分子对接预测 H5 亚型禽流感病毒的广谱中和表位

·颜渊清、李少伟*,杨春燕、罗文新、王明桥、陈毅歆、罗海峰、吴婷、张军、夏宁邵

国家传染病诊断试剂与疫苗工程技术研究中心(厦门大学),厦门大学生命科学院,厦门大学细胞生物学与肿瘤细胞工程教育部重点实验室,厦门 361005

* 联系人, E-mail: <u>shaowei@xmu.edu.cn</u>

论文

2007-10-15 收稿, 2007-12-26 接受 国家自然科学基金项目(批准号: 30500092, 30640017, 30600106)、国家"十五"攻关项目(批准号: 2004BA519A73)、国家科技支撑计划(批准 号: 2006BAI01B06)、福建省重大科技专项(批准号: 2004YZ01-1)和福建省重点科技项目(批准号: 2005Y020)资助

摘要 H5N1 禽流感病毒已经在亚洲、欧洲和非洲广泛传播,造成了巨大损失.最近我们鉴 关键词	司
h gg H3(H) 离加忽闲母已经住业州、区/州和中州// 之(F插, 追风) 巨大顶头. 酸且我们盔 定出一株对多种来源的 H5N1 代表株均有良好中和活性的、识别 H5 亚型血凝素 (hemagglutinin, HA)的广谱单克隆抗体 8H5, 它对寻找克服禽流感高变性的广谱治疗性抗 体、疫苗和药物具有重要价值. 本研究应用分子模拟技术,采用"典范结构"方法对 8H5 抗 体 Fab 片段进行结构模建, 并通过能量分析、SAS 值分析、"拉曼强传图"检验、profile-3D 分析等理论验证, 获得较为合理的 8H5Fab 的三维空间结构. 8H5Fab 与 3 种 HA 蛋白晶体结 构的分子对接结果表明, 8H5 抗体与 HA 蛋白的作用模式与 HA 宿主来源无关,但与 HA 结 构的亚型相似性相关. 综合抗原同源比对结果,推测 8H5 抗体识别的广谱中和表位是由 HA 上的 Asp ⁶⁸ , Asn ⁷² , Glu ¹¹² , Lys ¹¹³ , Ile ¹¹⁴ , Pro ¹¹⁸ , Ser ¹²⁰ , Tyr ¹³⁷ , Tyr ²⁵² 不连续氨基酸残基组成的 构象表位. 这一模型将为 H5 亚型禽流感病毒广谱疫苗和治疗性药物的分子设计提供依据.	"" 禽流感病毒 付接 素蛋白 表位

2003 年底以来,高致病性禽流感病毒H5N1 在全 球持续蔓延,导致了多起大规模家禽死亡,甚至引起 了极高致死率的人类感染.血凝素(hemagglutinin, HA)是病毒感染宿主细胞的受体结合部位,是禽流感 病毒表面最主要的结构蛋白之一,也是机体保护性 中和抗体的最主要识别抗原.禽流感难以控制的重 要原因之一在于其HA蛋白的极高变异率.最近,我 们构建了包含 388 株具有血凝抑制(hemagglutinin inhibition, HI)活性的H5 特异性单克隆抗体库.用46 株来自不同时间、不同地点、不同宿主分离到的H5N1 病毒代表株对这些单抗的HI活性和中和活性进行测 定,发现其中1 株单抗(8H5)对全部病毒株都有较强 中和活性,意味着H5N1 病毒高保守性中和表位的存 在^[1].研究这些广谱中和单抗的结构对寻找克服 H5N1 高变异的突破口具有重要意义.

抗体分子具有典型的三维空间结构,根据已知 的抗体晶体结构可对已知可变区序列的抗体进行结 构模建^[2,3]. 位于抗体Fab片段的 6 个抗原互补决定区 (comptementary-determing region, CDR)(轻链 3 个, 重 链 3 个)的结构决定了抗体的识别特异性以及亲和力, 其氨基酸序列高度可变;除了CDR-H3 外, 其余的 CDR可以组成含有特征结构的"典范结构"(canonical structure)的集合^[3,4]. 基于这种"典范结构"的分子模 拟是一种较为精确的抗体分子结构模拟方法^[5]. 本 研究运用该方法对 8H5 抗体的Fab片段分子结构进行 模拟,并将其与已报道的 3 种H5 亚型HA蛋白晶体结 构进行分子对接,预测 8H5 单抗对应的中和表位组 成,为禽流感病毒广谱疫苗、药物的分子设计和广谱 治疗性抗体研究提供重要依据.

1 材料与方法

() 抗体序列和抗原结构优化. 单克隆抗体 8H5 细胞株由本实验室制备并保存¹¹¹. 从该细胞株中 克隆可变区基因,由上海博亚公司完成测序工作,获 得编码可变区的氨基酸序列为:轻链可变区,EIVLT- QSPAIMSASLGEKVTMSCRASSSVNFVYWYQQRS-DASPKLLIYYSSNLAPGVPPRFSGSGSGNSYSLTIS-GLEGEDAATYYCQHFTSSPYTFGGGTKLEIKRLE; 重链可变区,QVQLQQSGAELMKPGASVKISCKAT-GYTFSNYWIEWIKQRPGHGLEWIGEILPGSDRTNY-NGKFKGKATFTADTSSNTAHMQLSSLTSEDSAVYY-CANRYDGYYFGLDYWGQGTSVTVSS.

