$	360	1.568	1.419	358	2.083	1.456	

π 谱和 σ 谱拟合的均方根偏差分别为 δ = 0.44 × 10⁻⁶ 和 δ = 0.42 × 10⁻⁶,结合文献报道的 3 个强度参数值,可以看出实验误差和计算误差均 在合理范围内。从表 1 中可以看出,本文中 Ho³⁺: LiYF₄的 Ω_2 值要比 Ho: YAG 的大,相应参考文献 中 YLF 的 Ω_2 也较大,进一步证实 LiYF₄单晶较 YAG 晶体的化学共价性较强。本文研究的 1% Ho³⁺: LiYF₄单晶体中相应的吸收波长及其对 应的能级跃迁,实验振子强度和计算振子强度均 列于表 2 中。利用拟合得到的强度参数,进而可 以求出稀土离子中的电子从激发态 J 跃迁到 J'时 的自发辐射跃迁几率 A:

$$A(J,J') = A_{\rm ed} + A_{\rm md} = \frac{64\pi^4 e^2}{3h\lambda^3 (2J+1)} \Big[\frac{n (n^2 + 2)^2}{9} S_{\rm ed} + n^3 S_{\rm md} \Big],$$
(8)

其中A_{ed}和A_{md}分别为电偶极跃迁和磁偶极跃迁几率,S_{ed}和S_{md}分别为电偶极跃迁和磁偶极跃迁谱

线强度。并且磁偶极矩跃迁的选择定则是 $\Delta L = \Delta S = 0, \Delta J = 0, \pm 1$ 。计算公式分别如下:

$$S_{\rm ed}(J,J') = \sum_{\iota=2,4,6} \Omega_{\iota} |\langle 4f^{N}[S,L]J || U^{(\iota)} || 4f^{N}[S',L']J' \rangle |^{2}, \qquad (9)$$

$$S_{\rm md}(J,J') = \frac{n}{16m^2c^2\pi^2} |\langle 4f^{\rm N}[S,L]J || L + 2S || 4f^{\rm N}[S',L']J' \rangle |^2, \qquad (10)$$

表3 Ho^{3+} : LiYF₄晶体中 Ho^{3+} 的 A_{ed} 、 A_{md} 、 β 、 τ_{rad} 数值

Table 3 The value of the calculated $A_{\rm ed}$, $A_{\rm md}$, β , and $\tau_{\rm rad}$ of Ho³⁺ in Ho³⁺: LiYF₄ crystal

