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Gross primary production (GPP) is an important variable in studies of the carbon
cycle and climate change. The Moderate Resolution Imaging Spectroradiometer
(MODIS)-GPP product (MOD17) provides global GPP data for terrestrial ecosystems;
however, it is not well validated in China. In this study, an eddy covariance (EC) sys-
tem observed GPP at 10 sites in northern China and was used to validate MOD17. The
results indicated that MOD17 presents a strong bias in the study region due to the mete-
orological data, MODIS FPAR (fraction of absorbed photosynthetically active radiation)
(MOD15), and the model parameters in the MODIS-GPP algorithm, Biome Parameters
Look Up Table (BPLUT). Maximum light-use efficiency (ε0) had the strongest impact
on the predicted GPP of the MODIS-GPP algorithm. After using the inputs observed in
situ and improving parameters in the MODIS-GPP algorithm, the model could explain
85% of the EC-observed GPP of the sites, whereas the MODIS-GPP algorithm without
in situ inputs and parameters only explained 26% of EC-observed GPP.

1. Introduction

Gross primary production (GPP) is a measurement of an ecosystem’s capacity to sequester
carbon. GPP is usually estimated with model-based methods because GPP is difficult to
measure directly (Gilmanov et al. 2003). The GPP of an ecosystem is determined by many
factors, such as soil components, climate, vegetation, and ecosystem disturbance regimes.
Flux towers can be used to monitor the dynamic of carbon flux at a site. In recent years,
many flux-observing networks have been built throughout the world, including AmeriFlux,
CarboEurope, and ChinaFlux. However, estimating the GPP of a large region is a significant
challenge due to spatial variations in vegetation and climatic conditions. Remote sensing
has played an important role in providing information on spatial changes in vegetation and
climatic conditions (Coops et al. 2009). GPP models based on remote sensing are widely
used to estimate the GPP of a large region, and carbon flux data obtained from towers can
be used to validate the performance of these models.
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Globally, Moderate Resolution Imaging Spectroradiometer (MODIS) GPP (MOD17) is
distributed by the US National Aeronautics and Space Administration (NASA). This prod-
uct was calculated using a light-use efficiency model named the MODIS-GPP algorithm
(Running et al. 1999). MOD17 has been validated using tower flux data from America
and Europe (Chasme et al. 2009; Coops et al. 2007, 2009; Gebremichael and Barros 2006;
Plummer 2006; Turner et al. 2003, 2005, 2006; Yang et al. 2007; Zhao et al. 2005, 2006).
However, the model has not been widely validated in China. Nevertheless, Zhang com-
pared the MODIS GPP with the eddy covariance (EC)-observed GPP at an alpine meadow
site on the Qinghai−Tibet Plateau and a crop site in the North China Plain and found that
MODIS GPP was significantly lower than EC-observed GPP (Zhang et al. 2008). Wu also
found that the MODIS-GPP product clearly underestimated the GPP of temperate grassland
ecosystems located in Inner Mongolia, China (Wu et al. 2008). He validated MODIS GPP
for a subtropical coniferous forest in southern China and presented the same conclusions as
other researchers (He et al. 2010). In this study, flux data from 10 sites located in northern
China were used to validate MODIS GPP. The study sites contain grasslands, croplands,
orchard, and evergreen needleleaf forest.

The objectives of this study are as follows: (1) to assess the accuracy of MODIS GPP
by comparing the results to EC-observed GPP in northern China; (2) to discuss the contri-
bution of each MODIS-GPP algorithm input to the bias of MODIS GPP; and (3) to improve
the accuracy of MODIS GPP in northern China.

2. Materials and method

2.1. MODIS data

MODIS data for the years 2008 and 2009, including MODIS FPAR (fraction of
absorbed photosynthetically active radiation) (MOD15A2 collection4) and MODIS GPP
(MOD17A2 collection4), were downloaded from the Ameriflux web site (http://public.ornl.
gov/ameriflux/). MOD17A2 is an 8 day integrated GPP value and MOD15A2 is an 8 day
composite value (Poulter and Cramer 2009). The spatial resolution is 1 km. Only values
obtained from a single pixel containing the observation site were extracted. MODIS data
were not filtered according to the quality control (QC) information.

