论 文 www.scichina.com csb.scichina.com

藏北羌塘地区基性岩墙群锆石 SHRIMP 定年及 Hf 同位素特征

翟庆国^①,李才^②,王军^①,纪战胜^①,王永^①

① 中国地质科学院地质研究所,北京 100037;
 ② 吉林大学地球科学学院,长春 130061
 E-mail: <u>zhaiqingguo@126.com</u>

2008-10-31 收稿; 2009-02-16 接受 国家自然科学基金(批准号: 40872146 和 40672147)与中国地质调查局项目(编号: 1212010561605)资助

摘要 藏北羌塘中央隆起地区出露有大规模、近东西走向的基性岩墙群,是该地区发生区域性 伸展作用的遗迹.对代表性辉绿岩岩墙进行了锆石 SHRIMP 定年和 Hf 同位素分析,两个辉绿岩 加权平均年龄分别为(284±3)和(302±4) Ma,表明羌塘地区基性岩墙群主要形成于晚石炭世末至 早二叠世.辉绿岩锆石样品¹⁷⁶Hf/¹⁷⁷Hf 比值在 0.282852~0.283041 之间,ε_{Hf}(t)值均在 12 左右,暗 示其岩浆源区为亏损地幔.锆石 Hf 模式年龄(T_{DM})分别为~438 和~457 Ma. 羌塘中央隆起地区岩 墙群地球化学成分具有板内玄武岩的特征,可能是该地区古特提斯洋初始张开的产物. 关键词

藏北 羌塘 基性岩墙群 SHRIMP 定年 Hf 同位素

基性岩墙群是大陆伸展背景下、主要来自陆下软 流圈或地幔岩石圈的岩浆侵入体,对古陆块聚合、伸 展和裂解的重建具有至关重要的作用^[1-3].藏北羌塘 中央隆起地区沿龙木错-双湖缝合带南侧出露有一套 基性岩墙群,岩墙数量多,分布范围广,是青藏高原 内部规模最大的岩墙群(图 1),它对理解羌塘地区的 构造演化具有十分重要的意义.对这套岩墙群前人 已做了少量研究工作^[4,5],认为它是古特提斯洋阶段 联合古陆裂解的产物^[5],但研究程度不高,尤其是对 岩墙的形成时代,缺少高精度的测年资料,从而制约 了对它的深入研究.本文选择羌塘地区岩墙群中两 个典型的、规模较大的岩墙为研究对象,进行了锆石 SHRIMP U-Pb 定年及其 Hf 同位素分析,并探讨其地 质意义.

1 地质概况

羌塘地处青藏高原的北部,位于班公湖-怒江缝 合带与金沙江缝合带之间(图 1),龙木错-双湖缝合带 从中间通过,并把羌塘分割为羌南和羌北两个地 块^[6,7],羌塘南、北地层沉积建造和古生物组合差别较 大^[7].近年来的地质研究工作,在羌塘中部地区先后 报道了蓝片岩、榴辉岩和蛇绿岩^[7-12],羌塘地区地质 演化比过去的认识要复杂得多.羌塘中部岩墙群主 要出露于龙木错-双湖缝合带南侧,西起国境线,向 东到双湖附近,长约 800 km,主要产在羌塘中央隆 起地区的"浅变质岩"中.对于这套"浅变质岩"西 藏自治区区域地质志将其时代定为前泥盆系^[4],王国 芝等人^[13]将其划归元古代,李才^[14]认为其主体为石 炭-二叠系,新近完成的1:25万区域地质调查将其划 归为晚石炭世.总之,由于这套岩石变质程度不高, 且不含化石,对于其时代尚存在争论.

