论 文 www.scichina.com csb.scichina.com

《中国科学》杂志社 SCIENCE CHINA PRESS

辽宁海城炒铁河辉长岩锆石 SHRIMP U-Pb 年龄及 地质意义

苗来成^①, 张福勤^①, 刘敦一², 石玉若², 颉颃强²

① 中国科学院地质与地球物理研究所,北京 100029;
② 中国地质科学院地质研究所北京离子探针中心,北京 100037
E-mail: miaolc@mail.igcas.ac.cn

2009-03-02 收稿, 2009-05-06 接受 国家自然科学基金(批准号: 40773025)和国家重点基础研究发展计划(编号: 2006CB403504)资助项目

摘要 对辽东海城地区的炒铁河辉长岩侵入体的锆石 SHRIMP U-Pb 定年结果表明,该辉长岩 侵位年龄为(126±4) Ma,说明它形成于早白垩世华北克拉通岩石圈大规模减薄背景下,而不 是长期认识的形成于古元古代裂谷环境.该辉长岩体含有大量的年龄为古元古代(2.10~2.4 和~1.87 Ga)和新元古代(747~969 Ma)的老锆石,前者可能来源于华北地块本身,而后者则可 能来自俯冲到华北之下的扬子地块.这些年龄信息对认识中生代华北地壳的演化具重要启示 意义.

关键词 辉长岩 钻石 SHRIMP 辽东 华北克拉通

辽东太子河拗陷以南的鞍山和海城东南的早前 寒武纪地体中发育有大量的基性岩类侵入体(图 1(a)), 岩性主要为辉长岩和辉绿岩及少量的闪长岩.这些 基性侵入体以脉状及岩株状侵入到辽河群变质岩及 混合岩中,一部分发生一定程度的变质变形.在营口 幅和辽阳幅 1:20 万区域地质调查报告中,这些基性 侵入岩被划为吕梁期侵入岩¹⁾.尽管这一认识是在缺 乏令人信服的地质和同位素年代学证据的情况下提 出的,但却被长期接受^[1],并一直沿用至今.另外, 有关这些基性侵入岩研究的公开发表的资料更是十 分难觅.我们在进行该地区野外调查时,发现有些所 谓的"吕梁期基性侵入岩"明显沿断层或韧性剪切带 侵入,本身除有一定的变形特征外,基本未发生变质 作用.本文报道我们对辽宁海城地区一个辉长岩体 的锆石 SHRIMP U-Pb 定年结果,并初步探讨其地质意义.

1 地质背景

海城东南地区发育的地层主要是下元古界辽河 群(图1(b)). 辽河群主体为一套绿片岩相(局部达角闪 岩相)的变质岩系,自下而上可分为浪子山、里尔峪、 高家峪、大石桥和盖县五个岩组^[1]. 浪子山组主要岩 性为变质砾岩、石英岩、千枚岩、二云石英片岩、变 粒岩夹大理岩;里尔峪组岩性以浅粒岩、黑云(电气、 阳起石)变粒岩、变流纹岩夹二云片岩及大理岩;高 家峪组以石榴二云片岩、炭质板岩、石墨透闪变粒岩、 透闪透辉岩夹大理岩为主;大石桥组以大理岩夹片岩 为主;盖县组岩性为二云片岩、十字二云片岩、石榴 二云片岩、二云变粒岩夹石英岩及变质砂岩. 辽河群

1) 辽宁省地质局. 中华人民共和国 1:200000 区域地质调查报告, K-51-XXVII (营口市)幅和 K-51-XXVIII (辽阳)幅(联测), 1975

英文版见: Miao L C, Zhang F Q, Liu D Y, et al. Zircon SHRIMP U-Pb dating for gabbro at Chaotiehe in the Haicheng area, eastern Liaoning. Chinese Sci Bull, 2010, 55, doi: 10.1007/s11434-009-0404-z

地层走向总体呈 NEE-NE 向, 与区域构造线方向一致.