目前已公开的H5 亚型禽流感病毒HA蛋白的晶体 结构有 3 个,其PDB编码为 1jsm (病毒株: A/DUCK/ SINGAPORE/3/97; 来源: 禽),2fk0 (病毒株: A/VIET-NAM/1203/2004; 来源: 人)和 2ibx (病毒株: VN1194; 来源: 人)^[6-8]. 在进行抗原-抗体分子对接前,抗原 HA 蛋白均以单体形式的结构在 Insigt 软件包中进 行结构优化.

() 抗体的一级结构序列编号和"典范结构"分 析. 根据Chothia的抗体序列编码规则,抗体链中氨 基酸残基的缺失或者插入经常发生在L31、L95、L106、 H31, H82和H100位点^[2]. 在轻链的可变区(V_L)中、定 位于CDR-L1 和CDR-L3 前一位的两个保守的半胱氨 酸(Cvs)残基总是在抗体的第 23 和 88 位. CDR-L1 从 第 24 位开始、到第 34 位结束;而CDR-L3 从第 89 位 开始、到第 97 位结束. CDR-L1 和CDR-L3 结束后的 氨基酸残基经常是Trp和Phe-Glv. 而CDR-L2 经常在 CDR-L1结束后的第16个氨基酸残基开始、其前面的 氨基酸残基一般是Ile-Tvr, 序列定位在第 50~56 位之 间. 在重链的可变区中, 第一个保守的Cys在第 22 位 上、刚好在CDR-H1 开始前的第 4 个氨基酸残基; 第 二个保守的Cvs在第92位上、在CDR-H3开始前的第 3个氨基酸残基. CDR-H1 从第 26 位开始到 32 位结束, 结束后的第一个氨基酸残基经常是Trp. CDR-H3 从第 95 位开始到 102 位结束, 结束后的氨基酸残基经常是 Trp-Gly. CDR-H2 定位在第 52 位到第 56 位间. 即使这 些CDR是高可变性的,其中的 5个(除了CDR-H3)可以 组成一个叫做"典范结构"的集合、每一个CDR都可以 在这个集合里找到它的主链构象. 每个CDR属于哪种 "典范结构"是由这个CDR的长度、特异性位点的氨基 酸残基类型决定的 [5].

() 轻链模型(L)和重链模型(H)的构建. 在 Insight 软件包的同源模建程序块(homology)中, 轻 链和重链的氨基酸序列通过FASTA方法与蛋白质数 据库的序列进行比对^[9,10]. 同源性高于 50%且X射线 衍射解析度好的结构作为模板. 通过与模板序列的 比对, 保守区域的坐标位点首先被赋予目标序列. 对 于CDR区域(除了CDR-H3),通过搜索蛋白质结构数 据库而找到相同类型的"典范结构"坐标,将这个坐 标赋予CDR区域的序列.对于CDR-H3,由于其极高 的可变性,在蛋白质结构数据库的搜索结果中,将 RMSD值最小的结构的坐标值赋予CDR-H3.得到的 模型通过Refine程序对N端、C端和结合间的区域进行 修补.在进入下一步程序前控制其优化前后的RMSD 值小于 0.05 nm的情况下,逐步释放模型.在Discover 程序块中,固定保守框主链,在cvff力场下采用最陡 下降法、共轭梯度法和分子动力学对保守框侧链及其 CDR进行能量优化.

() L链模型和H链模型的配对. 在L模型和H 模型间界面的氨基酸残基是高度保守的.这些保守 的氨基酸残基定位在L33~L39,L43~L47,L84~L90, L98-L104,H34~H40,H44~H48,H88~H94及H103~ H109^[3,11].通过最小平方法,在保证RMSD在小于 0.05 nm的情况下,L模型和H模型相互配对在一起. 这个配对好的模型命名为 8H5Fab.通过BUMP程序, 找出相互间有可能碰撞的氨基酸残基,具有可能严 重碰撞的氨基酸残基通过改变二面角优化模型.随 后,在Discover程序块中,固定 8H5Fab的骨架,在 cvff力场下先后通过最陡下降法和共轭梯度法进行 1000步的能量最小化.得到最低能量的 8H5Fab模型 进行残基相容性,氢键组成和相互作用能量等测试.

() 8H5Fab 和 HA 抗原的分子对接. 在 InsightII软件包的Zdockpro模块中,8H5Fab和优化后 的抗原通过Zdock进行分子对接^[12].其中 8H5Fab作 为受体,而抗原作为配体.对接过程中为了节省计算 量,抗原结构中的HA2 区域和 8H5Fab中的恒定区域 被阻止参与对接.从Zdock的输出文件中,前 30 个复 合物被筛选出来进行进一步的Rdock分析^[13].综合 Zdock分值、Rdock分值和CDR结合区域,抗原和抗体 复合物被选定进行下一步分析.

()复合物溶剂可及表面分析和表位确定.以 水分子半径 0.14 nm作为半径标准,计算HA蛋白单体 和HA-8H5Fab复合物的氨基酸残基溶剂可及表面 (solution accessible surface, SAS)面积,进而比较氨基 酸残基在单体和复合物上所得SAS值的差异,SAS减 少值大于 0.07 nm²的氨基酸残基被认为是 8H5 抗体 作用的潜在表位位点^[14-16].计算HA-8H5Fab复合物 相互作用界面(interface)上重原子间的距离,满足形 成氢键、盐键或者范德华力的原子所在的氨基酸残基 被认为是潜在表位位点.同时满足上述两个条件,并 综合3种HA蛋白结构同源比对的结果,HA蛋白上的 氨基酸残基定义为计算机模拟下的 HA 蛋白的 8H5 表位.