羌塘中部基性岩墙均以近直立、近东西走向近平 行产出,延伸方向大致与龙木错-双湖缝合带方向平 行,岩墙与围岩的接触界线明显,单个宽度自几十厘 米到几百米不等,长度自几十米到数公里,个别长度 可达数十公里,部分岩墙可见明显的冷凝边结构.岩

引用格式: 翟庆国, 李才, 王军, 等. 藏北羌塘地区基性岩墙群锆石 SHRIMP 定年及 Hf 同位素特征. 科学通报, 2009, 54: 3331~3337 Zhai Q G, Li C, Wang J, et al. SHRIMP U-Pb dating and Hf isotopic analyses of zircons from the mafic dyke swarms in central Qiangtang area, Northern Tibet. Chinese Sci Bull, 2009, 54, doi: 10.1007/s11434-009-0203-6

图 1 藏北羌塘中央隆起地区地质构造简图

1, 羌北扬子型稳定台型沉积; 2, 羌南冈瓦纳型被动陆缘沉积(羌塘中央隆起浅变质岩出露范围); 3, 中生代沉积; 4, 蛇绿混杂岩; 5, 基性岩墙群; 6, 高压变质带; 7, 花岗岩; 8, 主要断裂带; BNS, 班公湖-怒江缝合带; LSS, 龙木错-双湖缝合带; JS, 金沙江缝合带; ATF, 阿尔金断裂

墙岩性以辉绿岩为主,具有典型的辉绿结构,规模较 大的岩墙中部可以看到辉长结构,并且个别地方可 见到粗粒结构和细粒结构岩墙互相穿插的现象,反 映可能经历了多期岩浆事件.岩墙主要矿物成分为 单斜辉石和斜长石,局部见有角闪石、石英、磁铁矿、 锆石等.多数斜长石蚀变较强,但晶体形状保存完好, 个别蚀变较弱的晶体仍保存较完好的聚片双晶,辉 石全部为单斜辉石,经历一定的蚀变作用,但矿物晶 体保存完好.此外,个别岩墙还发生了轻微的变质作 用,可见后期的绿泥石.

2 样品采集及测试

本文两个锆石样品分别采自羌塘中部基性岩岩 墙群中两个规模较大的岩墙,岩性为辉绿岩,采样位 置见图 1,采样点坐标分别为 Ge06: 33°28.2′N 和 85°19.4′E,LG0701: 33°40′N 和 84°06.7′E. 辉绿岩主 量元素分析在中国科学院地质与地球物理研究所完 成,采用X-射线荧光光谱仪(XRF-1500)分析,结果见 表 1,样品 SiO₂含量分别为 47.45%和 51.87%,TiO₂ 含量为 3.90%和 2.51%,Al₂O₃含量为 13.15%和 12.59%. 锆石分选在河北省廊坊市区域地质调查研 究所实验室完成,按常规方法分选,最后在双目显微 镜下挑选出无裂隙、无包体、透明干净的自形锆石颗 粒,将其与标样一起黏贴在环氧树脂中,然后磨至约 一半,使内部暴露,然后进行反射光、透射光和阴极 发光显微照相. 锆石 U-Pb 同位素分析在中国地质科 学院地质研究所离子探针中心用 SHRIMP II 型离子 探针测定. 在分析过程中,应用标准锆石 TEM(417 Ma)进行元素间的分馏校正,Pb/U 校正公式采用 Pb/U=A(UO/U)^{2[15]};采用澳大利亚国立大学地学院 标准锆石 SCL13(年龄: 572 Ma; U含量: 238 μg·g⁻¹) 标定所测的锆石的 U, Th和 Pb含量,详细的 SHRIMP 分析方法和过程参阅文献 [16].数据处理采用 Ludwig SQUID 1.0^[17]和 ISOPLOT 程序^[18],衰变常数 使用 Steiger 等人^[19]推荐值,普通铅校正使用直接测 定²⁰⁴Pb 方法^[20],表 2 中所列数据均为同一测点连续 5 次分析的平均值,误差为 1σ.所有样品均采用 ²⁰⁶Pb/²³⁸U 年龄,加权平均值为 95%的置信度.