区内混合岩及混合花岗岩(以下统称混合岩类) 十分发育,主要有太古代和元古代两期,其中太古代 混合岩类又分为早期斜长混合岩类和晚期微斜混合 岩类两类¹⁾.元古代混合岩类主体以黑云角闪质条痕 状混合岩为主,夹少量均质混合岩.实际上,这些不 同期次的混合岩空间上常常叠置在一起,很难找出 它们之间的界线.尽管不同地点混合岩类特征不尽 相同,但总体上其基体主要为斜长角闪岩、黑云变粒 岩等为主,脉体则以长英质为主.主要混合岩带的总 体展布方向与地层展布方向基本一致(图 1(b)).

区内岩浆活动,除早前寒武纪混合花岗岩外,中 生代花岗岩类和基性岩类侵入体相当发育.中生代 花岗岩类多以岩株及岩基状产出,岩性主要为二长 花岗岩、似斑状黑云母花岗岩及流纹斑岩.中生代基 性侵入岩类多呈脉状或岩墙状产出,岩性主要为辉 长岩、辉绿岩和少量的辉长闪长岩等.要指出的是这 里所述中生代基性侵入岩前人长期以来将其视为早 元古代侵入岩,但本文的研究结果表明它们(至少是 部分)是中生代燕山期形成.

区内断裂和韧性剪切带走向以 NE-NEE 向为主, 另有少量规模相对较小的呈 NW 展布. 区内主要基 性岩的分布明显受这些构造控制(图 1(b)).

2 样品描述及分析方法

被测样品(2007JCB-33)采自海城东南前炒铁河 村口(图 2; GPS 位置坐标: 40°45′41.9″N, 122° 47′14.3″E),岩性为辉长岩.该辉长岩体赋存在辽河 群里尔峪组变质岩中,并与之呈断层接触.露头尺度 上,岩体本身具一定的变形特征,显示出弱的片麻理 构造;显微尺度上,板柱状矿物具有一定的定向排列. 岩石的主要矿物为辉石和斜长石;副矿物主要磁铁 矿和锆石(显微镜下可见).辉石主要为单斜辉石,呈 柱状,有的辉石可见似钾长石的卡氏双晶,多数已发 生强烈的绿泥石化和次闪石化;斜长石发育聚片双晶, 蚀变相对较弱,部分发生糟化(表面不干净).

图 2 辽东炒铁河辉长岩(样品 2007JCB-33)中代表性锆石 CL 图像(标尺长 100 µm)

该样品中锆石粒度较细,形态较为复杂.阴极发 光(CL)图像分析显示,这些锆石至少可以分为 4 类. 第一类为强发光的长或短柱状自形晶,并发育完好 的岩浆生长环带(图 2(a)~(d));第二类为发光强度中 等的短柱状颗粒,晶形稍差,部分环带较发育(图 2(e),(h)),但有的环带明显受后期改造过(图 2(f),(g)); 第三类为发光强度极弱的圆状或短柱状颗粒,边界 平滑(图 2(i)~(1));第四类为发光较弱,以发育带状分 带的晶体为特征(图 2(m)~(p)),有发育极窄的增生亮 边(图 2(m)).

锆石采用重选和磁选方法从重约 20 kg 的新鲜辉 长岩中分离出来,并在双目显微镜下挑纯;然后,将 锆石与标准锆石 BR266 (559 Ma, U 含量 909×10⁻⁶)和 TEM(年龄 417 Ma)一起制靶.详细的制靶过程请参 阅文献[2].样品靶制成后,首先在光学显微镜下对 被测样品进行照相(包括透射光和反射光),然后在扫 描电子显微镜下进行锆石阴极发光(CL)成像研究, 以查明锆石的内部结构及成因^[3,4],同时可以保证 SHRIMP 测点位于最佳部位(如避开有包裹体或杂 质、裂缝、U 含量特高部位和横跨在核-增生层的边 界上等).最后,将靶渡金(以增强导电性)后,在 SHRIMP II 上进行 U-Th-Pb 分析.

锆石 SHRIMP U-Pb 分析在北京离子探针中心 SHRIMP II 上完成.在分析过程中,应用标准锆石 TEM(417 Ma)进行元素间的分馏校正(interelement fractionation), Pb/U校正公式采用 Pb/U=A (UO/U)^{2[5]}; 用标准锆石 BR266 标定所测锆石和 TEM 的 U, Th 和 Pb 含量.更为详细的 SHRIMP 分析流程请参阅文 献[6,7].