2 结果与分析

2.1 8H5 抗体 Fab 片段的分子模建

() 8H5Fab 结构模板的获得和一级结构分析. 将 8H5 的 V_L 序列和 V_H 序列与 PDB 中的蛋白序列进 行 FASTA 比对,其比对结果如图 1 所示,根据模板的 结构域的分布,我们可以得到待模建的 8H5 抗体可 变区中的保守氨基酸、保守框架和抗原互补区域. 根据Chothia的抗体命名法则,将 8H5 抗体可变 区序列进行标准化命名(表 1).结果显示, CDR-L1 的 31 位氨基酸残基发生缺失;而在CDR-H2 的 52 位插 入 1 个氨基酸残基P52a, CDR-H3 的 100 位插入 3 个 氨基酸残基F100a,G100b和L100c.根据CDR的长度 及其保守氨基酸残基的分布,可对 8H5 抗体进行"典 范结构"分类,即CDR-L1,CDR-L3 和CDR-H1 属于分 类中的第 1 类,而其余的两个区域为第 2 类 ^[5].

()8H5Fab 片段的分子模建. 分子模建的结果 如图 2 所示, L 链和 H 链都具有典型的抗体结构. L 链 有 211 个氨基酸残基,其中前 109 个属于可变区域, 剩下的 102 个残基为恒定区的部分. H 链共有 219 个

图 1 8H5 抗体 V_L , V_H 序列与已知结构模板的多重比对结果(Clustal X)

	衣 1 883 机体序列编专和"英氾结构"突空方尖					
	氨基酸残基	编号	Chothia 编号	典范结构类型		
CDR-Ll	RASSSVNFVY	24~33	24 25 26 27 28 29 30 32 33 34	1		
CDR-L2	YSSNLAP	49~55	50 51 52 53 54 55 56	2		
CDR-L3	QHFTSSPYT	88~96	89 90 91 92 93 94 95 96 97	1		
CDR-Hl	GYTFSNY	26~32	26 27 28 29 30 31 32	1		
CDR-H2	LPGSDR	52~57	52 52a 53 54 55 56	2		
CDR-H3	RYDGYYFGLDY	99~109	95-100 100a 100b 100c 101 102			
其他	LSSLT	83~87	82 82a 82b 82c 83			

图 2 同源模建的 8H5Fab 三维空间结构

氨基酸残基,其中 120 个属于可变区域,剩下的 99 个残基为恒定区部分.组成L链和H链的4个结构域 都是由β-sheet 面对面包裹形成的,每个结构域都有 一对保守的二硫键: V_L 的 C23 和 C88 间、 V_H C22 和 C92 间以及 C_{H1} 和 C_L 各一对.和其他典型的抗体结构 一样,二硫键键长约 0.2 nm.

() 8H5Fab 模建结构的评估. (1) 能量分析. 如表 2, 能量优化后的 L 链和 H 链的总能量分别为 3637.96289 和 4551.27780 kcal (1 cal = 4.1868 J). 而 配对后的 8H5Fab 的总能量为 7875.70700 kcal, 比单 独的 H 链和 L 链总能量之和少 313.53369 kcal. H 链 和 L 链形成完整的 8H5Fab 结构时能量的下降表明, 完整的 8H5Fab 结构比单独暴露的 H 链和 L 链三维结 构更为稳定. 如表 3, 8H5Fab 形成后减少的能量与 H

表 2 L 链、H 链和 8H5Fab 能量分析

			•
	L 链/kcal	H 链/kcal	8H5Fab/kcal
范德华能量	1903.96936	1830.84920	3506.66400
排斥能量	9630.30371	9506.77250	19408.84000
色散能量	-7726.33447	-7675.92300	-15902.18000
库仑能量	1.61702	789.50665	705.74580
键能	536.83484	457.26556	994.10040
Theta 能量	874.28912	1071.52870	1945.81800
Phi 能量	251.47975	270.37045	521.85020
Out of plane 能量	7.66596	15.04769	22.71366
键-键能量	15.56962	33.08727	48.65688
键-theta 能量	44.38714	81.77821	126.16540
Theta-theta 能量	21.44454	31.37887	52.82341
Theta-theta-phi 能量	-19.29458	-29.53335	-48.82793
键-键(1-3)能量	0	0	0
Op-op 能量	0	0	0
Phi-phi 能量	0	0	0
氢键能量	0	0	0
总能量	3637.96289	4551.2778	7875.707

表 3 L 和 H 链的相互作用能量分析

能量分析模型: L 和 H	
范德华能量 = -225.68803 kcal	
排斥能量 = 271.72363 kcal	
色散能量 = -495.94510 kcal	
库仑能量 = -85.37601 kcal	
总能量 = -311.06405 kcal	

链和L链间的相互作用能量相当、说明两条链的配对 是自由能驱使的、符合热力学第二定律、因此、 8H5Fab的结构是合理的. (2) SAS值分析. 以水分子 半径 0.14 nm作为半径标准, L链的SAS值为 115.8041 nm², H链的SAS值为 118.5229 nm². 而 8H5Fab的SAS 值为197.3709 nm², 比单独L链和H链的SAS值总和少 了约 37 nm². Chothia等人 ^{[111}在研究V_L和V_H间的SAS 后,得到配对后的两个结构域的交界面积大约为 18 nm^2 左右. 由于 8H5Fab由V_L-V_H和C_L-C_{H1} 两对对等的 结构域组成、其配对后丢失的SAS值进一步说明了 8H5Fab模建是合理的.(3) 氢键分析. 如表 4, 8H5Fab 在 L 链 和 Η 链之间 的交 界