2.2. Site observation data

Flux and meteorology data obtained during the plant growing season (June to September)
were collected from 10 sites located in northern China. Some of the ten sites were con-
structed by the Watershed Airborne Telemetry Experimental Research (WATER) Project
(Li et al. 2009). Figure 1 shows the location of the study sites, and the type of surface cover
at each site is listed in Table 1. Photosynthetically active radiation (PAR) was calculated
from the shortwave solar radiation using a coefficient of 0.45. Figures 2 and 3 show the
meteorological data used in the MODIS-GPP algorithm, including vapour pressure deficit
(VPD), minimum air temperature (Tmin), and PAR. In order to keep the same time window
with remote-sensing data, 8 day average value (for Tmin and VPD) and 8 day integrated
value (PAR) were calculated.

Typically, four steps are performed to estimate GPP from EC-observed net ecosystem
exchange (NEE) data. First, QC was performed on 10 Hz flux data, including coordi-
nate rotation and WPL correction. Second, half-hourly flux data were excluded if the
sensor variance was excessive, if rainfall occurred, or if the instrument malfunctioned.
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Figure 1. Map of the flux observing sites.

*AR: A’rou, CW: Changwu, DYK: Dayekou, DS: Dongsu, GT: Guantao, JZ: Jinzhou, LZ: Linze,
MY: Miyun, YK: Yingke, YZ: Yuzhong. ENF: evergreen needleleaf forest, EBF: evergreen broadleaf
forest, DNF: deciduous needleleaf forest, DBF: deciduous broadleaf forest, MF: mixed forest,
CS: closed shrublands, OS: open shrublands, WS: woody savannas. The land-cover data are
MOD12Q1 Land Cover Classification Type 2.

Table 1. Characteristics of the observation sites.

ε (grammes of carbon per
MJ of APAR)

Site
name Calibrated* Default Surface type

Years for
which data

are available

A’rou 1.35 0.68 Grassland (Alpine meadow) 2008–2009
Changwu 0.52 0.68 Grassland 2008
Dongsu 0.69 0.68 Desert steppe 2008–2009
Dayekou 1.13 1.008 Needleleaf forest 2010
Guantao 1.82 0.68 Cropland (maize) 2009
Jingzhou 2.63 0.68 Cropland (maize) 2008–2009
Linze 2.27 0.68 Cropland (maize) 2008–2009
Miyun 1.34 1.044 Orchard (broad leaf tree) 2008–2009
Yingke 2.43 0.68 Cropland (maize) 2008–2009
Yuzhong 0.88 0.68 Grassland 2009

Note: *Calibrated ε value is calculated with APAR and EC-observed GPP during peak growing season.

During the night, the quality of NEE data was often inferior due to weak turbulent mixing
at low friction velocity (u*). Thus, night-time (defined as downward shortwave radia-
tion <1 W m−2) half-hourly flux data were excluded if the friction velocity was lower
than a specific threshold. A threshold value of 0.15 m s−1 was used for cropland and
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Figure 2. Plots of the 8 day average minimum daily air temperature (Tmin) and the 8 day integrated
photosynthetically active radiation (PAR) of the 10 sites. ‘DOY’ means ‘day of year’.

grassland sites, and a threshold of 0.2 m s−1 was used for sites containing forests or
orchards (Richardson and Hollinger 2007; Zhu et al. 2006). Third, the removed NEE value
was filled according to the nonlinear relationship between flux value and environmental fac-
tors. For daytime data, the Michealis–Menten function was employed, and the Van’t Hoff
function was used for night-time data (Richardson and Hollinger 2007; Zhu et al. 2006).
Finally, GPP can be estimated from daytime NEE and ecosystem respiration (ER). The day-
time ER was calculated using the daytime soil temperature (10 cm depth) and the Van’t Hoff
function. Parameters of the Van’t Hoff function were estimated with high-quality night-time
flux data and soil temperature (Desai et al. 2008).