数据处理和年龄计算采用程序 SQUID1.02 和 ISOPLOT3.0^[8]; 衰变常数使用 Steiger 和 Jager 的推荐 值^[9]; 普通铅校正使用直接测定 ²⁰⁴Pb 方法^[6], 其组成 用 Stacey-Kramers 模式给出的相应时间的地壳平均 Pb 同位素组成^[10]. 因年轻锆石(<1000 Ma)中放射成 因 ²⁰⁷Pb 量较少,分析中容易产生较大的误差,因此 对年轻锆石(<1000 Ma)均使用其 ²⁰⁶Pb/²³⁸U 年龄,而 对较老锆石(>1000 Ma)则使用其 ²⁰⁷Pb/²⁰⁶Pb 年龄.本 文数据表中所列数据均为同一测点连续 5 次分析的 平均值,误差为 1 σ ,但样品最终年龄的加权平均值 的误差则为 2 σ .

3 分析结果

对该辉长岩样品中锆石所进行的 29 个点的分析 结果列于表 1,并示于图 3. 在本次分析过程中,对标 准锆石 TEM 所进行的 31 个分析所得到的 Pb/U: UO/U²比值的误差为 0.74% (2*o*). 分析结果表明, 前述 4 类锆石具有不同的年龄:第一类锆石的 9 个分析 点得到的 ²⁰⁶Pb/²³⁸U 年龄范围为 118~132 Ma, 其加权 平均值为(126±4) Ma (MSWD=2.8; 图 3(b));第二类 锆石的 8 个分析点给出的结果较为分散, 其年龄分别 为 275, 747, 806, 861, 865, 969, 1407 和 1612 Ma(见表 1);第三类锆石的 4 个分析点给出近一致的结果, 其 加权平均 ²⁰⁷Pb/²⁰⁶Pb 年龄为(1874±9) Ma (MSWD =0.43;图 3(a));第四组锆石的 8 个分析点给出的 ²⁰⁷Pb/²⁰⁶Pb 年龄范围为 2103~2462 Ma, 其中有 6 个结 果相近的分析得到的加权平均年龄为(2132±21) Ma (MSWD=3.1;图 3(a)),另外两个分析给出的 ²⁰⁷Pb/ ²⁰⁶Pb 年龄更大, 分别为(2322±16)和(2462±8) Ma, 且

表1 辽东炒铁河辉长岩锆石 SHRIMP U-Th-Pb 分析结果 a)