H供体	H受体	键长/nm	键角(°)
L:38:HE22	H:39:OE1	0.205	155.28
L:1:HE2	H:46:OE1	0.183	156.42
L:94:HG	H:50:OE2	0.218	153.78
H:60:HD22	L:1:OE1	0.241	145.53
H:100B:HN	L:34:OH	0.163	152.72
L:36:HH	H:100C:O	0.193	172.15
L:43:HG	H:104:O	0.193	156.76
L:174:HG	H:164:ND	0.243	148.73
L:174:HG	H:164:NE	2 0.230	151.36
H:167:N	L:162:OG	0.290	NA ^{a)}
L:137:HD22	H:180:OG	0.234	165.49
L:122:HN	H:212:O	0.198	160.82
L:122:HN	H:212:OX	T 0.238	130.38

表 4 L 链和 H 链间的氢键分析

a) NA 表示软件未检测到数值

面形成 13 对氢键, 其中 7 对位于可变区, 6 对位于恒 定区. 氢键是生物分子用于维系相互作用结构的重 要作用力之一, 大量的氢键有利于 8H5Fab 的结构稳 定. (4) 二面角分析. 如图 3, 对 8H5Fab 模型的 CDR 进行二面角分析, 有 80%的氨基酸残基位于拉曼强传 (Ramachandran)图的最优区域, 说明模建的 8H5Fab 结构是合理的. 在 8H5Fab 和 X 射线衍射解析的抗体 结构进行叠加后, 模型 8H5Fab 和实验解析的抗体结 构除了在 CDR 不同外其余的区域都有很好的重合性. (5) profile-3D 分析. 如图 4 对 8H5Fab 进行 profile-3D 测试, 其全局自相容数值(overall selfcompatibility)

图 3 抗原互补区域的"拉曼强传图"

图 4 8HFab5 模型的 profile-3D 程序测试

为 216.91. 根据软件的测试说明, 对于 8H5Fab 来说, 当全局自相容数值大于等于 196.23 时表示这个模型 是合理的, 数值低于 88.30 时, 表示模型不正确. 此 外, 通过 profile-3D 程序对 8H5Fab 的每个氨基酸残 基进行测试, 其数值都大于 0, 表明模建的 8H5Fab 结构是处在较为合理的构象.

2.2 8H5Fab和HA抗原的分子对接及其生物学功能

将上述模建的 8H5Fab分子与 3 种H5 亚型的HA 蛋白进行分子对接, 如图 5 所示, 8H5Fab的CDR区与 HA抗原的结合位点位于抗原的受体结合亚结构域 (receptor subdomain) aa110~260^[8], 提示 8H5 抗体作 为H5 亚型禽流感病毒中和抗体的生物学功能, 8H5 抗体可能竞争HA抗原与受体的结合, 从而行使中和 作用.

保持 8H5Fab的空间位置不变,将 3 个对接结果 重叠,结果显示(图 5),虽然抗原与 8H5Fab的结合部 位相当,但结合角度却有明显的差异,其中 8H5Fab 与 1jsm (红色)、2ibx (绿色)的结合角度几乎相同,而 与 2fk0 (蓝色)的结合角度差别明显,参与结合的 8H5 氨基酸侧链也有很大的不同(图 5(b)~(d)).1jsm HA抗 原分离自禽类动物,而 2ibx分离自人类,提示 8H5 抗 体与H5 亚型的HA抗原的结合与病毒宿主无关;与 1jsm及 2ibx相比,2fk0 与H1 亚型HA结构更为接近^[6], 提示其可能是H5 亚型向H1 亚型突变的过渡结构.

图 5 8H5Fab 与 3 种 HA1 的分子对接 (a) 白色, 8H5Fab; 红色, 1jsm; 绿色, 2ibx; 蓝色, 2fk0. (b)~(d) HA 分子表面着色的部分为 8H5 表位, 参与结合的 8H5 侧链以球棍模式表示. (b) Fab8H5ljsm; (c) Fab8H5-2ibx; (d) Fab8H5-2fk0