锆石 Hf 同位素分析在中国科学院地质与地球物 理研究所 Neptune 多接收电感耦合等离子质谱仪 (MC-ICPMS)和193 nm激光取样系统上进行,分析时 激光束直径为63 μm,激光剥蚀时间约26 s.测定时用 锆石国际标样91500 锆石作外标,分析中所用激光脉 冲速率为8~10 Hz,激光束脉冲能量为100 mJ. 仪器 的运行条件及详细的分析过程参见文献[21].本次实 验测定过程中,91500 锆石的¹⁷⁶Hf/¹⁷⁷Hf 的测定结果

表1 藏北羌塘地区基性岩岩墙主量元素分析结果(%)

样品	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	LOI	总计
Ge06	47.45	3.90	13.15	15.85	0.21	4.28	8.65	2.71	0.78	0.41	2.05	99.44
LG0701	51.87	2.51	12.59	14.88	0.22	3.13	7.29	2.74	1.17	1.13	2.00	99.53

	衣2 碱北无殆坐口石石堌矸田石 SIMINI 足干汨木											
点号	206 Pb _c (×10 ⁻⁶)	$U_{(\times 10^{-6})}$	Th	Th/U	$^{206}\text{Pb}^{*}$	$^{207}\text{Pb}^{*/206}\text{Pb}^{*}$	$^{207}\text{Pb}^{*/^{235}}\text{U}$	$^{206}\text{Pb}^{*/238}\text{U}$	误差	206 Pb/ 238 U +1 σ /Ma	207 Pb/ 206 Pb +1 σ /Ma	不谐和
0.06	(×10)	(×10)	(<10)		(×10)	±10	10	10		±10/101a	±10/101a	反(70)
Ge06	1 10	227	220	1.0.1	12.2	0.0520 4.6	0.006.4.0	0.04501.1.7	0.000	205 4 5	265 100	22
1.1	1.10	337	339	1.04	13.2	0.0538 ± 4.6	0.336±4.9	0.04521 ± 1.7	0.339	285±4.7	365±100	22
2.1	0.79	598	761	1.32	23.5	0.0514 ± 2.9	0.322 ± 3.4	0.04547 ± 1.6	0.488	287±4.6	261±67	-10
3.1	1.17	194	183	0.97	7.36	0.0564 ± 4.6	0.340 ± 4.9	0.04368 ± 1.8	0.360	276±4.8	467±100	41
4.1	1.64	292	338	1.19	11.6	0.0458 ± 6.1	0.286±6.3	0.04535 ± 1.7	0.272	286±4.8	-12 ± 150	2515
5.1	1.10	295	282	0.99	11.8	0.0518 ± 4.6	0.328 ± 4.9	0.04591 ± 1.7	0.347	289±4.8	278 ± 100	-4
6.1	0.53	383	428	1.15	15.3	0.0549 ± 2.9	0.350 ± 3.3	0.04616±1.7	0.500	291±4.7	410 ± 64	29
7.1	1.13	332	220	0.68	13.3	0.0496 ± 4.4	0.315 ±4.8	0.04603 ± 1.7	0.353	290±4.8	178 ± 100	-63
8.1	1.07	318	301	0.98	12.1	0.0497 ± 4.0	0.301 ±4.4	0.04391 ± 1.7	0.389	277±4.6	183 ± 94	-52
9.1	1.44	330	352	1.10	12.9	0.0505 ± 4.7	0.313±5.0	0.04498 ± 1.7	0.339	284 ± 4.7	220 ± 110	-29
10.1	2.49	245	232	0.98	9.58	0.0447 ± 8.1	0.273 ±8.2	0.04430 ± 1.8	0.214	279 ± 4.8	-71 ±200	492
11.1	1.51	263	243	0.95	10.2	0.0510 ± 4.7	0.312±5.0	0.04434 ± 1.7	0.338	280±4.7	240 ± 110	-16