测点号	f_{206}	U Th		Th/U	²⁰⁶ Pb	²⁰⁶ Pb ²⁰⁸ Pb*/ ²³² Th		$^{207}Pb*/^{206}Pb*$		207Pb*/235U		206Pb*/238U		206Pb*/238U		$^{207}Pb*/^{206}Pb$	
	(%)	/1	1/11 a. a ⁻¹		$/\mu g{\cdot}g^{-1}$	比值	误差 (%)	比值	误差 (%)	比值	误差 (%)	比值	误差	年龄	误差	年龄	误差
		/µg·g	/µg·g										(%)	/Ma	±	/Ma	±
JCB33-1.1	-1.09	184	180	1.01	3	0.0080	5.1	0.0808	8.2	0.218	8.5	0.0195	2.4	125	3	1217	161
JCB33-2.1	0.03	774	1158	1.55	267	0.1122	1.8	0.1320	0.4	7.290	1.8	0.4006	1.7	2172	32	2124	7
JCB33-3.1	0.50	293	294	1.04	31	0.0354	2.8	0.0645	4.3	1.093	4.7	0.1229	1.9	747	13	758	91
JCB33-4.1	-1.01	467	371	0.82	8	0.0071	4.6	0.0697	7.5	0.184	7.9	0.0191	2.4	122	3	921	154
JCB33-5.1	1.31	558	260	0.48	10	0.0059	7.1	0.0470	8.9	0.127	9.1	0.0197	2.0	125	3	49	212
JCB33-6.1	2.51	302	192	0.66	5	0.0055	10.7	0.0425	17.7	0.109	17.9	0.0186	2.3	118	3	-195	443
JCB33-7.1	0.12	1750	202	0.12	490	0.0913	3.2	0.1145	0.4	5.140	1.7	0.3256	1.7	1817	27	1872	7
JCB33-8.1	1.83	192	107	0.58	3	0.0058	12.5	0.0561	16.1	0.146	16.6	0.0189	4.0	121	5	457	357
JCB33-9.1	0.35	1032	404	0.40	39	0.0136	3.0	0.0521	2.4	0.313	3.0	0.0436	1.8	275	5	289	55
JCB33-10.1	0.21	140	56	0.41	16	0.0485	5.2	0.0739	4.0	1.357	4.5	0.1332	2.0	806	15	1037	80
JCB33-11.1	0.47	104	54	0.54	15	0.0511	7.0	0.0724	5.4	1.620	5.8	0.1622	2.1	969	19	998	111
JCB33-12.1	-0.85	240	101	0.44	4	0.0094	10.9	0.0744	11.3	0.209	11.5	0.0204	2.2	130	3	1052	228
JCB33-13.1	0.25	228	185	0.84	28	0.0225	4.9	0.1362	2.0	2.683	2.7	0.1428	1.9	861	15	2180	35
JCB33-14.1	0.44	112	109	1.00	26	0.0766	3.0	0.0994	2.1	3.654	2.9	0.2667	2.0	1524	27	1612	38
JCB33-15.1	0.90	185	206	1.15	3	0.0062	6.9	0.0669	10.9	0.188	11.2	0.0204	2.6	130	3	833	228
JCB33-16.1	0.07	331	133	0.42	68	0.1086	2.2	0.1479	0.8	4.857	2.0	0.2382	1.8	1377	23	2322	13
JCB33-17.1	-0.04	443	502	1.17	151	0.1150	2.0	0.1348	0.6	7.372	2.0	0.3967	1.9	2154	35	2161	10
JCB33-18.1	0.08	274	229	0.86	92	0.1085	2.0	0.1311	0.7	7.014	2.0	0.3882	1.9	2114	34	2112	13
JCB33-19.1	0.08	542	626	1.19	188	0.1164	1.8	0.1332	0.7	7.415	1.9	0.4039	1.8	2187	33	2140	12
JCB33-20.1	0.21	1583	2564	1.67	28	0.0063	2.0	0.0508	2.8	0.142	3.3	0.0203	1.8	130	2	232	66
JCB33-21.1	-0.55	397	393	1.02	7	0.0072	5.9	0.0630	9.0	0.179	9.3	0.0207	2.0	132	3	707	192
JCB33-22.1	0.17	212	235	1.15	71	0.1132	2.7	0.1303	0.9	7.032	2.4	0.3913	2.2	2129	41	2103	16
JCB33-23.1	0.23	649	243	0.39	126	0.0697	2.5	0.0891	1.4	2.766	2.2	0.2251	1.7	1309	20	1407	27
JCB33-24.1	0.12	281	286	1.05	93	0.1071	2.0	0.1330	1.0	7.075	2.0	0.3859	1.8	2104	32	2138	17
JCB33-25.1	0.19	685	94	0.14	198	0.0888	3.4	0.1149	0.6	5.321	1.9	0.3358	1.8	1867	29	1878	10
JCB33-26.1	0.10	810	457	0.58	225	0.0903	1.8	0.1144	0.5	5.093	1.8	0.3230	1.7	1805	27	1870	8
JCB33-27.1	0.07	829	89	0.11	243	0.0955	2.6	0.1154	0.8	5.426	1.9	0.3410	1.7	1891	28	1886	14
JCB33-28.1	0.03	526	246	0.48	179	0.1052	1.9	0.1606	0.5	8.790	1.8	0.3969	1.7	2155	32	2462	8
JCB33-29.1	-0.08	71	42	0.61	9	0.0485	3.9	0.0732	2.8	1.450	4.0	0.1436	2.9	865	23	1020	56

a) f_{206} 代表普通 206 Pb 占总 206 Pb 的百分比; Pb*代表放射成因铅;表中误差为 1σ

图 3 辽东炒铁河辉长岩(样品 2007JCB-33)锆石 SHRIIMP U-Pb 谐和图 (a) 所有分析点; (b) 最年轻一组分析点

两者均极不谐和(正向不一致),反映它们存在铅丢失.