表 5 溶剂可及表面积分析 HA 蛋白的 8H5 表位(×0.01 nm²)^{a)}

_	2fk0			1jsm			2ibx	
位置	氨基酸	ΔSAS	位置	氨基酸	ΔSAS	位置	氨基酸	ΔSAS
A57	Lys	78.361	<u>A68</u>	Asp	27.716	<u>A72</u>	Asp	18.550
A60	Ile	23.262	A71	Leu	37.573	A75	Ile	66.375
A62	Arg	70.997	<u>A72</u>	Asn	86.130	<u>A76</u>	Asn	65.577
A75	Met	8.945	<u>A112</u>	<u>Glu</u>	28.131	<u>A116</u>	<u>Glu</u>	18.239
<u>A77</u>	Asp	40.472	<u>A113</u>	Lys	30.212	<u>A117</u>	Lys	28.056
A78	Glu	26.316	<u>A114</u>	Ile	34.115	<u>A118</u>	Ile	34.576
A79	Phe	143.975	A115	Arg	133.757	A119	Gln	84.019
<u>A81</u>	Asn	126.082	A116	Ile	7.654	<u>A122</u>	<u>Pro</u>	35.802
A82	Val	51.191	<u>A118</u>	<u>Pro</u>	48.655	A123	Lys	52.910
A82	Pro	69.096	A119	Arg	28.444	<u>A124</u>	Ser	104.211
A83	Glu	10.926	<u>A120</u>	Ser	109.740	A125	Ser	41.273
A117	His	18.864	A121	Ser	30.395	A126	Trp	9.254
A118	Phe	7.108	A123	Ser	68.298	A127	Ser	69.711
<u>A119</u>	<u>Glu</u>	56.822	A124	Asn	23.362	A130	Glu	17.771
<u>A120</u>	Lys	49.100	A126	Asp	8.974	A135	Val	11.537
<u>A121</u>	Ile	31.501	A127	Ala	17.753	<u>A141</u>	<u>Tyr</u>	54.689
A122	Gln	73.071	A131	Val	8.408	A142	Gln	28.543
A123	Ile	8.250	<u>A137</u>	Tyr	47.138	A144	Lys	43.149
<u>A125</u>	<u>Pro</u>	12.846	A140	Arg	37.735	A146	Ser	13.358
<u>A125</u>	Ser	12.562	A142	Ser	15.934	A149	Arg	60.859
<u>A141</u>	Tyr	33.140	A145	Arg	66.956	A157	Lys	69.367
A142	Gln	45.850	A153	Lys	50.086	A158	Asn	10.379
<u>A256</u>	Tyr	37.194	A154	Asn	64.563	A255	Glu	11.505
A273	Glu	73.261	A164	Tyr	9.150	<u>A256</u>	<u>Tyr</u>	65.716
A274	Tyr	56.550	A251	Glu	7.993			
A276	Asn	77.474	<u>A252</u>	<u>Tyr</u>	52.789			

a) 黑体+下画线示 3 种 8H5-HA 对接结果共有的 9 个氨基酸残基

(a)

2.3 HA 蛋白 8H5 表位的预测

() ΔSAS 值分析 8H5 表位. 根据对接结果计 算 HA-8H5Fab 复合物中 HA 蛋白上的氨基酸残基的 ΔSAS 值, ΔSAS 值大于 0 说明氨基酸残基位于复合物 的相互作用界面,值的大小表示氨基酸埋藏于界面 中溶剂不可及的程度,其中有些残基(如 2fk0 中的 Phe79,1jsm中的 Ser120和2ibx中的 Ser124)高达90% 的区域是被 8H5Fab 包裹着.以Cα相互距离为0.4 nm 作为基准,将 HA 蛋白上的 ΔSAS 值大于 0.07 nm² 的 氨基酸残基列于表 5,获得 HA 针对 8H5 抗体的表位 氨基酸.

() HA抗原序列同源比对分析 8H5 表位. 实验上,8H5 抗体几乎能够与目前分离到的所有H5 亚型禽流感病毒发生中和反应^[11],提示 8H5 识别H5 亚型HA蛋白的一个广谱中和表位,因此,通过综合上述ΔSAS值分析的8H5表位氨基酸(图6中灰背景示意)在3种HA蛋白的同源比对位置(图6),可以得到8H5表位的氨基酸组成:(以 1jsm氨基酸编号计)Asp⁶⁸,Asn⁷²,Glu¹¹²,Lys¹¹³,Ile¹¹⁴,Pro¹¹⁸,Ser¹²⁰,Tyr¹³⁷,Tyr²⁵²,即HA蛋白的8H5表位是由9个不连续氨基酸残基

组成的构象表位(表 5, 下画线+黑体所示).

() 自然突变率分析 8H5 表位的保守性. 通过 Blast 分析 1000 个不同来源的 H5 亚型 HA 蛋白序列 (统计于表 6)、8H5 表位氨基酸在序列的进化上高度 保守的, 除了 Ser¹²⁰, Tyr²⁵²保守性为 95.9%和 87.2% 以外, 其他氨基酸保守性都在 99%以上、提示这些中 和表位氨基酸对于 H5 亚型病毒的生存是重要的、同 时说明本方法预测的 8H5 广谱中和表位的位置是较 为可信的. 氢键相互作用分析 8H5 表位区: 分析 HA-8H5Fab 复合物中分子间的氢键相互作用现象,如表 7、相互作用界面上存在多对符合氢键形成条件的氨 基酸残基侧链供受体对(属于中和表位的氨基酸分子 以下画线所示). Lys¹¹³(对应在 2ibx 是 Lys¹¹⁷, 2fk0 是 Lys¹²⁰, 表 7 中以下画线黑斜体所示)在 3 种 HA 分子 中均可与 8H5Fab 形成氢键、提示 Lys¹¹³ 是 HA 蛋白 上 8H5 中和表位的关键氨基酸. 然而, 3 个 HA 分子 的Lys¹¹³参与形成氢键的原子不尽相同,提示1jsm和 2ibx 结构类似(O 作为 H 受体), 而与 2fk0 (HN 作为 H 供体)不同、这符合上述的三者与 8H5Fab 作用角度的 区别.