2.3. MODIS-GPP algorithm

MODIS GPP is calculated according to Equation (1):

GPP = PAR × FPAR × ε0 × f (Tmin) × f (VPD), (1)
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Figure 3. Plots of the FPAR (FPAR), reconstructed FPAR (FPAR_SG), and VPD of the 10 sites.

where GPP (measured in grammes of carbon per square metre per day: g C m−2 day−1) is
the gross primary production, PAR (measured in MJ) is the photosynthetically active radi-
ation, FPAR is the fraction of absorbed photosynthetically active radiation, ε0 (measured
in grammes of carbon per MJ of absorbed photosynthetical active radiation (APAR)) is the
maximum light-use efficiency, Tmin (measured in ◦C) is the minimum daily temperature,
and VPD [Pa] is the average vapour pressure deficit. f (Tmin) and f (VPD) are defined as
follows:

f (Tmin) =

⎧⎪⎪⎨
⎪⎪⎩

0,
Tmin − Tminmin

Tminmax − Tminmin

,

1,

Tminmin <

Tmin < Tminmin

Tmin < Tminmax

Tmin > Tminmax

, (2)

f (VPD) =

⎧⎪⎪⎨
⎪⎪⎩

0,

(VPD)max − (VPD)

(VPD)max − (VPD)min
,

1,

(VPD)min

(VPD) > (VPD)max

< (VPD) < (VPD)max

(VPD) < (VPD)min

, (3)
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where Tminmin , Tminmax
, VPDmax, and VPDmin are species-specific parameters which can be

obtained from the Biome Parameters Look Up Table (BPLUT) according to the vegetation
code. The MOD17 algorithm uses the land-cover classification scheme produced by the
University of Maryland (UMD) (MOD12Q1 Land Cover Classification Type 2) (Heinsch
et al. 2002; Heinsch et al. 2006).

Three types of simulations were designed to analyse the uncertainty of each input in the
MODIS-GPP algorithm. Sim1, site-observed meteorological data (PAR, VPD, and Tmin)
and the default values of other parameters (ε0, Tminmin , Tminmax , VPDmax, and VPDmin) were
used to drive the model. Sim2, local-observed meteorological data and calibrated ε0 were
used to calculate the GPP; however, the other parameters (Tminmin , Tminmax , VPDmax, and
VPDmin) were not altered. Sim3, in order to reduce the impact of the error in MODIS
FPAR on the predicted GPP, smoothed FPAR using the time-series reconstructing method,
locally observed meteorological data, and calibrated ε0 were used to drive the MODIS-GPP
algorithm.

For the other parameters (Tminmax , Tminmin , VPDmax, and VPDmin), the default values in
BPLUT were used for all three simulations.

2.4. Reconstruction of the FPAR

The FPAR of the canopy changes slowly throughout the year due to changes in the LAI;
thus, the temporal profile of FPAR should be smooth. However, due to the effects of clouds
and aerosols, FPAR obtained from remote-sensing data can change abruptly, which alters
the MODIS FPAR. To correct inferior values in MODIS FPAR, a time-series reconstruct-
ing algorithm named the Savizky–Golay filter was applied to FPAR time-series data. The
Savizky–Golay filter can be expressed by the following equation:

Y ∗
i = 1

2m + 1

j=m∑
j=−m

CjYi+j, (4)

where Y is the original time-series data, Y ∗
i is the reconstructed time-series data, Cj is the

jth weight of the filter window, and 2m + 1 is the size of the filter window. The window size
and order of the polynomial in the Savizky–Golay filter were set to 13 and 4 in this study,
respectively (Li, Xie, and Ma 2010; Ma and Veroustraete 2006).