4 讨论

4.1 炒铁河辉长岩的形成时代

可收集到的公开出版的资料显示,20世纪70年 代在开展该地区1:20万区域地质调查时最早将海 城、鞍山东南部发育的包括炒铁河辉长岩在内的基性 岩类侵入体归属为古元古代侵入岩.尽管当时这一 认识是在缺乏令人信服证据的基础上提出的,但却 被后来长期接受,迄今也未见有关这些基性侵入岩 研究的公开报道.本文的研究结果表明,炒铁河辉长 岩侵位形成于中生代早白垩世,而不是古元古代.

从本文的研究结果看,炒铁河辉长岩中存在至 少4类形态和内部结构不同的锆石,相应地它们也给 出 4 组不同的年龄. 依据锆石的 CL 图像特征和分析 结果,我们将最年轻的第一类锆石的年龄(126±4) Ma (n=9, MSWD=2.8)解释为该辉长岩体的侵位年龄, 而其他几组锆石均解释为继承或捕获锆石. 虽然本 次测得的第 4 类锆石的年龄(2132±21) Ma (n=6, MSWD=3.1),属古元古代,但该年龄不可能代表辉 长岩的侵位年龄.因为如果它代表其侵位年龄,那么 其他给出相对年轻的 3 组年龄均应解释为岩体的变 质年龄或热事件扰动年龄,但这种解释很难成立.首 先,炒铁河辉长岩体本身并不存在明显的变质矿物 组合及变质组构, 仅有较弱的变形现象, 在这种条件 下不可能形成变质锆石,更何况是多期次的变质锆 石. 尽管第 3 组年龄为(1874±9) Ma (n=4, MSWD= 0.43)的锆石 Th, U含量较高, 且 Th/U 比值(0.11~0.58; 图 4(a), (b))较低, 与变质锆石的 Th/U 比值(通常<0.1) 相近, 暗示这些锆石有可能属变质成因, 但它们也不 可能是岩体本身变质作用形成, 而只能是继承或捕 获的(变质)锆石. 其次, 年龄较年轻的第一、二组锆 石晶形均相对完好, 并发育典型的岩浆生长环带, 且 其 Th/U 比值(0.39~1.67; 图 4(a))亦具典型岩浆成因 锆石的比值特征, 因此第一、二组锆石不可能是变质 成因锆石, 而应是该岩浆成因锆石. 因此, 我们认为 最年青的具岩浆锆石特征的第一组锆石年龄(126±4) Ma 代表炒铁河辉长岩的侵位年龄, 也就是说炒铁河 辉长岩侵位形成于中生代燕山晚期(早白垩世), 而不 是古元古代.

这里需要说明的是在辽东鞍山-海城东南部地区 基性侵入岩大量发育,本次研究仅证明炒铁河辉长 岩体是中生代形成的,对于其他相类似的岩体或岩 墙是否均是同时代的产物还有待进一步的研究证实.

4.2 地质意义

炒铁河辉长岩作为中生代幔源岩浆产物,对认 识该地区中生代地壳演化有重要的启示意义. 辽东 地区属华北克拉通东部,而华北克拉通东部岩石圈 在中生代曾发生过强烈的减薄作用^[11~16]. 与岩石圈 减薄作用相对应,这一时期华北克拉通(东部)表现为 大规模的伸展构造和强烈的壳-幔相互作用及由此而 产生的大规模岩浆活动.研究表明,华北岩石圈减薄 的时限为 130~110 Ma^[17~19],而炒铁河辉长岩的侵位 时间(126±4) Ma 与岩石圈减薄的峰期基本吻合,充 分说明炒铁河辉长岩形成于华北岩石圈减薄、伸展的

图 4 辽东炒铁河辉长岩(样品 2007JCB-33)锆石年龄与 Th/U(a)和 U 含量(b)之间协变关系

构造背景下.

