一类非线性 Volterra 积分方程的非负解

数学系 余乃忠 何风兰*

Nonnegative Solutions of A Class of Nonlinear **Volterra Integral Equation**

Yu Naizhong He Fendian

(Department of Mathematics)

Key words Volterra integral equation; integral inequality

In some problems of mathematics and physics and physics, the following nonlinear Volterra equation of convolution

$$u(x) = \int_0^x a(x-s)g(u(s))ds + f(x)$$
 (1)

was given[1-3]

Because of requirement of real existence, the solution of (1) ought to satisfy u(0)=0; u(x) > 0, x > 0 and be continuous. All known functions of (1) are nonnegative. The existence of the solutions (1) has been studied [4-5]. In this paper, we consider more general equation as follows

$$u(x) = \int_0^x g(x, s, u(s)) ds + f(x)$$
 (2)

The theorem of existence of continuous solutions has been obtained, where solution u(x) satisfies u(x) > 0, x > 0.

Lemma Let u, f be nonnegative, bounded and measurable functions on R^* , g be measurable on $D = T \times R^*$, and q(x, s, u) be a nonnegative, continuous and nondecreasing function of u on R^+ for each $(x, t) \in T$ as well as bounded on T for

Received Date: 1990-11-12

^{*}牡丹江师范学院

each $u \in R^+$, $T = \{(x, s), 0 < s < x < \infty\}$. Let $\overline{g}(x, u)$ be a strictly upper convex and derivable function of u, for each $x \in R^+$, where $g(x, u) = \sup_{0 < s < t < x} g(t, s, u) g(x, s, 0) = 0$, f(x) > 0, x > 0.

If u(x) satisfies the following inequality

$$u(x) < \int_0^x g(x, s, u(s)) ds + f(x)$$
 (3)

then $u(x) < \overline{f}(x) + \varphi_x^{-1}(x)$, $x \in \mathbb{R}^+$, where, $\overline{f}(x) = \sup_{0 < t < x} f(t)$ $\varphi_x(t) = \int_0^t \frac{ds}{\overline{g}(x, \overline{f}(x) + s)}$

 $\phi_x^{\;-1}$ is the inverse function of ϕ_x .

Proof We define the functions \overline{f} , \overline{g} by

$$\overline{f}(x) = \sup_{0 \le t \le x} f(t), \ \overline{g}(x, u) = \sup_{0 \le t \le t \le x} f(t, s, u).$$

Then $\bar{f}(x)$ and $\bar{g}(x, u)$ are nondecreasing in x. By (3), we have

$$u(x) < \bar{f}(x) + \int_{a}^{x} \bar{g}(x, u(s)) ds.$$

For arbitrary fixed $x \in R^+$, we have

$$u(x) < \overline{f}(x) + U(x), \qquad 0 < x < X \tag{4}$$

here

$$U(x) = \int_0^{\pi} \overline{g}(X, u(s)) ds.$$

Then

$$U'(x) = \overline{g}(X, u(x)) < \overline{g}(X, \overline{f}(X) + U(x)), \quad 0 < x < X,$$

$$\frac{U'(x)}{\overline{g}(X,\overline{f}(X)+U(x))} < 1, \quad 0 < x < X \tag{5}$$

Set

$$\Phi_X(r) = \int_0^r \frac{ds}{\overline{g(X, f(X) + s)}}$$

Then, by (5), we have

$$\frac{d\Phi_{x}(U(x))}{dx} < 1, \quad 0 < x < X,$$

and

$$\varphi_{x}(U(x)) < x$$
, $0 < x < X$.

