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so on. Because the nonlinearity of solution, many
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Characteristics for the Soliton Based on Nonlinear Schrodinger Equation

WEI Jian-ping, WANG Jun, JIANG Xing-fang, TANG Bin
(School o f Mathematics & Physics s Changzhou University , Changzhou, Jiangsu 213164, China)

Abstract ;

communication of optical information, the optical soliton communication is an effective method.

For the problems of the attenuation and the dispersion in long distance fiber

The flexible soliton solution has been obtained from the solution of the nonlinear Schrédinger
equation with the group-velocity dispersion, linear potential, three-order nonlinearity term, and
the gain/loss term. A trial solution that was a travelling wave solution with complex amplitude
was used and it was replaced into the nonlinear Schrodinger equation. The three new variables
were introduced after the nonlinear Schrodinger equation was separated into imaginary part and
real part. Finally the square of wave-function of soliton solution and the consequence figures was
got with Matlab. The results show that the soliton solution is sensible for various parameters.
The appropriate soliton was obtained by reasonable parameters choice and it made the foundation
for the soliton communication in the optical fiber.
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strong anti-jamming property. A  series

Introduction

of

systematic method for researching the nonlinear

The soliton was put forward for the first time

in 1844, which can be found in many fields, such method' and inverse method”®, such
ocean sciencel?, optical fiber Adomian  decomposition method”  and
communication"**, condensed matter physics and fractional Fourier integral method™!,

equation was found except the inverse scattering

as

the
It also has
been found that many nonlinear partial differential

through

questions were resolved in the process of equations had the soliton solution,
transmission such as signal attenuation and computational experiment was combined with
distortion. Optical soliton had almost no energy ordinary solving process. Through above the

loss in the process of transmission and have a

method the solution was got and these solutions
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with a fixed form of the soliton solution have some
limitations for studying of the characteristics of
soliton. In the work, the property of the flexible
soliton solution was focused and the foundation

was made for soliton communication in the future.

1 The solution of nonlinear Schrodinger
equation

The nonlinear Schrodinger equation (NLS)

was a typical dispersive nonlinear partial
differential equation that was distinguished from
Schrodinger equation for being inserted nonlinear
term that was in proportion to wave function, so it
was commonly known as nonlinear wave envelope
function.

It described the spatio-temporal evolution of
the complex field y=¢(x,2) € C and that it has the
dimensionless form'™

R+t m|ypl?y=0
There was the

(xER,t>0) (D
parameter m €& R that
corresponded to focusing (m>0) or defocusing
(m<<0) effect of nonlinearity. In this paper, the
nonlinear Schrédinger equation was expanded with
group-velocity dispersion g(#), linear potential v
(x,1) » nonlinearity g,—, (¢) and the gain/loss term

y(¢), moreover m=1, in the formt? 1%

ia,¢+%ai¢+v(1,ﬂ¢+g,ﬁl(t)‘(/J‘p tg=
iy() ¢ (2)

Nowadays many physical phenomena were
found for the different linear potential v(x,¢) and
nonlinearity coefficient g, (z), which illuminated
my idea that was analyzed the soliton solution of
the extended nonlinear Schrodinger equation and
obtained the influence by the different parameters
to research the features of the soliton.

For the sake of simplicity, the situation of p=

3 was discussed and got
i, +E L8 Hola Dyt g (0 gl g=ir(Dy D

We employ the envelope field in the gauge
[11]

o(x.t) =[R(x,t) +iI(x,t) ] D
First, in order to get the specific form, the

form

envelope field (4) was integrated to spatial and
temporal variables and then the consequence into
Eq. (3) yields a plural function. If it was zero then
the imaginary part and real part were zero.
Second, R(x,t) . I(x,1),0(x,t)were described
by using the new variables that were p(x,1) . @(1).
Now we must define R, (), Ry(2), I-(1), (1)
that only were the function with ¢ and the Ry (x

(Ivt)ng(t))v 0X(x9f)y I\'(/I(Iat)9§0(t)) that were

the function with x,¢ to describe it, then we will

get ( the variables were left out below the
calculating).
R:Rq_'_RBRM,I:I(I\\76:04_’_(/‘? (6)
There was C that was a constant.
The Eq. (5) was substituted into the plural
function and the equivalent solutions were obtained.
2
%%:O (6a)
op 90, , ou_
o +p(t) or  ox 0 (6b)
o0 o0
9 OVyye )=
2 > +B(Z)(ax) 2v(x,t)=0 (6¢)
3R, 0, -
2 ” Jr[ﬁ(z)g‘ax2 2y IR, =0
(O':AaBaC) (6d)
d¢, ORu B dp., dlyv_ ¢,
SRy S G e SO S

g‘g(l‘)l(«IN[I% ?\’Jf(RAJfRBRM)Z]:O (6e)
og, oL, B0 By BRu D¢
Te EHE R, T —C SR+

ot ¢ 2g
R,;RM)Jng([)(RA +R13RM) ° [1?12\1+
(Ry+RzR\v)?]=0 (60

According to the eight equations, the new
variables were defined to obtain functions that
R(x,t) . I(x,1), 0(x,1t) and the square of wave-
function with variables. Then the new variables
were reasonably transformed so that numerical
solution was obtained with Matlab. In order to
realize it, the functions n(#),q(¢) were defined.

1) Through ordering the y(x,t) =n () x+
q(t) and associating with Eq. (6b), then we got

@1%*%1*%%12%@ (7
where the symbol ¢, was a constant what the
integration got. For the convenient, we ordered
that ¢, =0.