炒铁河辉长岩含有大量的老锆石(表1,图5).依据CL图像和分析结果,这些锆石大体上可分为5组,从老到新其年龄范围分别为2102~2462(多数在~2130 Ma),1870~1886(平均~1875 Ma),1407~1613,969~747和~275 Ma.对于年龄为~1407,~1613,~275 Ma的锆石,因颗粒较少而代表性不强,这里暂不讨论.仅对其他几组数量较多的古老锆石年龄的意义进行简要讨论.就这些古老锆石的成因而论,既可能是从辉长岩源岩的地壳组分中继承来的,也可能是岩浆侵位过程中从围岩中捕获的^[20].无论何种成因,对下面的讨论而言,它们具有相同或相似的指示意义.

一般认为,我国华北与扬子两个克拉通的前寒 武地质演化历史具有明显的差异, 主要表现在华北 陆壳比华南老,华北存在~2.5和~1.85 Ga两期明显的 地质记录, 但缺少新元古代及加里东期构造-岩浆活 动的记录[21,22]; 扬子或华南虽然也存在早前寒武纪 的地质记录,但以新元古代及加里东期岩浆活动强 烈、并发育 Grenvillian 期记录为主要特征^[23,24].然而, 新近的研究表明华北克拉通东部还存在古元古代 (2.0~2.2 Ga^[25,26])和中元古代(~1.2 Ga^[26,27])及新元古 代(~0.82 Ga^[28])的岩浆活动记录,而扬子及华夏也同 样存在~2.5、~2.0 和~1.85 Ga 年龄信息^[29,30]. 这使得 仅从锆石年龄信息讨论这些锆石是来自华北还是来 自华南具有不确定性. 例如: 炒铁河辉长岩中最大的 两组年龄, 前者与该辉长岩的围岩, 即辽河群及相关 花岗岩的年龄大体相当, 而后者则与该地区乃至整 个华北克拉通早元古代末期的一次构造-热事件的年 龄^[21,22,25]一致,所以这些锆石来自华北的可能性很大, 但来自被俯冲到华北之下的扬子或华夏地块的可能 性也难以排除.

同样,对辽东炒铁河辉长岩中新元古代(969~ 747 Ma)锆石的解释同样存在多解性.另据报道,辽 东半岛南部大连地区的三叠纪辉绿岩脉中也同样存 在大量的新元古代年龄的锆石^[20].对此,杨进辉等 人^[20]已经罗列了各种可能(此不赘述),并倾向认为这 些锆石年龄信息可能代表了华北地块对 Rodinia 的响 应^[20].以现有的资料水平,尽管杨进辉等人^[20]提出 的其他可能性还不能完全排除,但我们更倾向认为 这些新元古代锆石更可能来源于俯冲到华北陆块之 下的扬子地块,理由如下:

(1) 虽然朝鲜半岛有新元古代岩浆活动的报 道^[28],但目前较少,而它们又正好被不同地点、不同 时代(三叠纪和白垩纪)的基性岩浆继承或捕获的机 率如此之高而难以理解.况且,在郯庐断裂以东我国 境内的辽东(即含有大量新元古代锆石的中生代基性 岩发育地区)及胶东地区,迄今未甄别出新元古代的 火成岩类地质体及级别较高的新元古代变质作用, 故这些新元古代锆石来自被俯冲到华北之下的扬子/ 华南地块的可能性更大.

(2) 如果华北在新元古代时期位于一个时代相 当于 Grenvillian 造山带附近并接受源自该造山带剥 蚀物的沉积^[20],那么这种沉积体在华北东部是否存 在?退一步讲,即使存在,也要求这些沉积体位于华 北克拉通东部基底之下,即要求华北的地壳有大规 模的构造叠置或反转,但目前尚无这方面的报道.

(3) 尽管最近朝鲜半岛有 Grenvillian 期岩浆活动 (~1.2 Ga)记录^[26,27]报道,并认为是华北克拉通本身 存在 Grenvillian 期岩浆作用的证据,但还有一种可 能性:即这些中元古代花岗岩(多为片麻状^[26])也可能 是俯冲到华北之下的扬子/华南地壳被后来地质作用 (如变质核杂岩构造)剥离至目前地表(当然这也需要 更进一步研究证实).