J	$\rightarrow J'$	λ/nm	$U_{(2)}$	$U_{(4)}$	$U_{(6)}$	$A_{\rm ed}/{\rm s}^{-1}$	$A_{\rm md}/{ m s}^{-1}$	ΣA	eta	${ au}_{ m rad}/ m ms$
$^{5}\mathrm{I}_{7}$	$\rightarrow {}^{5}I_{8}$	1 960	0.024 9	0.134 4	1.5217	41.49	15.23	56.72	1	17.6299
${}^{5}I_{6}$	$\rightarrow {}^{5}I_{8}$	1 175	0.008 3	0.038 3	0.6918	98.81	0	117.27	0.842 6	8.527 2
	$\rightarrow ^{5}I_{7}$	2 934	0.031 9	0.133 6	0.9308	9.12	9.34		0.1574	
$^{5}I_{5}$	$\rightarrow {}^{5}I_{8}$	900	0	0.009 9	0.093 6	35.82		94.94	0.377 3	10.532 5
	$\rightarrow ^{5}I_{7}$	1 662	0.002 7	0.022 6	0.8887	51.72			0.5447	
	$\rightarrow ^{5}I_{6}$	3 831	0.043 8	0.1705	0.5729	3.32	4.08		0.078 0	
$^{5}\mathrm{I}_{4}$	$\rightarrow {}^{5}I_{8}$	749	0.000 0	0.000 0	0.0077	5.88		63.09	0.093 2	15.850 2
	$\rightarrow ^{5}I_{7}$	1 211	0.000 0	0.003 3	0.1568	28.68			0.454 6	
	$\rightarrow^5 I_6$	2 064	0.002 2	0.028 1	0.664 0	24.91			0.394 8	
	$\rightarrow ^{5}I_{5}$	4 472	0.031 2	0.1237	0.9099	3.62			0.057 4	
$^{5}\mathrm{F}_{5}$	$\rightarrow ^{5}I_{8}$	645	0.000 0	0.4277	0.568 6	804.77		1 053.74	0.7637	0.949 0
	$\rightarrow ^{5}I_{7}$	961	0.0177	0.329 8	0.434 2	190.86			0.181 1	
	$\rightarrow^{5}I_{6}$	1 430	0.010 2	0.121 3	0.499 5	52.09			0.049 4	
	$\rightarrow ^{5}I_{5}$	2 282	0.006 8	0.027 1	0.164 9	4.13	1.87ª		0.003 9	
	$\rightarrow {}^{5}I_{4}$	4 658	0.000 1	0.005 9	0.004 0	0.02			0.001 8	
$^5\mathrm{S}_2$	$\rightarrow ^{5}I_{8}$	540	0.000 0	0.000 0	0.227 0	832.54		1 547.27	0.538 1	0.646 3
	$\rightarrow ^{5}I_{7}$	746	0.000 0	0.000 0	0.409 6	569.78			0.368 2	
	$\rightarrow {}^{5}I_{6}$	1 000	0.000 0	0.020 6	0.154 1	96.06			0.062 1	
	$\rightarrow {}^{5}I_{5}$	1 354	0.000 0	0.004 3	0.106 2	25.3			0.016 4	
	$\rightarrow ^{5}I_{4}$	1 942	0.001 3	0.027 9	0.279 5	23.43			0.015 1	
	$\rightarrow ^{5}F_{5}$	3 330	0.000 0	0.011 0	0.003 6	0.16			0.000 1	
$^{5}\mathrm{F}_{4}$	$\rightarrow ^{5}I_{8}$	536	0.000 0	0.2402	0.707 9	1 772.18		2 093.95	0.846 3	0.477 6
	$\rightarrow ^{5}I_{7}$	738	0.000 0	0.198 8	0.032 4	120.12			0.057 4	
	$\rightarrow {}^{5}I_{6}$	986	0.001 2	0.258 0	0.1697	108.44			0.051 8	
	$\rightarrow ^{5}I_{5}$	1 327	0.001 8	0.1314	0.465 5	74.84			0.035 7	
	$\rightarrow ^{5}I_{4}$	1 887	0.000 1	0.023 4	0.2587	13.02	$3.05^{\rm b}$		0.006 2	
	$\rightarrow ^{5}F_{5}$	3 173	0.194 4	0.092 3	0.008 0	2.30			0.002 6	
	${\rightarrow}^5 {\rm S}^2$	67 656	0.000 0	0.015 9	0.003 3	0.00			0.000 0	

^a处的值为3个跃迁 ${}^{5}F_{5} \rightarrow ({}^{5}F_{5} + {}^{5}I_{4} + {}^{5}I_{5})$ 之和;^b处的值为3个跃迁 ${}^{5}F_{4} \rightarrow ({}^{5}I_{6} + {}^{5}I_{5} + {}^{5}I_{4})$ 之和

辐射寿命 au_{rad} :

$$\tau_{\rm rad} = \frac{1}{\sum_{S'L'J'} A[(S,L)J,(S',L')J']}.$$
 (11)

荧光分支比β:

$$\beta = \frac{A[(S,L)J,(S',L')J']}{\sum_{S'L'J'} A[(S,L)J,(S',L')J']}.$$
 (12)

表 3 列出了相关计算的数值。从表 3 列出 的数据可知,理论上 Ho³⁺: LiYF₄ 单晶体能够产生 3 µm 左右的中红外荧光辐射,包括 2.9 µm (⁵I₆→⁵I₇),3.1µm(⁵F₄→⁵F₅),3.3 µm(⁵S₂→ ⁵F₅),荧光分支比分别为 15.74%,0.26%, 0.01%,可以推断这 3 处荧光最容易观察到的便 是 2.9 µm。