3. Results

3.1. MODIS GPP

MODIS GPP (GPP_MOD) was calculated with meteorological data (PAR, VPD, and Tmin)
obtained from NASA’s Data Assimilation Office (DAO), MODIS-retrieved FPAR, and
biome-specific parameters. A comparison of MODIS GPP and EC-observed GPP is shown
in Figure 4. Except for Changwu, MODIS GPP was lower than EC-observed GPP at all of
the sites, especially in cropland and forest. For all of the cropland (maize) sites in this study,
MODIS GPP underestimated the data by approximately 70% compared to EC-observed
GPP. The lowest relative error (RE) was obtained at Changwu, where a value of 38.1% was
observed (see Table 2). The coefficient of determination between MODIS GPP and EC-
observed GPP was equal to 0.26 (see Table 3). The linear fit produced a slope of 0.12 (see
Table 3 and Figure 5).
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Figure 4. Plots of simulated and observed GPP at the 10 sites. GPP_MOD is the MODIS
GPP; GPP_EC is the EC-observed GPP; GPP_Sim1 was calculated using the MODIS-GPP algo-
rithm, which is driven with locally observed meteorological data (PAR, VPD, and Tmin), FPAR
(MOD15A2), and other default parameters; GPP_Sim2 was calculated using calibrated ε0 values
based on GPP_Sim1; GPP_Sim3 GPP was calculated with time-series reconstructed FPAR based on
GPP_Sim2.

3.2. Sim1

For Sim1, only meteorological data were replaced in the MODIS-GPP algorithm, and
the other inputs and parameters were identical to those of MODIS GPP. As shown in
Figure 5, the simulated GPP of the majority of sites improved slightly when tower-observed
meteorological data were employed (see GPP_Sim1 in Figure 5). At all of the sites, the RE
of Sim1 became lower than that of GPP_MOD. The RE changed from –54.8% to –14.5%
at Dongsu and –43.3% to –14.5% at Miyun (see Table 2). The root mean square error
(RMSE) of GPP_Sim1 was also improved compared to that of GPP_MOD (see Table 2).
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Table 2. Statistical indices of simulated GPP and FPAR.

MOD Sim1 Sim2 Sim3 r

RE (%) RMSE RE (%) RMSE RE (%) RMSE RE (%) RMSE FPAR FPAR_SG

Arou −58.8 41.9 −66.2 31.2 −17.5 10.7 −15.6 9.2 0.68 0.75
Changwu 38.1 16.8 39.8 7.1 6.9 4.5 13.0 3.8 0.02 0.14
Dayekou −62.9 42.0 −37.9 23.3 −32.3 22.1 −28.4 19.6 0.51 0.64
Dongsu −54.8 8.13 −14.5 3.1 −10.7 3.0 −7.5 2.9 0.65 0.65
Guantao −69.2 59.7 −57.9 40.0 11.5 16.6 17.8 11.5 0.72 0.87
Jinzhou −73.5 82.5 −73.0 68.4 3.1 17.6 5.6 17.0 0.74 0.75
Linze −78.4 87.5 −69.5 64.2 3.3 14.6 5.4 14.2 0.85 0.86
Miyun −43.3 51.2 −14.5 17.4 6.5 14.0 11.7 11.6 0.60 0.83
Yingke −74.1 89.4 −73.1 79.6 −5.1 25.8 −0.8 21.9 0.43 0.58
Yuzhong −36.3 14.9 −16.5 8.3 3.2 7.2 11.2 6.3 0.66 0.93

Notes: r is the correlation coefficient between FPAR and observed GPP. FPAR was extracted from MOD15A2.
FPAR_SG were obtained from time-series reconstructed FPAR using the Savizky–Golay filter. RE =
(
∑n

i=1 (((SimGPPi − ObsGPPi)/ObsGPPi))/n) × 100 and RMSE =
√

(1/n)
∑n

i=1 (SimGPPi − ObsGPPi)2.

GPPSim, i is the simulated GPP; GPPObs, i is the observed GPP; and n is the number of observations.

Table 3. Parameters of the linear fit between simulated and observed GPP.

GPP_MOD GPP_Sim1 GPP_Sim2 GPP_Sim3

Slope 0.12 0.17 0.79 0.81
Intercept 9.3 11.4 6.2 6.8
R2 0.26 0.27 0.81 0.85

Note: R2 is the coefficient of determination.
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Figure 5. Scatter plot of simulated and observed GPP.
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The determination coefficient between GPP_Sim1 and EC-observed GPP was equal to 0.27
(see Table 3). The linear fit between GPP_Sim1 and EC-observed GPP produced a slope of
0.17 (see Table 3 and Figure 5). Compared to GPP_MOD, both of the two statistical indices
of GPP_Sim1 were superior.