(4) 目前所发现的含新元古代年龄锆石的侵入 岩类主要分布于苏-鲁超高压带北侧一定的空间范围. 如紧临该带北侧的胶东地区花岗岩^[31,32]、郑庐断裂西 侧徐州地区的埃达克岩^[33]、辽东半岛南部的"辽吉花 岗岩"^[34]和辉绿岩脉^[20]及稍靠北即本文的炒铁河辉 长岩.这种空间联系支持这些新元古代锆石来自俯 冲于华北陆块之下的扬子陆块的可能.至于辽西地 区中生代兴隆沟组火山岩(紧临郯庐断裂西侧)含有 的新元代锆石^[35],也可能有同样的意义,因为被俯 冲到华北之下的扬子/华夏地块的规模和范围目前并 不清楚.

当然上述只是我们依据现有的锆石年龄信息得 到的倾向性认识,尚缺少"铁证";同样,认为这些(中) 新元古代锆石代表了华北本身对 Rodinia 响应的认识 (如何响应不清楚)也存在诸多难以解释的问题.无庸 讳言,这些新元古代锆石的年龄信息只是为我们提供 了一个重要有而意义的线索,但要证明其具体的来源 和实现的机制还需要做大量的多学科综合研究工作.

5 结论

(1) 辽东海城地区炒铁河辉长岩侵位年龄为 (126±4) Ma, 形成于早白垩世华北岩石圈减薄的构造 背景下, 而不是长期认识的形成于古元古代裂谷背景.

(2) 炒铁河辉长岩存在大量年龄不同的古老锆石,其中年龄为古元古代(2102~2462和~1875 Ma)的锆石很可能来自华北地块本身,而年龄为新元古代(747~969 Ma)的则很可能是来自被俯冲到华北之下的扬子地块.这对认识华北中生代地壳演化具有重要启示意义.

致谢 感谢北京离子探针中心张玉海、杨之青和陶华等在锆石 SHRIMP U-Pb 分析过程中给予的大力支持和帮助.

参考文献

- 1 辽宁省地质矿产局. 辽宁省区域地质志. 北京: 地质出版社, 1989
- 2 宋彪, 张玉海, 万渝生, 等. 锆石 SHRIMP 样品靶制作、年龄测定及有关现象讨论. 地质论评, 2002, 48(增刊): 26—30
- 3 简平, 程裕淇, 刘敦一. 变质锆石成因的岩相学研究—高级变质岩 U-Pb 年龄解释的基本依据. 地学前缘, 2001, 3: 183—191
- 4 周剑雄, 陈振宇. 锆石等测年矿物的电子探针及阴极射线致发光综合研究新方法. 地质论评, 2002, 8(增刊): 31-35
- 5 Claoue-Long J C, Compston W, Roberts J, et al. Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and ⁴⁰Ar/³⁹Ar analysis. In: Berggren W A, Kent D V, Aubry M P, et al, eds. Geochronology, Time Scales and Global Stratigraphic Correlation. SEPM Spec Pub, 1995, 5: 3–31
- 6 Compston W, Williams I S, Mayer C. U-Pb geochronology of zircons from Lunar Breccia 73217 using a Sensitive High Resolution Ion Microprobe. Proc. XIV Lunar Planetary Science Conference. J Geophys Res, 1984, 89 (Suppl): B525—B534
- 7 Williams I S, Claesson S. Isotopic evidence for the Precambrian provenance and Caledonian metamorphism of high-grade paragneisses from the Deve Nappes, Scandinavian Caledonides. II: Ion microprobe zircon U-Th-Pb. Contrib Mineral Petrol, 1987, 97: 205-217
- 8 Ludwig K R. User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel. Berkeley: Berkeley Geochronological Center Special Publication, No. 4, 2003