12.1	1.44	448	595	1.37	17.9	0.0493 ± 4.3	0.311 ±4.6	0.04582 ± 1.8	0.384	289±5.0	160±100	-81
13.1	1.59	323	294	0.94	12.5	0.0483 ± 5.3	0.295±5.6	0.04424 ± 1.7	0.300	279±4.6	116±130	-141
14.1	1.64	279	295	1.09	11.2	0.0494 ± 7.6	0.312±7.8	0.04587 ± 1.7	0.222	289±4.9	166 ± 180	-74
LG070	1											
1.1	0.40	384	382	1.03	15.6	0.0530±3.3	0.345 ±4.0	0.0472 ± 2.3	0.567	297.2±6.7	330±76	10
2.1	0.38	767	791	1.07	31.9	0.0515 ± 2.2	0.343±3.1	0.0483 ± 2.2	0.715	303.8±6.6	264±50	-15
3.1	0.39	683	731	1.11	28.2	0.0509 ± 2.7	0.336±3.6	0.0479 ± 2.4	0.655	301.5±7.0	237 ±63	-27
4.1	2.18	148	81	0.57	6.45	0.0497 ± 12	0.341 ±12	0.0498 ± 2.8	0.237	313.2±8.7	181±270	-73
5.1	0.21	426	369	0.89	18.0	0.0549 ± 2.1	0.372±3.1	0.0491 ±2.3	0.733	309.2±6.9	407 ±47	24
6.1	0.29	1186	1576	1.37	49.9	0.05241 ± 1.6	0.3528 ± 2.8	0.0488 ± 2.2	0.802	307.2±6.6	304±37	-1
7.1	0.56	346	330	0.98	14.1	0.0515 ± 4.4	0.336±4.9	0.0472 ± 2.3	0.469	297.4±6.7	265±100	-12
8.1	0.26	540	506	0.97	22.1	0.0518 ± 3.7	0.339±4.3	0.0474 ± 2.3	0.525	298.8±6.6	277±84	-8
9.1	0.12	357	298	0.86	14.7	0.0540 ± 2.4	0.356 ± 3.3	0.0478 ± 2.3	0.697	300.9+6.8	373+53	19
10.1	0.53	241	202	0.86	9.97	0.0516+4.1	0.340 ± 4.7	0.0478 ± 2.4	0.499	301.1+6.9	268+94	-12
11.1	0.07	590	535	0.94	23.8	0.05511+1.8	0.356 ± 2.9	0.0469 ± 2.2	0.783	295.4+6.5	417+40	29
12.1	0.20	813	852	1.08	33.8	0.0532+2.2	0.354 + 3.1	0.0482 + 2.2	0.720	303 7+6 7	337+49	10
13.1	0.43	494	481	1.00	20.4	0.0532 ± 2 0.0529+3.2	0 350 +4 0	0.0480+2.4	0.596	302 0+7 0	326+72	7
14 1	0.14	1042	1153	1 14	43.0	0.05166+1.6	0 3417+2 8	0.0480 ± 2.4	0.803	302.0 ±7.0	270+38	-12
15.1	0.14	356	259	0.75	15.2	0.0542+3.5	0.369+5.0	0.0494+3.5	0.706	311+11	378+79	12
16.1	1.00	188	128	0.70	7.74	0.0466+9.3	0.305+0.7	0.0475 ± 2.5	0.272	208 0 +7 7	31+220	_850
10.1	1.07	100	120	0.70	/./+	0.0400 10.3	0.505 1.1	0.0+75.0	0.212	270.7 ± 1.1	51 1220	057