In particular, for x=X, also have

$$\Phi_{\mathcal{X}}(U(X)) < X$$

Since X is arbitrary, replacing X by x, we have

$$\Phi_{x}(U(x)) < x^{-1}$$

Let Φ_x^{-1} denote the inverse function of Φ_X , then we obtain

$$U(x) < \varphi_x(x), \quad x \in \text{Dom}(\Phi_x^{-1})$$

By the known conditions, $\overline{g}(x, u)$ is strictly upper convex and derivable in x and $\overline{g}(x, 0) = 0$, so we see that for arbitrary $u_0 > 0$, there exists a > 0, such that g(x, u) < au, for $u > u_0$. Then, for arbitrary fixed x > 0, we have

$$\overline{g}(x,\overline{f}(x)+s) < a(\overline{f}(x)+s), \quad s>0.$$

so ·

$$\Phi_{x}(r) = \int_{0}^{r} \frac{ds}{\overline{g}(x, \overline{f}(x) + s)} > \int_{0}^{r} \frac{ds}{a\overline{f}(x) + as}$$

and further

$$\int_0^\infty \frac{ds}{a\overline{f}(x) + as} = \infty.$$

Then,

$$\Phi_X(r) = \infty \ , \ r \to \infty.$$

Since $\Phi_X(r)$ is increasing and continuous in r, the domain of value of $\Phi_X(r)$ is $[0, \infty)$, $x \in \mathbb{R}^+$.

i. e. $Dom(\Phi_x^{-1}) = R^+, x \in R^+.$

Thus

$$U(x) < \Phi_x^{-1}(x), x \in \mathbb{R}^+$$

By (4), we have

$$u(x) < \overline{f}(x) + U(x)$$

$$u(x) < \overline{f}(x) + \Phi_x^{-1}(x), \quad x \in R^+.$$

SO

The proof is completed.

Theorem Under the hypotheses of the lemma, suppose g(x, s, u) is a uniformly continuous function of u for $(x, u) \in (R^+)^2$ and g(x, s, 0) = 0, $(x, s) \in T$; f is a continuous function on R^+ and f(0) = 0; f(x) > 0, x > 0. Then the equation (2) has a continuous solution u(x) on R^+ and u(0) = 0; u(x) > 0, x > 0.

Proof Define

$$Tu(x) = \int_{0}^{x} g(x, s, u(s)) ds + f(x)$$

$$u_{0} = f(x)$$

$$u_{n+1} = Tu_{n}(x), \quad n = 0, 1, 2, \dots$$
(6)

We obtain a sequence $\{u_n(x)\}$. Now study the sequence

$$u_{1} = T(u_{0}(x)) = \int_{0}^{x} g(x, s, f(s)) ds + f(x) > f(x) = u_{0}$$

$$u_{2} = T(u_{1}(x)) = \int_{0}^{x} g(x, s, u_{1}(x)) ds + f(x) > \int_{0}^{x} g(x, s, u_{0}(s)) ds + f(x) = u_{1}(x)$$

By induction, we have

$$u_{n+1}(x) > u_n(x), \quad n=0,1,2,\cdots, \quad x \in R^+.$$

i. e. $u_n(x) < \int_0^x g(x,s,u_n(s)) ds + f(x)$

By the lemma, we see that

$$u_n(x) < \overline{f}(x) + \Phi_x^{-1}(x), \quad x \in \mathbb{R}^+.$$

It follows that $\{u_n(x)\}$ is monotonic and bounded. Thus, there exists a u(x) such that

$$u_n(x) \rightarrow u(x), n \rightarrow \infty$$
.

By Levin's theorem and (6),

$$u(x) = \int_0^x g(x, s, u(s)) ds + f(x).$$

This means that u(x) is a solution of (2).

Since g(x, s, u) is uniformly continuous in x for (s, u), we get that $\int_0^x g(x, s, u) ds$

u(s)) ds is continuous function, and u(x) is continuous. According to the nonnegative of g and f(x) > 0, x > 0; f(0) = 0, we have u(x) > 0, x > 0; u(0) = 0. Thus, it follows that u(x) is the nonnegative continuous solution of (2).

参考文献

- 1 Geneerzewicz J, Marcinkowska H, Okresinski W, Yabisz K. Zastosow. Mat., 1978, 16:249 261
- 2 Keiler J J, Angew Z. Math. Phys., 1981, 32: 170-181
- 3 Schneider W R. Z Angew Mth Phys , 1982 , 33: 140-142
- 4 Okrasinski W. Ann. Polon. Math. 1984, 44: 209-218
- 5 Okrasinski W. Math. Meth. in the Appl. Sci., 1986, 8: 345-350