2ibx	.DQICIGYHA	NNSTEQVDTI	MEKNVTVTHA	QDILEKTHNG	KLCDLDGVKP	LILRDCSVAG
2fk0	GDQICIGYHA	NNSTEQVDTI	MEKNVTVTHA	QDILEKKHING	KLCDLDGVKP	LILRDCSVAG
1jsm	.DQICIGYHA	NNSTEQVDTI	MEKNVTVTHA	QDILEKTHNG	KLCDLNGVKP	LILRDCSVAG
2ibx	WLLGNPMCDE	FINVPEWSYI	VEKANPVNDL	CYPGDFNDYE	ELKHLLSRIN	HFEKIQIIPK
2fk0	WLLGNPMCDE	FINVPEWSYI	VEKANPVNDL	CYPGDFNDYE	ELKHLLSRIN	HFEKIQIIPK
1jsm	WLLGNPMCDE	FLNVPEWSYI	VEKDNPVNGL	CYPENFNDYE	ELKHLLSSTN	HFEKIRIIPR
				_		
2ibx	SSWSSHEASL	GVSSACPYQG	KSSFFRNVVW	LIKKNSTYPT	IKRSYNNTNQ	EDLLVLWGIH
2fk0	SSWSSHEASL	GVSSACPYQG	KSSFFRNVVW	LIKKNSTYPT	IKRSYNNTNQ	EDLLVLWGIH
1jsm	SSWSNHDASS	GVSSACPYNG	RSSFFRNVVW	LIKKNNAYPT	IKRSYNNTNQ	EDLLILWGIH
2ibx	HPNDAAEQTK	LYQNPTTYIS	VGTSTLNQRL	VPRIATRSKV	NGQSGRMEFF	WTILKPNDAI
2fk0	HPNDAAEQTK	LYQNPTTYIS	VGTSTLNQRL	VPRIATRSKV	NGQSGRMEFF	WTILKPNDAI
1jsm	HPNDAAEQTK	LYQNPTTYVS	VGTSTLNQRS	VPEIATRPKV	NGQSGRMEFF	WTILKPNDAI
2ibx	NFESNGNFIA	PEYAYKIVKK	GDSTIMKSEL	EYGNCNTKCQ	TPMGAINSSM	PFHNIHPLTI
2fk0	NFESNGNFIA	PEYAYKIVKK	GDSTIMKSEL	EYGNCNTKCQ	TPMGAINSSM	PFHNIHPLTI
1jsm	NFESNGNFIA	PEYAYKIVKK	GGSAIMKSGL	EYGNCNTKCQ	TPMGAINSSM	PFHNIHPLTI
2ibx	GECPKYVKSN	RLVLATGLRN	SP			
2fk0	GECPKYVKSN	RLVLATGLRN	SP			
1jsm	GECPKYVKSG	RLVLATGLRN	VP			

图 6 3 种 HA 蛋白 8H5 结合区的氨基酸序列同源比对

灰背景字表示溶剂可及表面分析得到的 3 种 HA 的 8H5 表位氨基酸残基, 方框内示意已报道的受体结合区域

			表 6 8H	5 衣怔勇奉	驳的目然突	受 拠率			
	8H5 表位氨基酸残基								
	Asp ⁶⁸	Asn ⁷²	Glu ¹¹²	Lys ¹¹³	Ile ¹¹⁴	Pro ¹¹⁸	Ser ¹²⁰	Tyr ¹³⁷	Tyr ²⁵²
Cys	-	_	_	-	-	-	0.1%	-	-
Asp	99.9%	_	0.1%	-	_	_	0.6%	_	-
Glu	_	_	99.6%	-	_	_	_	_	-
Phe	_	_	_	-	_	_	_	0.1%	-
Gly	0.1%	_	0.2%	_	_	_	0.2%	_	-
His	-	0.1%	_	_	_	_	_	0.7%	0.2%
Ile	-	_	_	_	99.3%	_	_	_	-
Lys	-	0.3%	0.1%	99.9%	_	_	_	_	—
Leu	_	_	_	_	0.5%	_	_	_	-
Met	_	_	_	_	_	_	_	_	-
Asn	_	99.5%	_	_	_	_	3.2%	_	12.6%
Pro	-	_	_	_	_	99.8%	_	_	—
Gln	_	_	_	_	_	_	_	_	-
Arg	_	_	_	0.1%	_	_	_	_	-
Ser	_	_	_	_	_	0.2%	95.9%	0.1%	-
Thr	-	0.1%	_	_	_	_	_	_	-
Val	-	_	_	_	0.3%	_	_	_	—
Tyr	-	_	_	_	_	_	_	99.1%	87.2%