3.3 红外荧光光谱

室温下在波长为 640 nm 激光的激发下, Ho³⁺: LiYF₄单晶体样品在 1 000~2 250 nm 范围 的荧光光谱如图 3 所示。

- 图 3 在 640 nm 激光激发下, Ho³⁺: LiYF₄单晶样品在 1 000~2 250 nm 波段的红外荧光光谱。
- Fig. 3 Emission spectrum (1 000 ~ 2 250 nm) of ${\rm Ho}^{3+}$: LiYF4 crystal under 640 nm excitation

图中1160 nm 附近有两个峰值为1153 nm 和1189 nm 的荧光发射峰,是由 Ho³⁺离子低对称 性配位场中的光谱项⁵I₆在 Stark 分裂后向⁵I₈ 跃 迁引起的。2.0 μ m 处荧光峰的线宽很大,且其附 近有两处荧光发射峰1946 nm 和2054 nm,是 Ho³⁺离子 ⁵I₇ 能级分裂后向⁵I₈ 能级跃迁引起的。 激光晶体的受激发射截面大小是衡量材料产生激 光优劣性能的重要参数。由吸收光谱可以计算 Ho³⁺离子⁵I₆和⁵I₇ 能级的跃迁截面,这里只选取 光谱图2(b)来计算,吸收截面与波长的关系为:

$$\sigma_{abs}(\lambda) = 2.303 \frac{D(\lambda)}{Nd}, \qquad (13)$$

式中 $D(\lambda)$ 为光谱仪测量的光密度,d为样品厚度 0.220 cm,N为 Ho³⁺ 在样品中的离子数浓度 3.011×10²⁰/cm³)。根据 McCumber 理论^[34],发 射截面与吸收截面的关系为:

$$\sigma_{\rm em}(\lambda) = \sigma_{\rm abs}(\lambda) \exp[(\varepsilon - hc\lambda^{-1})/kT],$$
(14)

其中k、T、 λ 、h分别为玻尔兹曼常数、样品测试时 绝对温度、跃迁波长和普朗克常数。 ε 表示在温 度不变时将一个 Ho³⁺从基态激发到某一激发态 所需的自由能,可用文献[35]中的方法计算得 到⁵I₆→⁵I₈和⁵I₇→⁵I₈跃迁峰值处的自由能分别为 8 670 cm⁻¹和5 153 cm⁻¹。由公式(13)和(14)计 算得到的吸收截面和受激发射截面如图 4 和图 5 所示。

图 4 Ho³⁺: LiYF₄晶体在 1.2 μm 波段的吸收和受激发 射截面

- 图 5 Ho³⁺: LiYF₄晶体中 Ho³⁺ 在 2.0 μm 波段的吸收和 受激发射截面
- Fig. 5 Absorption and emission cross-section line shapes near 2.0 μm in ${\rm Ho}^{3\, +}\colon {\rm LiYF}_4$ crystal

计算得到的 1.2 μm 和 2.0 μm 两波段的峰 值发射截面分别为 0.20 × 10⁻²⁰ cm² 和 0.51 × 10⁻²⁰ cm²。结合图 3 的的红外荧光光谱可以看 出,图 4、图 5 的发射截面曲线与荧光光谱大致相 符。由于 Stokes 位移和形状变化,波长大于峰值 波长时,发射截面大于吸收截面,同时吸收截面峰 值也小于受激发射截面峰值。并且 Ho³⁺: LiYF₄ 晶体的吸收峰较宽,这对泵浦源波长要求较低。 发射截面峰值高,理论上可以作为合适的激光工 作物质。

在 640 nm 的激发光激发下,样品在 1 191 nm 和 2 059 nm 的荧光寿命曲线分别如图 6 与图 7 所示,两图中的 y 轴值均已经归一化,并且均取自 然对数。