表 2 藏北羌塘基性岩岩墙群锆石 SHRIMP 定年结果

a)²⁰⁶Pbc为普通铅;²⁰⁶Pb*为放射性成因铅

是0.282292±25,该值与Wu等人^[21]获得值(0.282307±31)和用溶液法获得值(0.282306±10)^[22]在误差范围内一致.

3 测试结果

3.1 锆石 SHRIMP 定年

戈木日北辉绿岩样品 Ge06 的锆石呈自形粒状、 短柱状,粒度多在100 μm 左右. CL 图像显示,锆石 多具有面状、补丁状结构(图 2(a)).对14 个具有代表 性的锆石进行了分析,测试结果见表 2.14 个分析点 的 Th含量为183×10⁻⁶~761×10⁻⁶,U含量为194~598 ×10⁻⁶, Th和 U 之间具有正相关关系,Th/U 比值在 0.68~1.37 之间,具有岩浆成因特征^[23].获得的14 个 分析点²⁰⁶Pb/²³⁸U年龄变化于276~291 Ma之间,在谐 和线上数据点成群分布(图 3),加权平均年龄为 (284±3) Ma (MSWD = 1.2),相当于早二叠世,代表 该辉绿岩的形成年龄.

鲁谷北辉绿岩样品(LG0701)的锆石呈自形短柱状、 粒状,粒度多在 60 μm 左右,个别大者可达 100 μm. CL 图像显示,锆石多具面状、条带状结构(图 2(b)). 对该样品进行了 16 个代表性锆石的分析,测试结果见 表 2. 所测锆石的 Th 和 U 含量分别介于 81 × 10⁻⁶~1578×10⁻⁶和148×10⁻⁶~1186×10⁻⁶之间,Th 和 U之间具有正相关关系,Th/U 比值在 0.57~1.37 之间, 具有岩浆成因特征^[23].获得的 16 个分析点²⁰⁶Pb/²³⁸U 年龄变化于 295~313 Ma之间,在谐和线上数据点成 群分布(图 3),加权平均年龄为(302±4) Ma (MSWD = 0.44),相当于晚石炭世末期,代表该辉绿岩的形成 年龄.

3.2 锆石 Hf 同位素

锆石 Hf 同位素分析点位置和 SHRIMP 测年点相 对应,分析结果见表 3. Ge06 样品锆石¹⁷⁶Hf/¹⁷⁷Hf 比 值分布于 0.282910~0.283041,根据每个锆石的 SHRIMP 年龄计算,ε_{Hf}(*t*)值在10.4~15.1之间,加权平 均值为(12.1±0.5),Hf 模式年龄(*T*_{DM})变化范围为 317~516 Ma,平均年龄为438 Ma. LG0701 样品锆石 ¹⁷⁶Hf/¹⁷⁷Hf 比值分布于 0.282852~0.283040,根据每个 锆石的 SHRIMP 年龄计算,ε_{Hf}(*t*)值在 9.1~15.3之间, 加权平均值为(12.2±1.1),Hf 模式年龄(*T*_{DM})变化范围 为 335~586 Ma,平均年龄为457 Ma.

4 地质意义

4.1 羌塘地区岩墙群的时代

对于羌塘地区基性岩墙群的时代,西藏自治区 地质志^[4]将其划归为"华力西晚期-印支期",但缺少 可靠的年龄数据,李才等人^[5]对辉绿岩进行了锆石 U-Pb(TIMS法)和全岩Sm-Nd法定年,获得了单颗粒锆 石年龄(312 ± 4) Ma和Sm-Nd全岩等时线年龄(299 ± 13)与(314 ± 5) Ma,将其时代定为晚石炭世.本文采 用高精度离子探针,对代表性的岩墙进行锆石定年, 获得两个高精度的年龄: (284±3)和(302±4) Ma.基性 岩墙主要侵位于羌塘中央隆起地区的"浅变质岩"中, 而这套岩石时代以晚石炭世为主^[14],并且岩墙切穿

图 2 藏北羌塘地区基性岩墙锆石 CL 图像 (a) Ge06 样品, (b) LG0701 样品

地层,因此岩墙的侵位时代应晚于这套"浅变质岩", 也就是,在晚石炭世之后.因此,结合本文所获得的 年龄数据,羌塘中央隆起地区基性岩墙群的形成时 代,主要集中在晚石炭世末期至早二叠世,这与早二 叠世之后的地层中不发育岩墙群相一致^[7].