0115 主法复复散的自然灾灾感动

表 7 8H5Fab 抗体与血凝素蛋白间的氢键

H 供体	H受体	键长/nm	键角(°)
8H5Fab:H25:HG1	1jsm:A68:OD2	0.236	139.11
<u>ljsm:A72:HD2^{a)}</u>	8H5Fab:H76:OD1	0.228	156.55
<u>1jsm:A72:HD22</u>	8H5Fab:H27:O	0.178	129.68
8H5Fab:H31:HD22	1jsm:A112:OE2	0.193	139.49
8H5Fab:H28:HG1	<i>ljsm:A113:0</i> ^{b)}	0.178	130.03
ljsm:A115:HN	8H5Fab:H32:OH	0.181	124.02
ljsm:A115:HN	8H5Fab:H97:OD1	0.206	152.29
1jsm:A115:HH22	8H5Fab:H94:OD1	0.170	153.24
8H5Fab:L55:HN	1jsm:A125:O	0.187	138.59
8H5Fab:L55:HN	2ibx:A129:O	0.233	120.20
2ibx:A157:HZ1	8H5Fab:L55:O	0.181	126.66
2ibx:A157:HZ1	8H5Fab:L56:N	0.245	126.52
<u>2ibx:A76:HD22</u>	8H5Fab:H28:N	0.241	135.04
8H5Fab:H28:HG1	<u>2ibx:A117:0</u>	0.181	123.53
8H5Fab:H31:HD22	2ibx:A116:OE2	0.191	142.38
8H5Fab:H97:HN	2ibx:A119:OE1	0.211	150.73
2ibx:A119:HN	8H5Fab:H97:OD1	0.189	136.25
2fk0:A117:NE2	8H5Fab:L53:OD1	0.257	NA ^{c)}
<u>2fk0:A120:HN</u>	8H5Fab:L54:O	0.237	136.82
2fk0:A256:HH	8H5Fab:L57:O	0.194	147.24
2fk0:A62:HH21	8H5Fab:H26:O	0.168	127.18
8H5Fab:H28:HG1	2fk0:A273:OE1	0.225	143.37
8H5Fab:H28:HG1	2fk0:A273:OE2	0.189	124.43
2fk0:A57:HZ2	8H5Fab:H98:O	0.176	125.63
2fk0:A276:HD21	8H5Fab:H94:OH	0.203	138.56
2fk0:A79:HN	8H5Fab:H102:OH	0.206	151.32

a) 下画线示参与形成氨键的 HA 的 8H5 表位氨基酸残基的原子; b) 下画线+黑斜体示 3 种 HA 共有的参与形成氨键的 8H5 表位氨 基酸残基的原子; c) NA 表示软件未检测到数值

3 讨论

HA作为单独的多肽蛋白(HA0)定位在病毒的膜 蛋白上,如果要使病毒具有感染性,那么HA0必须通 过宿主的类胰岛素蛋白酶分解成两个肽段: HA1 和 HA2. 通过和细胞表面的唾液酸受体结合, HA蛋白能 够调节病毒与宿主细胞的吸附、进而进入宿主细胞; 同时、HA也是机体抗流感病毒体液免疫的重要靶抗 原,其抗体大多具有中和活性¹¹⁷¹.因此,HA是针对 H5N1 药物和疫苗开发的重要靶标.不仅如此、HA还 能够用于监测现有的疫苗和诊断方法对新病毒株的 有效性及其潜在免疫交叉反应. 流感疫苗的一大缺 陷在干这种疫苗只能对特异的病毒株有免疫保护作 用.因此每年都要研制针对每一个不同病毒株的流 感疫苗, 如果能够找到流感病毒株上的广谱表位, 针 对这个表位所研制出来的流感疫苗和诊断试剂将可 能克服目前疫苗或者诊断的缺陷、大大增强人们对 流感疫情的控制能力 [18].

Damien实验室报道了两个基于X射线衍射的HA 抗原表位^[14],其中HA抗原来自引起 1968 年流感爆 发的H3 亚型病毒.自 1997 年开始,H5N1 已逐渐成为 目前最具破坏性的流感病毒.对于H5 亚型的中和表 位的研究,尚无成功获得结构解析的报道.在前期获 得的禽流感病毒广谱中和单抗 8H5 基础上,本研究 通过分子模建和分子对接分析其识别的H5 广谱中和 表位.

抗体与抗原的活性主要是通过轻链可变区和重链可变区来实现的,为了便于后续分子对接结果的筛选,本研究通过模拟 8H5 抗体的Fab段而不是通过模拟具有同样抗体活性的单链抗体模型来进行^[19,20].通过分析 8H5 单抗的一级结构,找到了可变区的保守框架和CDR(表 1). 抗体保守框架具有较高的保守性,模拟所得结构准确性也较高.而CDR区可以通过"典范结构"进行分类,类别分类基于CDR区的长度,抗体关键位点氨基酸的类别,在"典范结构"中,相同的类别构象相似,而不同的类别构象差异大.采用"典范结构"方法模拟得到的抗体结构,在能量测试,SAS分析,"Ramachandran图"检验, profile-3D分析及

其与X射线衍射得到的晶体结构叠加后均验证这个 模型的正确性.分子对接采用的是InsightII软件中的 Zdockpro模块,为了验证其相对准确性,我们将上面 提及的H3 亚型的HA及抗体复合物中分离出单独的 HA和抗体的结构,然后,在综合预设对接参数的情 况下使用Zdock和Rdock对接,获得与晶体结构几乎 重叠的对接结果(结果略),这些对接参数应用于 8H5Fab与3种HA蛋白的分子对接中.