图 6 640 nm 光激发下样品在 1 191 nm 的荧光衰减 曲线

Fig. 6 Decay curves of 1 191 nm emission in Ho^{3+} : LiYF₄ crystal under excitation at 640 nm

图 7 640 nm 光激发下样品在 2 059 nm 的荧光衰减曲线 Fig. 7 Decay curves of 2 059 nm emission in Ho³⁺: LiYF₄ crystal under excitation at 640 nm

两图中的实线振荡曲线为测试所得,短虚线为 用单指数函数 $I_t/I_0 = \exp(x/\tau_{fit})$ 拟合得到的曲线。 测试得到的荧光寿命分别为 2.13 ms 和 17.23 ms。运用单指数函数拟合荧光衰减曲线的荧光 寿命值分别为 2.11 ms 和 17.7 ms,与实验值非常 接近。结合前面计算得到的⁵I₆ 和⁵I₇ 能级的跃迁 寿命 τ_{rad} ,得出 Ho³⁺离子两能级跃迁的量子效率 $\eta(\eta_{meas}/\eta_{rad})$ 分别为 24.98% 和 97.73%。 在 640 nm 激光激发下,样品在 2.9 μm 中红 外波段有明显的荧光峰,如图 8 所示。但相比于 1.2 μm 和 2.0 μm 的红外波长,其强度相对较低。

- 图 8 Ho³⁺: LiYF₄样品在 640 nm 激光激发下的 2.9 μm 附近中红外荧光光谱与 Ho³⁺离子能级图
- Fig. 8 2.9 μm mid-infrared emission spectrum under 640 $$\rm nm$ excitation and energy level diagrams of ${\rm Ho}^{3+}$ ion

结合表 3 中计算得到的跃迁⁵I₆→⁵I₇和⁵I₆→⁵I₈ 的荧光分支比 β 分别为 14.2% 和 85.8%,及表中 的计算辐射寿命和图 6、图 7 中的荧光寿命,可以 知道积累在⁵I₆ 能级上的电子会大量跃迁至⁵I₈ 基 态能级,产生 1 150 nm 左右的红外光。样品采用 640 nm 激光激发,电子跃迁至⁵F₅ 能级,再向下跃 迁的通道增多,最终使得大量电子跃迁至⁵I₇ 与⁵I₈ 能级,能量损失过多,使得 2.9 μ m 荧光发射对应 的上能级⁵I₆ 电子数过少,产生的光子数较少,所 以荧光强度偏弱。除此之外,原料中残留的微量 水分或晶体样品加工过程中引入的极少量水使得 样品中含有羟基(—OH),这对 2.9 μ m 处的荧光

4 结 论

采用坩埚下降法下生长了 Ho^{3+} : LiYF₄单晶, 运用 Judd-Ofelt 理论计算得出 Ho^{3+} 在 LiYF₄晶体 中的有效强度参数 $\Omega_2 = 1.14 \times 10^{-20}$ cm², $\Omega_4 =$ 0.79×10⁻²⁰ cm², $\Omega_6 = 1.33 \times 10^{-20}$ cm²,并进一步 计算了各激发态能级自发辐射跃迁几率 A、荧光 分支比 β ,及相应激发态的辐射寿命 τ_{rad} 。在 640 nm 激光激发下,样品中 Ho³⁺在1 191 nm 和2 059 nm 的荧光寿命分别为 2.13 ms 和 17.23 ms,得出 2.9 μm 荧光发射对应的跃迁⁵I₆→⁵I₇ 的荧光分支 比 β 为 15.74%。Ho³⁺: LiYF₄单晶样品在 640 nm 光激发下产生较强的 1.2 μm 近红外和 2.0 μm 中红外荧光,1.2 μm 和 2.0 μm 的峰值发射截面 分别达到 0.20×10⁻²⁰ cm² 和 0.51×10⁻²⁰ cm²,同 时具有宽的吸收峰线宽和较大的发射截面。在 2.9~3 μm 波段也观察到荧光输出,但强度相对 偏弱,通过改进工艺可以促进其荧光输出。根据 上述结果,可以考虑将 Ho³⁺: LiYF₄作为 2~3 μm 中红外波段的激光工作物质。