3.3. Sim2

In Sim2, ε0 was calibrated with EC-observed GPP and APAR obtained from late June to
early July (see Table 1). The calibrated ε0 values were close to the MODIS-GPP algorithm
default values at only four sites. At the rest of the sites, the calibrated ε0 values were greater
than the default values. Using calibrated ε0 values and the inputs and parameters used in
Sim1, the GPP predicted by the MODIS-GPP algorithm (GPP_Sim2) was greatly improved
at all of the sites. The RE of GPP_Sim2 was less than 10% at the majority of sites, and the
RMSE of GPP_Sim2 was significantly lower than that of GPP_Sim1 (see Table 2). The
determination coefficient between GPP_Sim2 and EC-observed GPP was equal to 0.81
(see Table 3). The linear fit between GPP_Sim2 and EC-observed GPP produced a slope of
0.79 (see Table 3 and Figure 5). Both of the statistical indices of GPP_Sim2 were greatly
improved compared to that of GPP_Sim1.

3.4. Sim3

To reduce the impact of noise in MODIS FPAR on the predicted GPP, time-series MODIS
FPAR was reconstructed. As shown in Figure 3, the noise of the FPAR was adjusted, and
the reconstructed FPAR (FPAR_SG) had a larger correlation coefficient with EC-observed
GPP than that of MODIS FPAR (FPAR) (see Table 2). Using Sim2, FPAR was replaced
by FPAR_SG to calculate the GPP (GPP_Sim3). The statistical indices of GPP_Sim3 are
shown in Tables 2 and 3. At all of the sites, the RMSE of GPP_Sim3 was improved
compared to that of GPP_Sim2 (see Table 2). The determination coefficient between
GPP_Sim3 and EC-observed GPP was equal to 0.85. The slope of the linear fit between
the predicted GPP and EC-observed GPP changed from 0.79 in Sim2 to 0.81 in Sim3 (see
Table 3 and Figure 5). Compared to GPP_Sim2, the RE of GPP_Sim3 decreased. Based on
the RE values, GPP_Sim3 was superior to GPP_Sim2 at all of the sites.

4. Conclusions and discussion

In this study, MODIS GPP was validated, and the accuracy of the method was verified using
EC-observed GPP obtained from 10 sites located in northern China. Based on the results
of this study, the following conclusions can be made:

(1) The standard MODIS-GPP product displays a strong bias in the study area due
to the model parameters of the MODIS-GPP algorithm BPLUT, meteorological
inputs, and MODIS FPAR.

(2) The bias in the standard MODIS-GPP product mainly resulted from erroneous ε0

values in the MODIS-GPP algorithm, BPLUT. Other inputs and parameters had
smaller effects on the predicted GPP of the MODIS-GPP algorithm.

(3) Among the sites in this study, the GPP of cropland is the highest, followed by
forest. The GPP of grassland is the lowest. Those sites that have data in both the
years 2008 and 2009 were chosen to analyse the yearly change of GPP. The average
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GPP is 141.19 g C m−2 (8 days)−1 in 2008 and 135.93 g C m−2 (8 days)−1 in 2009.
This shows a slight decrease of GPP in northern China from 2008 to 2009.