4.2 地质意义

羌塘中部基性岩墙群中 SiO2 含量在 47%左右,

TiO₂含量在 3%左右, Al₂O₃含量在 15%左右, 稀土元 素中轻稀土富集, 重稀土相对亏损, 无明显 Eu 异常, 稀土元素球粒陨石标准化曲线(图 4)为向右倾斜曲线, 微量元素中 Rb, Ba, Th 和 U 等相对较富集(图 5)^{1).2)}, 岩墙群岩石地球化学成分具有板内玄武岩的特征. 两个岩墙锆石样品¹⁷⁶Hf/¹⁷⁷Hf 比值分布于 0.282852 ~ 0.283041之间, ε_{Hf}(*t*)值均在 12 左右, 这些特征具有亏

表 3 藏北羌塘基性岩岩墙群锆石 Hf 同位素组成

点号	²⁰⁶ Pb/ ²³⁸ U 年龄/Ma	¹⁷⁶ Yb/ ¹⁷⁷ Hf	¹⁷⁶ Lu/ ¹⁷⁷ Hf	¹⁷⁶ Hf/ ¹⁷⁷ Hf	2σ	$\varepsilon_{\rm Hf}(0)$	$\varepsilon_{ m Hf}(t)$	2σ	T _{DM} /Ma	$f_{ m Lu/Hf}$
Ge06										
1	285	0.106462	0.003009	0.282975	0.000014	7.2	12.9	0.5	415	-0.91
2	287	0.092201	0.002557	0.282963	0.000013	6.7	12.6	0.5	428	-0.92
3	276	0.035875	0.001063	0.282923	0.000014	5.3	11.2	0.5	467	-0.97
4	286	0.043630	0.001295	0.282924	0.000012	5.4	11.4	0.4	469	-0.96
5	289	0.091187	0.002588	0.282940	0.000014	5.9	11.8	0.5	463	-0.92
6	291	0.101058	0.002928	0.282937	0.000015	5.8	11.7	0.5	471	-0.91
7	290	0.079106	0.002319	0.282950	0.000013	6.3	12.2	0.4	444	-0.93
8	277	0.123969	0.003596	0.283008	0.000016	8.3	13.8	0.6	372	-0.89
9	284	0.122471	0.003530	0.282955	0.000014	6.5	12.0	0.5	452	-0.89
10	279	0.109671	0.003253	0.282910	0.000019	4.9	10.4	0.7	516	-0.90
11	280	0.083184	0.002419	0.282925	0.000014	5.4	11.1	0.5	482	-0.93
12	289	0.158772	0.004533	0.282999	0.000014	8.0	13.5	0.5	396	-0.86
13	279	0.103429	0.003085	0.283041	0.000023	9.5	15.1	0.8	317	-0.91
14	289	0.069028	0.002036	0.282950	0.000015	6.3	12.2	0.5	441	-0.94
LG0701										
1	297	0.099589	0.002990	0.282964	0.000026	6.8	12.7	0.9	432	-0.91
2	302	0.203907	0.005843	0.282972	0.000034	7.1	12.6	1.2	455	-0.82
3	309	0.205951	0.004960	0.283040	0.000041	9.5	15.3	1.4	335	-0.85
4	307	0.080453	0.002391	0.282954	0.000042	6.4	12.7	1.5	440	-0.93
5	299	0.149728	0.004316	0.282961	0.000029	6.7	12.4	1.0	453	-0.87
6	301	0.048849	0.001524	0.282958	0.000025	6.6	12.9	0.9	423	-0.95
7	301	0.086477	0.002597	0.282933	0.000036	5.7	11.8	1.3	473	-0.92
8	295	0.079583	0.002492	0.282905	0.000025	4.7	10.7	0.9	512	-0.92
9	304	0.071472	0.002173	0.282852	0.000040	2.8	9.1	1.4	586	-0.93

图 4 藏北羌塘基性岩岩墙群稀土配分曲线 岩墙地球化学数据参见文献 1),2),球粒陨石数据见文献[24]

岩墙地球化学数据参见文献 1),2), 洋中脊玄武岩数据见文献[24]

¹⁾ 吉林大学地质调查研究院. 1:25 万玛依岗日幅区域地质调查报告. 2005

²⁾ 贵州省地质调查研究院. 1:25 万丁固幅区域地质调查报告. 2005

损地幔源区的特征.