参考文献:

- [1] Wang J Y, Wu Y C. Progress of the research on photoelectronic functional crystals [J]. Mater. China (中国材料进展), 2010, 29(10):1-3 (in Chinese).
- [2] Fu W. Laser technology of infrared countermeasure [J]. Infrared and Laser Eng. (红外与激光工程), 2001, 30(3): 176-187 (in Chinese).
- [3] Allen R, Esterowitz L, Ginther R J. Diode-pumped single-mode fluorozirconate fiber laser from the ⁴I_{11/2}→⁴I_{13/2} transition in erbium [J]. Appl. Phys. Lett., 1990, 56(17):1635-1637.
- [4] Ren G G, Huang Y N. Laser-based IRCM system defenses for military and commercial aircraft [J]. Laser & Infrared (激 光与红外), 2006, 36(1):1-6 (in Chinese).
- [5] Qi Y H. Mid-infrared laser based treatment of glaucoma developments [J]. I. E. S. (国际眼科杂志), 1995, 19(6): 335-338 (in Chinese).
- [6] Pollnau M, Spring R, Ghisler C, et al. Efficiency of erbium 3-µm crystal and fiber lasers [J]. J. Quant. Electron, 1996, 32(4):657-663.
- [7] Simondi-Teisseire B, Viana B, Lejus A M, et al. Optimization by energy transfer of the 2.7 μm emission in the Er: SrLa-Ga₃O₇ melilite crystal [J]. J. Lumin., 1997, 72(74):971-973.
- [8] Park S H, Lee D C, Heo J, et al. Energy transfer between Er³⁺ and Pr³⁺ in chalcogenide glasses for dualwavelength fiberoptic amplifiers [J]. J. Appl. Phys., 2002, 91(11):9072-9075.
- [9] Golding P S, Jackson S D, King T A, et al. Energy transfer processes in Er³⁺-doped and Er³⁺, Pr³⁺-codoped ZBLAN glasses [J]. Phys. Rev. B, 2000, 62(2):856-863.
- [10] Librantz A F H, Jackson S D, Gomes L. Pump excited state absorption in holmium-doped fluoride glass [J]. J. Appl. Phys., 2008, 103(2):023105-1-8.
- [11] Yu J, Xia H P, Zhang J L. The optical and gain properties of GeO₂-B₂O₃-BaO-Na₂O-Al₂O₃ gemanate glasses containing Ho³⁺ ion [J]. Opt. Tech. (光学技术), 2009, 35(3):380-383 (in Chinese).
- [12] Quarles G J, Rosenbaum A, Marquardt C L, et al. High-efficiency 2.09 µm flash lamp-pumped laser [J]. Appl. Phys. Lett., 1989, 55(11):1062-1064.
- [13] Rabinovich W S, Bowman S R, Feldman B J, et al. Tunable laser pumped 3 µm Ho: YAlO₃ laser [J]. J. Quantum Elect., 1991, 27(4):895-897.
- [14] Tikhomirov V K, Mendez-Ramos J, Rodriguez V D, et al. Investigation of 2.0 µm emission in Tm and Ho co-doped tellurite glass [J]. Opt. Mater., 2007, 29:688-696.
- [15] Yu C L, He D B, Wang G N, et al. The effects of Yb/Tm/Ho doping concentration on 2.0 µm wavelength luminscence in germanium glasses [J]. Acta Optica Sinica (光学学报), 2009, 29(11):3143-3147 (in Chinese).
- [16] Yang X T, Liu Y, Li W H, et al. Theoretical and experimental analysis of Ho: YAP crystal for 2 µm laser [J]. Infrared and Laser Eng. (红外与激光工程), 2012, 41(7):1733-1736 (in Chinese).
- [17] Zhu J, Dai S X, Chen F F, et al. Mid-infrared emission properties of Ho³⁺ ion in nanocrystals embedded chalcohalide glass ceramics [J]. Acta Optica Sinica (光学学报), 2010, 30(7):1916-1919 (in Chinese).
- [18] Jackson S D, Bugge F, Erbert G. Directly diode-pumped holmium fiber lasers [J]. Opt. Lett., 2007, 32(17):496-498.
- [19] Tian Y, Xu R R, Hu L L, et al. Intense 2.7 µm and broadband 2.0 µm emission from diode-pumped Er³⁺/Tm³⁺/Ho³⁺-

doped fluorophosphate glass [J]. Opt. Lett., 2011, 36(16):3218-3220.