- 9 Steiger R H, Jager E. Subcommission on geochronology: Convention on the use of decay constants in geo- and cosmo-chronology. Earth Planlet Sci Lett, 1977, 36: 359-362
- 10 Stacey J S, Kramers J D. Approximation of terrestrial lead isotope evolution by two-stage model. Earth Planet Sci Lett, 1975, 26: 207-222
- 11 Fan W M, Menzies M A. Destruction of aged lower lithosphere and asthenosphere mantle beneath eastern China. Geotecton Metal, 1992, 16: 171-179
- 12 Menzies M A, Fan W M, Zhang M. Palaeozoic and Cenzozoic lithoprobes and the loss of >120 km of Archean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al, eds. Magmatic Processes and Plate Tectonics. Geol Soc Spec Publ, 1993, 76: 71-81
- 13 Fan W M, Zhang H F, Baker J, et al. On and off the North China cration: Where is the Archaean keel? J Petrol, 2000, 41: 933-950
- 14 吴福元, 葛文春, 孙德有, 等. 中国东部岩石圈减薄的几个问题. 地学前缘, 2003, 10: 51-60
- 15 许文良,王静海,王冬艳,等.华北克拉通东部中生代岩石圈减薄的过程与机理:中生代火成岩和深源捕虏体证据.地学前缘, 2004,11:309—318
- 16 Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241-253
- 17 翟明国, 樊祺诚, 张宏福, 等. 华北东部岩石圈减薄中的下地壳过程: 岩浆底侵、置换与拆沉作用. 岩石学报, 2005, 21: 1509-1526
- 18 樊祺成,张宏福,隋建立,等.岩浆底侵作用与汉诺坝现今壳-幔边界组成——捕虏体岩石学与地球化学证据.中国科学 D 辑:地 球科学,2005,35:1--14
- 19 Zhou X, Wilde S A, Sun M, et al. Local response to global Mesozoic overturn: Inferred from SHRIMP zircon dating of lower crust xenoliths, North China Craton. Geochim Cosmochim Acta, 2002, 66: 878
- 20 杨进辉, 吴福元, 张艳斌, 等. 辽东半岛南部三叠纪辉绿岩中发现新元古代年龄锆石. 科学通报, 2004, 49: 1878-1882
- 21 翟明国. 华北克拉通 21~17 亿年地质事件群的分解和构造意义探讨. 岩石学报, 2004, 20: 1343—1354
- 22 Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basemen rocks in the Central Zone of the North China Craton: Implications for Paleoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55–88
- 23 Li Z X, Li X H, Zhou H, et al. Grenvillian continental collision in South China: New SHRIMP U-Pb zircon results and implications for the configuration of Rodinia. Geology, 2002, 30: 163—166
- 24 Zheng Y F, Wu R X, Wu Y B, et al. Rift melting of juvenile arc-derived crust: Geochemical evidence from Neoproterozoic volcanic and granitic rocks in the Jiangnan Orogen, South China. Precambrian Res, 2008, 163: 351-383
- 25 路孝平, 吴福元, 林景仟, 等. 辽东半岛南部早前寒武纪花岗质岩浆作用的年代学格架. 地质科学, 2004, 39: 123—138
- 26 Wu F Y, Han R H, Yang J H, et al. Initial constraints on the timing of granitic magmatism in North Korea using U-Pb zircon geochronology. Chem Geol, 2007, 238: 232-248
- 27 Zhao G C, Cao L, Wilde S A, et al. Implications based on the first SHRIMP U-Pb zircon dating on Precambrian granitoid rocks in North Korea. Earth Planet Sci Lett, 2006, 251: 365—379
- 28 Peng P, Zhai M G, Li Z, et al. Neoproterozoic (~ 820 Ma) mafic dyke swarms in the North China craton: Implication for a conjoint to the Rodinia supercontinent? The Abstract for the 13rd Gondwana Conference, Dali, China, 2008. 160–161
- 29 郑永飞. 新元古代岩浆活动与全球变化. 科学通报, 2003, 48: 1705-1720
- 30 郑永飞, 张少兵. 华南前寒武纪大陆地壳的形成和演化. 科学通报, 2007, 52: 1-10
- 31 苗来成,罗镇宽,关康,等.山东招掖金矿带内花岗岩类侵入体锆石 SHRIMP 研究及意义.中国科学 D 辑:地球科学, 1997, 27: 207—213
- 32 郭敬辉,陈福坤,张晓曼,等.苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石 U-Pb 年代学. 岩石学报, 2005, 21: 1281—1301
- 33 Xu W L, Gao S, Yang D B, et al. Geochemistry of eclogite xenoliths in Mesozoic adaktic rocks from Xuzhou-Suzhou area in central China and their tectonic implications. Lithos, 2009, 107: 269-280
- 34 Li S Z, Zhao G C, Sun M, et al. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zircon ages of two Liaoji granites, eastern block, north China craton. Int Geol Rev, 2004, 46: 162–176
- 35 Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892-897