基性岩墙群是陆块伸展背景下岩浆侵位于地壳 的, 它的发育既标志着刚性、半刚性古陆块的存在, 也是陆块伸展、甚至裂解的关键遗迹[1-3]. 对于基性 岩墙群形成的大地构造背景, 一般来说有 3 种解释: 板内裂谷、坳拉谷和地幔柱热点^[3]. 羌塘中部地区沿 龙木错-双湖一线出露一条印支期蓝片岩、榴辉岩 带[25],并有多处二叠纪碳酸盐岩-放射虫硅质岩-玄武 岩洋岛型岩石组合[26.27]及角木日地区富集型洋中脊 蛇绿岩产出[10,11],这些证据支持羌塘地区二叠纪古 特提斯洋的存在,从而否定了该地区这一时期存在 坳拉谷. 羌塘南部地区的岩墙群呈近东西走向、平行 分布,而与地幔柱热点有关的岩墙群,一般呈放射状 或发散状产出,因此,羌塘南部地区的岩墙群很可能 与板内裂谷作用有关,然而,目前我们的研究工作仅 限于羌塘地区,并目该地区研究程度很低,对于岩墙 群的形成过程中是否有地幔柱作用的参与,尚有待 于进一步深入研究.

羌塘南部地区基性岩墙群呈近东西走向产出, 沿龙木错-双湖缝合带南侧并与它近平行分布, 它的 形成可能与龙木错-双湖缝合带古特提斯洋打开密切 相关. 羌塘中部地区沿龙木错-双湖一线出露一条印 支期蓝片岩、榴辉岩带^[25],并有多处二叠纪洋岛型岩 石组合[26.27]及富集型洋中脊蛇绿岩产出[10.11],这些 证据代表羌塘地区古特提斯洋二叠纪就已经存在, 并在晚三叠世闭合,然而对于该洋盆打开的时间却 知之甚少. 三江地区是我国古特提斯洋保存最完整 的地区,洋盆主要在早石炭世打开,早二叠世扩张到 最大规模[28]. 此外, 前人对羌塘中部地区的基性、超 基性岩进行了研究,认为它们是板内裂谷作用下形 成的岩石^[26]. 岩墙群的时代为晚石炭世末期-早二叠 世,可能代表羌塘中部地区古特提斯洋初始张开的 时间, 古特提斯洋早石炭世在三江地区打开后逐渐 向西发育,晚石炭世末期至早二叠世延伸到羌塘中 部地区, 羌南和羌北地块之间裂开, 并开始由板内裂 谷转变为后期的古特提斯洋.

致谢 成文过程中得到了肖序常院士的指导,样品制备、锆石阴极发光照相、SHRIMP 分析得到了北京离子探针中心 陶华、杨之青和王彦斌等的帮助,地球化学和锆石 Hf 同位素分析得到了中国科学院地质与地球物理研究所李禾、 张艳斌和杨岳衡等的帮助,此外,匿名审稿专家的建设性意见对本文的提高起了关键作用,在此一并致以衷心 的感谢!