- [20] Namujilatu, Yuan B, Ruan Y F, et al. Effective segregation coefficient of rare earth ions in LiYF₄ crystals [J]. J. Chin. Ceram. Soc. (桂酸盐学报), 2001, 29(6):584-586 (in Chinese).
- [21] Lomheim T S, Deshazer L G. Optical-absorption intensities of trivalent neodymium in the uniaxial crystal yttrium orthovanadate [J]. J. Appl. Phys., 1978, 49(11):5517-5522.
- [22] Luo Z D, Chen X Y, Zhao T J. Judd-Ofelt parameter analysis of rare earth anisotropic crystals by three perpendicular unpolarized absorption measurements [J]. Opt. Commun., 1997, 134(1/2/3/4/5/6):415-422.
- [23] Sana J, Cases R, Alcala R. Optical properties of Tm³⁺ in fluorozirconate glass [J]. J. Non-Cryst. Solids, 1987, 93(312):377-386.
- [24] Judd B R. Optical absorption intensities of rare-earth ions [J]. Phys. Rev., 1962, 127(3):750-761.
- [25] Ofelt G S. Intensities of crystal spectra of rare-earth ions [J]. J. Chem. Phys., 1962, 37(3):511-520.
- [26] Castleberry D E, Linz A. Measurement of the refractive indices of LiYF₄ [J]. Appl. Opt., 1975, 14(9):2056-2057.
- [27] Tanabes T, Ohyag T, Soga N. Compositional dependence of Judd-Ofelt parameters of Er³⁺ ions in alkalimetal borate glasses [J]. Phys. Rev. B, 1992, 46(6):3305-3310.
- [28] Desurive E. Erbium-doped Fiber Amplifiers: Principles and Application [M]. New York: Wiley-Inter-Science Publication, 1994:244-247.
- [29] Carnall W T, Fields P R, Rajnak K. Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr^{3+} , Nd^{3+} , Pm^{3+} , Sm^{3+} , Dy^{3+} , Ho^{3+} , Er^{3+} , and $Tm^{3+}[J]$. J. Chem. Phys., 1968, 49(40):4424-4442.
- [30] Malinowski M, Frukacz Z, Szufinsk M, et al. Optical transitions of Ho³⁺ in YAG [J]. J. Alloys Compd., 2000, 300: 389-394.
- [31] Wu S X, Zhang S Y, Wang Q Y. Spectral oscillator strengths and Q_λ parameters for Ho³⁺ and Er³⁺ in YLiF₄ crystals [J]. *Chin. J. Lumin.* (发光学报), 1986, 7(3):253-254 (in Chinese).
- [32] Tkachuk A M, Khilko A V, Petrov M V. Probities of intracenter spontaneous radiactive and nonradiactive intermultiplat transition in Ho³⁺ ions in an LiYF₄ crystal [J]. Opt. Spectrosc., 1985, 58(1):55-59.
- [33] Walsh B M, Barnes N P, Bartolo B D. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: Application to Tm³⁺ and Ho³⁺ ions in LiYF₄ [J]. J. Appl. Phys., 1998, 83(5):2786-2787.
- [34] McCumber D E. Einstein relations connecting broadband emission and absorption spectra [J]. Phys. Rev., 1964, 136(4A):954-957.
- [35] Li M H, Hu H F, Qi C H. A method to calculate the emission cross section of rare-earth ions [J]. Acta Optica Sinica (光 学学报), 2001, 21(5):626-629 (in Chinese).