比较 8H5Fab与 3 种HA蛋白的对接结果、虽然 1jsm和2ibx在宿主上有所不同、但是抗体与抗原结合 的角度几乎相同、说明 8H5 表位与HA抗原的宿主类 型无关,提示 8H5 作为广谱抗体可用于H5 亚型的不 同HA抗原的检测. 而 1jsm 和 2ibx的抗体作用模式 与 2fk0 有很大的差异. 当对接结果叠加时, 2ibx与 1jsm的RMSD值小于 0.01 nm, 2fk0 与 1jsm的RMSD值 却在 0.15 nm左右. 结构上, 2fk0 HA的结构更接近于 H1 亚型; 实验上, 8H5 对H1 亚型无中和作用, 提示 8H5 抗体与HA结合的亚型特异性、为研究H1 和H5 亚型的转变提供了线索、相互界面上氢键的分析也 印证了这一结构差异. 运用∆SAS值分析HA-8H5Fab 的相互作用界面、综合HA蛋白的同源比对结果、我 们获得了H5 亚型HA蛋白上 8H5 表位的组成氨基酸 (以 1jsm氨基酸编号计): Asp⁶⁸, Asn⁷², Glu¹¹², Lys¹¹³, Ile¹¹⁴, Pro¹¹⁸, Ser¹²⁰, Tyr¹³⁷, Tyr²⁵², 即HA蛋白的 8H5 广谱中和表位是由 9 个不连续氨基酸残基组成的构 象表位. 该表位分布于HA受体结合亚结构域的 3 个 区域,除了有 4 个氨基酸残基在β折叠外,其余的均 位于血凝素蛋白的无规则卷曲结构中,对接结果中 在 1jsm抗原中的Glu¹¹²到Ser¹²¹和Tyr¹³⁷到Lys¹⁴⁰的区 域落在了Stevens等人 ⁶²²⁰⁰⁶ 年报道的H5N1 抗原表 位区域、另外、自然突变率的统计也显示本研究预测 的中和表位的高度保守性. 氢键在蛋白质分子的相 互作用中行使着重要的作用,氢键分析结果显示 8H5 表位中的Lys¹¹³ 可能对于抗原抗体的相互作用有着重 要的贡献,为针对该表位的药物设计提供重要的信 息. 当然, 分子对接的准确性有待于基因突变表达, 表位分析 [21]和结构解析等实验的最终验证.

致谢 感谢美国 Scripps 研究所的林天伟博士、新加坡国立大学的孔勇博士和韩晋华博士对本工作的指导和帮助.

参考文献」

- 1 罗海峰,陈毅歆,陈自敏,等.一株抗H5亚型禽流感病毒血凝素蛋白单克隆抗体的广谱中和活性.病毒学报,2007,23:85-90
- 2 Bruccoleri R E, Haber E, Novotny J. Structure of antibody hypervariable loops reproduced by a conformational search algorithm. Nature, 1988, 335: 564—568[doi]
- 3 Chothia C, Lesk A M, Tramontano A, et al. Conformations of immunoglobulin hypervariable regions. Nature, 1989, 342: 877-883[doi]
- 4 Chothia C, Lesk A M. Canonical structures for the hypervariable loops of immunoglobulins. J Mol Biol, 1987, 196: 901[doi]
- 5 Veronica M, Arthur M L, Anna T. Antibody modeling: Implications for engineering and design. Methods, 2000, 20: 267–279[doi]
- 6 Stevens J, Blixt O, Tumpey T M, et al. Structure and receptor specificity of the hemagglutinin from an H5N1 influenza virus. Science, 2006, 312: 404-410[doi]
- 7 Yamada S, Suzuki Y, Suzuki T, et al. Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to Human-type receptors. Nature, 2006, 444: 378-382[doi]
- 8 Ha Y, Stevens D J, Skehel J J, et al. H5 avian and H9 swine influenza virus haemagglutinin structures: Possible origin of influenza subtype. EMBO J, 2002, 21: 865-875[doi]
- 9 Lipman D J, Pearson W R. Rapid and sensitive protein similarity searches. Science, 1985, 227: 1435-1441 [doi]
- 10 Pearson W R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol, 1990, 183: 63-98
- 11 Chothia C, Novotny J, Bruccoleri R, et al. Domain association in immunoglobulin molecules. The packing of variable domains. J Mol Biol, 1985, 186: 651—663[doi]
- 12 Chen R, Weng Z. A novel shape complementarity scoring function for protein-protein docking. Proteins, 2003, 51: 397-408[doi]
- 13 Li L, Chen R, Weng Z. RDOCK: Refinement of rigid-body protein docking predictions. Proteins, 2003, 53: 693-707[doi]
- 14 Fleury D, Daniels R S, Skehel J J, et al. Structural Evidence for recognition of a single epitope by two distinct antibodies. Proteins, 2000, 40: 572—578[doi]
- 15 Lee B, Richards F M. The interpretation of protein structures: Estimation of static accessibility. J Mol Biol, 1971, 55: 379-400[doi]
- 16 Connolly M L. Solvent-accessible surfaces of proteins and nucleic acids. Science, 1983, 221: 709-713[doi]
- 17 Thomas J K, Noppenberger J. Avian influenza: A review. Am J Health Syst Pharm, 2007, 64: 149-165[doi]
- 18 Bui H H, Peters B, Assarsson E, et al. Ab and T cell epitopes of influenza A virus, knowledge and opportunities. Proc Natl Acad Sci USA, 2007, 104: 246—251[doi]
- 19 Morioka H, Miura H, Kobayashi H, et al. Antibodies specific for (6-4) DNA photoproducts: Cloning, antibody modeling and construction of a single-Chain Fv derivative. Biochim Biophys Acta, 1998, 1385: 17—32
- 20 Guo C Z, Wu J H, Wang Y X, et al. Molecular simulation of a single-chain antibody against AChE to explore molecular basis of inhibitory effect of 3F3 McAb to enezyme activity. Acta Pharmacol Sin, 2003, 24: 460–466
- 21 Li G, Tao S, Wang X J. Sequence and epitope analysis of surface proteins of avian influenza H5N1 viruses from Asian patients. Chin Sci Bull, 2006, 51: 2472—2481[doi]