In general, the standard MODIS GPP correctly captured the seasonal dynamics of GPP at
all of the sites; however, a significant difference in the magnitude of standard MODIS
GPP and EC-observed GPP was observed. At highly productive sites, the GPP was
markedly underestimated by MODIS. On the contrary, at sites with low productivity, such
as Changwu and Yuzhong, the MODIS GPP was close to the EC-observed GPP. This
result is consistent with those obtained by Turner et al. (2006). Coops also found that
standard MODIS GPP was 30% lower than EC-observed GPP (Coops et al. 2007). The
observed difference in the magnitude of GPP can be attributed to three aspects, biome-
specific parameters used in the MODIS-GPP algorithm, meteorological input data, and
FPAR. In previous studies, the predicted global GPP changed greatly (>20 Pg C year−1)
when different meteorological data (DAO, NCEP, and ECMWF) were used to drive the
MODIS-GPP algorithm (Zhao, Running, and Nemani 2006). In other words, significant
uncertainties are present in the meteorological input data of standard MODIS GPP. In this
study, ε0 had the greatest impact on the predicted GPP of the MODIS-GPP algorithm,
followed by FPAR. In contrast, meteorological input data had the smallest effect. The
use of tower-observed meteorological data and time-series reconstructed FPAR slightly
improved the GPP of MODIS-GPP algorithm; however, adjustments to ε0 greatly improved
the results. Erroneous ε0 values produce systematically biased results. For instance, maize
is a C4 plant that has greater light-use efficiency than C3 plants, and the value of ε0 for
maize cropland was approximately three times greater than the default value in the MODIS-
GPP algorithm. Similarly, Zhang found that the ε0 of wheat, a C3 plant, was approximately
1.18 g C MJ−1, which is significantly higher than the MODIS-GPP algorithm default value
(0.68 g C MJ−1) (Zhang et al. 2008). The value of ε0 is underestimated in standard MODIS
GPP, and C4 and C3 plants are not distinguished in the MODIS-GPP algorithm. As a result,
significant bias is observed in sites containing cropland, which represent 14.7% of the
total land area in China (Liu et al. 2005). Noises in other parameters were also observed.
Although FPAR_SG, tower meteorological data, and calibrated ε0 values were used to drive
the MODIS-GPP algorithm, significant bias was obtained in Dayekou, which presented an
RE of –28%. After Tminmin and Tminmax were adjusted from the default values of −8◦C and
8.31◦C to −12◦C and 5◦C, the RE at Dayekou was equal to –20%. Two methods can be used
to improve the accuracy of the MODIS-GPP algorithm in the study area. First, parameters
in the MODIS-GPP algorithm should be calibrated for the area, and noise in FPAR data
must be removed. Second, more biome types should be introduced into the MODIS-GPP
algorithm, BPLUT, because croplands such as maize and wheat have significantly different
parameters. Moreover, in the grassland biome, alpine meadow and desert steppe also have
different parameters.

In the last paragraphs, error from the MODIS-GPP algorithm is discussed, but there is
also uncertainty in EC GPP estimation. Using different NEE partition methods will result
in different GPP amounts at the same site. In this study, daytime respiration was estimated
with the Van’t Hoff function (night-time-based method: GPP_NB). With this method, the
result may be affected by suppression of turbulence and dominance of advective fluxes at
night (Lasslop et al. 2010). The light response function (daytime-based method: GPP_DB)
is also a widely used partitioning method (Gilmanov et al. 2007; Lasslop et al. 2010). GPP
estimated with the rectangular hyperbolic light response function (without consideration
of temperature and VPD) is close to the night-time-based method (see Figure 6), and the
maximal relative error is 8.8% ((GPP_NB minus GPP_DB) divided by GPP_NB).
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Figure 6. Scatter plot of GPP estimated with the light response function-based method (GPP_DB)
and Van’t Hoff function-based method (GPP_NB) with EC-observed NEE data. (AR: A’rou, CW:
Changwu, DS: Dongsu, DYK: Dayekou, GT: Guantao, JZ: Jinzhou, LZ: Linze, MY: Miyun, YK:
Yingke, YZ: Yuzhong.)

MODIS GPP can be used to determine the GPP within a pixel (an area of 1 km2 in
this study); however, EC measures GPP over a footprint that changes according to the wind
speed and wind direction in one year. Differences in the spatial scales of the two meth-
ods may lead to differences in the predicted GPP of the MODIS-GPP algorithm and EC.
Uncertainties in EC-observed GPP are also common. To obtain 8 day integrated GPP val-
ues, small gaps in the NEE data of EC must be filled, and the daytime respiration rate must
be estimated. These steps also produce errors in the EC-observed GPP.
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