参考文献。

- 1 Halls H C, Fahrig W F. Mafic Dyke Swarms (IDC-1). Geol Assoc Canada Spec Papers, 1987. 34
- 2 Windley B F. The Evolving Continents. New York: John Wiley & Sons, 1977. 68-218
- 3 李江海,何文渊,钱祥麟.元古代基性岩墙群的成因机制、构造背景及其古板块再造意义.高校地质学报,1997,3:272-281
- 4 西藏自治区地矿局.西藏自治区地质志.北京:地质出版社,1993.269-272
- 5 李才,和钟铧,李惠民.青藏高原南羌塘基性岩墙群 U-Pb 和 Sm-Nd 同位素定年及构造意义. 中国地质, 2004, 31: 384—389
- 6 李才. 龙木错-双湖-澜沧江板块缝合带与石炭二叠纪冈瓦纳北界. 长春地质学院学报, 1987, 17: 155-166
- 7 李才,程立人,胡克,等. 西藏龙木错-双湖古特提斯缝合带研究. 北京:地质出版社,1995
- 8 邓希光,丁林,刘小汉,等.藏北羌塘中部冈玛日-桃形错蓝片岩的发现.地质科学,2000,35:227-232
- 9 李才,翟庆国,董永胜,等.青藏高原羌塘中部发现榴辉岩及其意义.科学通报,2006,51:70-74
- 10 翟庆国,李才,程立人,等. 西藏羌塘角木日地区二叠纪蛇绿岩地质特征及构造意义. 地质通报, 2004, 23: 1228—1230
- 11 翟庆国,李才,黄小鹏.西藏羌塘角木日地区二叠纪玄武岩地球化学特征及构造意义.地质通报,2006,25:1419-1427
- 12 翟庆国,李才,黄小鹏.西藏羌塘中部古特提斯洋残片——来自果干加年山变质基性岩地球化学证据.中国科学 D 辑:地球 科学,2007,37:866—872
- 13 王国芝,王成善.西藏羌塘基底变质岩系的解体和时代厘定.中国科学 D 辑:地球科学,2001,31(增刊):77-82
- 14 李才. 羌塘基底质疑. 地质论评, 2003, 49: 5-9
- 15 Claoue-Long J C, Compston J, Roberts C M, et al. Two Carboniferous ages: A comparison of SHRIMP zircon dating with conventional zircon ages and ⁴⁰Ar/³⁹Ar analysis. Geochronology Time Scales and Global Stratigraphic Correlation 54, SEPM Special Publication, 1995. 3—21
- 16 Williams I S, Claesson S. Isotope evidence for the Precambrian province and Caledonian metamorphism of high grade paragneiss

from the Seve Nappes, Scandinavian Caledonides, II. Ion microprobe zircon U-Th-Pb. Contib Mineral Petrol, 1987, 97: 205–217[doi]

- 17 Ludwig K R. Squid1.02: A User Manual. Berkeley Geochronogical Center Special Publication, 2001. 219
- 18 Ludwig K R. Using Isoplot/EX, version 2, A geochronological Toolkit for Microsoft Excel. Berkeley Geochronogical Center Special Publication 1a, 1999, 47
- 19 Steiger R H, Jager E. Subcommission on geochronology: Convetion or the use of decay constants in geo- and cosmo-chronology. Earth Planet Sci Lett, 1997, 36: 359—362[doi]
- 20 Compston W, Williams I S, Mayer C. U-Pb geochronology of zircons from Lunar Breccia 73217 using a Sensitive High Resolution Ion Microprobe, Proc. XIV Lunar Planetary Science Conference. J Geophys Res, 1984, 89(Supp.): 525–534[doi]
- 21 Wu F Y, Yang J H, Xie L W, et al. Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology. Chem Geol, 2006, 234: 105—126[doi]
- 22 Woodhead J, Hergt J, Shelley M, et al. Zircon Hf-isotope analysis with an excimer laser, depth profiling, ablation of complex geonmetries and concomitant age estimation. Chem Geol, 2004, 209: 121–135[doi]
- 23 Hoskin P W O, Black L P. Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. J Metamorph Geol, 2000, 18: 423-439[doi]
- Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalt: Implications for mantle composition and processes.
 In: Saunders A D, Norry M J, eds. Magmatism in the Ocean Basins. London: Geol Soc Spec Pub, 1989, 42: 528—548
- 25 李才,董永胜,翟庆国,等.青藏高原羌塘高压变质带的特征及其构造意义.地质通报,2008,27:27-35
- 26 邓万明, 尹集祥, 呙中平. 羌塘茶布-双湖地区基性超基性岩、火山岩研究. 中国科学 D 辑: 地球科学, 1996, 26: 296—301
- 27 李曰俊,吴浩若,李红生,等. 藏北阿木岗群,查桑群和鲁谷组放射虫的发现及有关问问题讨论. 地质论评,1997,43:250-256
- 28 莫宣学,潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束.地学前缘,2006,13:43-51