2) Through Eq. (6c¢), we obtained

v(x,

o0, | B 30, .,
D=5 TG (&)

3) Associating Eq. (7) and Eq. (6d), the
consequence was got by the method of separation

of variables.

2 dR, =@+2y(z)dz, R.=A,/n]| -
R, n
exp ([y(prdp) 9

4) The Eq. (6e) and the Eq. (6f) were partial
differential equation with constant coefficients. If we
want to get it, the two equations must be defined.

Be_BW | Buy. () _BD G B
o 5 (ar) , g, (D) 5 Rﬁ\(a ) (10)
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where G is a constant and for convenient we
ordered that G=1, C=1. It also had R; = bR, ,
I-=cR,. Then through Eq. (6e) and Eq. (6f) got
RM:_—}Q Iy :4_?5‘(%
1)(14‘2/["—450“) (‘(1‘5—2/[4—4@“)
Through integrating Eq. (10), it was got

(1D

o=+t (R(pdp.g, () =""DBL (1)
2% 2R | n|

5) The function y () was extended item of
nonlinear Schrédinger equation and defined it (¢, is
a constant) as

y(t) =c,tan (t)sech (1) (13)

Finally the consequence was got
Al ln(o) lexp 2ly(p)dp)
0

T2t g g DT
{L2(Da+q)* +4¢" (D —3] +64¢" (1)} (14)

where A, was the totality of constant in exponential

[¢Cx,0) |

function and we ordered it equaled to one.

2 Discussion

Changed n (), ¢ (), ¢ (1) of the square of

wave-function and numerical solution was obtained

by Matlab™?’,

wave-function was observed, the influence of the

Through the influence the square of

soliton solution can be boldly guessed.
1) First,

constant, function g(¢) was polynomial.

ordering function n (¢t) was a

() The function is g(z) =¢". As we can see
from Fig. 1 (a) and (b). it only showed that the
x—1t plane of the square of wave-function, when
the parameter m=2k+1(k=0,1,2--+), the picture
were similar to the centrosymmetric graph at point
(0,0), while when m =2k (k=1,2++), it was
similar to axisymmetric graph, in addition, the
graph was discrete following the increase of value.

(ii) The function is q(z) =c¢ (The symbol ¢
was the constant). It showed that the graph was
on the center of the x—1t plane, when the constant
was become smaller, until ¢g(z) =0. 1, the graph
was shifted along the x axis, but the shape did not
change. When the ¢ (z) =9, it was shifted out.
constant, the

Following the increase of the

stabilized graph was got, like Fig. 1(c).

x/m
(@) g(ty=t"°

Fig. 1

(iii) The function is q(z) =exp (c+t+1* +

«). We also got the graphs that were stabilized
along with the increase of constant and the shape
of graph was the same as Fig. 1 (¢). Furthermore,
the square of wave-function was nearly unvarying.

(iv) The function g (1) was trigonometric

x/m
(b) g()=t"!

(c) g(=10"

Those pictures were under the condition that was n(¢) =0. 1,8(z) =0. 5¢* with different ¢(2)

function When ¢(z) was trigonometric function, it
will find that the graph of x—¢ plane was similar to
the graph of ¢ (t) {function, like Fig. 2;
furthermore, the influence to the square of wave-

function was so small.

0

(a) g(t)=sin ¢

x/m
(b) g(H)=cos ¢

(c) g(H)=tan ¢
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x/m
(d) g(f)=cot ¢t
Fig. 2
As we all known the consequence was caused
by the function ¢(¢) and what was induced by n(z)
andB(#), so we will change n(z) and 8(#)to obtain
the conclusion.

2)Second, the q(z) =1, the B(¢) =0. 5/ and

the n(¢) was changed.
(i) The function n(z)was polynomial. It was
found that the graph of t—z plane was related to
the graph of |n(¢)| function from the Fig. 3 when

(a) n(r)=sin ¢

(e) g(¢)y=sec t

(b) n(fy=cos t

x/m x/m
() g(ty=csc t

Those pictures were under the condition that was n(£) =0.1,8(:) =0. 5/ with different g(2)

the graph verged to stabilization, and it can get
stable graph that identical to Fig. 1 (c) with
increasing of constant, moreover, when the
constant increased the square of wave-function was
accordingly increased, which proved the stability
of soliton. Meanwhile, it also proved that the
graph of x —1¢ plane was similar to the graph of ¢

(1), like Fig. 1 (a) and (b).

[12/(x10%)

0

x/m

=5} t/s -5 =3

x/m
(c) n(£y=t"+100000

Fig.3 Those pictures were under the condition that was q(¢z) =¢,8(¢+) =0.5¢* with different n(2)

(i) The symbol n(#) was exponential function
and trigonometric

3) When functions n(z),q(z) were invariant,
the dark soliton was discussed, so ordered the
B(1)>>0 and it found that the influence was small
with B Ct),

» the value of function g(z) was 1.

change function just as the

literaturest®: ™

3 Conclusion

In the

equations, the method that was appeared in this

new-style nonlinear Schrédinger

work was used to get the flexible soliton solution.
This

decomposition method " and the fractional Fourier

method is superior to the Adomian

integral method. There are three variable to

describe the soliton solution. It has been found
that the function q(z) was transformed for square
of wave-function hardly any influence, but change
of the ¢ (1) play an important role in x — ¢ plane

graph. The square of wave-function was changed

when the function n(z) was altered and the t—>=z
plane graph was similar to the graph of | n(t) |
function. Meanwhile, as far as some condition of
transformed the patterning close to stabilization,
the soliton was put to good use in far distance
communication. It described the phenomenon of
the soliton can provide more precious information
for researching nonlinear system in the future,
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