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Optimal dividend payments of the two-
dimensional compound Poisson risk model
with capital injection*

ZHANG Shuaigi'’  LIU Guoxin?

Abstract This paper deals with the optimal dividend payment and capital injection
problem for a two-dimensional compound Poisson risk model which constructs correlation
among the two claims. The objective of the corporation is to maximize the discounted
dividend payments minus the penalized discounted capital injections. The problem is
formulated as a stochastic control problem. By solving the corresponding Hamilton-
Jacobi-Bellman (HJB) equation, we obtain the optimal dividend strategy of the problem.
We solve this problem explicitly in the case of exponential claim amount distributions.
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0 Introduction

In the classical risk theory, the compound Poisson risk model in one-dimensional situation
plays a significant role. However, it is clear that the independence assumption does not
always reflect reality. It is sometimes convenient to have a model describing situations
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where there are two (or more) classes of correlated business. This is achieved by considering
the two-dimensional compound Poisson risk model. More precisely, the two-dimensional
compound Poisson risk model constructs correlation among claims. As for this model, we
refer readers to [1-4].

The optimal control in the two-dimensional risk model has not received much attention.
Dickson and Waters[® suggested that the shareholders should be liable to cover the deficit at
ruin. This led to a new mathematical problem, the maximization of the expectation of the
difference between discounted dividends and the deficit at ruin. For optimization problems
faced by a company that controls its liquid reserves by paying dividends and by issuing
new equity, there has been a few papers studied the problem. For the diffusion model,
Sethi and Taksar!! addressed the problem of finding an optimal financing mix of retained
earnings and external equity for maximizing the value of a firm subject to random returns.
Lokka and Zervos!” studied the same problem with possibility of bankruptcy in a model of
Brownian motion with drift. Depending on the relationships between the coefficients, the
optimal strategy requires the consideration of two auxiliary suboptimal models. As for the
compound Poisson risk model, Kulenko and Schmidli!®! found an optimal dividend strategy
under the specific framework that the shareholders will inject capital to cover the deficit
whatever severity it is and the ruin time of the company is infinite. This inspires us to
consider a meaningful question: can we investigate the optimal dividend strategy of the
two-dimensional compound Poisson risk model with capital injection?

In this paper, we consider a case that the counting process is the sum of three inde-
pendent Poisson processes {N1(t)}, {Nz2(t)} and {N.(t)} with intensities A;, A2 and A,
respectively. This model describes the problem in the situation where the insurance com-
pany has two correlated classes of business such as the auto insurance. When an accident
occurs, some claims are due to the windshield glass broken, and others due to the rear lamp
broken. Also, it is possible that they are both broken simultaneously. The objective is to
maximize the expected discounted dividend payments minus the penalized discounted cap-
ital injections. The problem is formulated as a stochastic control problem. We derive the
Hamilton-Jacobi-Bellman (HJB) equation for the problem and obtain the optimal strategy.

The paper is organized as follows. In Section 1, we formulate the problem. In Section 2,
some properties of the value function are proved. By HJB equation, we obtain the optimal
strategy and show the characterization of the solution to the HJB equation. In Section 3,
we give an explicit procedure to obtain the optimal dividend barrier and the value function
when claim sizes are exponential distributed.

1 The mathematical model

To give a rigorous mathematical formulation of the optimization problem, we start with
a filtered probability space {2, F,{F;}i>0,P}. We assume that in the absence of control,
an insurance portfolio consists of two sub-portfolios with surplus processes {X?(t)};>0 and
{X9(t)}+>0 being defined

Ni(8)+Ne(t)
X{t)=a+eat— > Unpt>0,

n=1
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Na(t)+Ne(t)
XJ(t)=aatet— Y Vot20,
n=1
where x; and zz (> 0) are the initial surpluses, ¢; and ¢z (> 0) are the premium rates
for the two classes of business, respectively. The counting processes {Ny(¢)}, {N2(t)} and
{N.(t)} are three independent Poisson processes with intensities A1, A2 and A, respectively.
We assume that {U,,} and {V,,} are independent. X?(¢)(i = 1,2) is adapted to the smallest
right-continuous filtration {F; };>0. If we want to indicate that the initial capital is x we shall
write Py and E for the probability measure and the expectation, respectively. Otherwise,
we dismiss the letter z and write P and E.

We now enrich the model. We denote by D;(t)(i = 1,2) the aggregate dividends by
time ¢ and by Z;(¢)(i = 1,2) the cumulative capital injections by time ¢. D;(¢) is cadlag,
nondecreasing and adapted process with D;(0—) = 0. Z;(t) is cadlag, nondecreasing and
adapted process with Z;(0—) = 0.

The dynamics of the controlled surplus process are given by

N1(t)+Ne(t)
ritat— Y Un—Di(t)+Zi(t), t>0;

n=1

X7(1)

Na(t)+Ne(t)
X§(t) = metet— Y. Vu—Da(t)+ Za(t), t=0.

n=1

Actually, we concern about the sum D(t) = D1(¢t) + D2(t) and Z(t) = Z1(t) + Za2(t).
Therefore, we study the following controlled process

N1 () +Ne(?) Na()+Ne(t)
X"(t)=a+ct— Z Up — Z Vi, — D(t) + Z(t),
n=1 n=1

where x = x1 + 22 and ¢ = ¢1 + ¢s.
m = {D(t), Z(t)} is called an admissible strategy or an admissible control if for any
t>0,

P[XZ’}Ofor allt}O] =1.

The class of all admissible controls is denoted by II = {m : 7 is admissible}.
With each admissible controls # € II, we associate a performance functional V™ (z)
defined by

V™(z) = E, (/: e %tdD(t) — ¢/: e“”dZ(t)) : (1.1)

where 6 > 0 is a discounting factor and ¢ > 1 is the penalizing factor. The objective is to
find the control that maximizes the performance index.
We define the value function V' by

Viz):= igg{V”(m)} (1.2)
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The optimal policy 7* is a policy for which the following equality is true:
V(z)=V" ().

As in the argument in Kulenko and Schimidlil®, the injection process is

N1(8)+Ne(t) N2 (t)+Ne(t)
Z(t) := max —Oi\r;f\t<x+ct— ; Uy — ;1 Vn—D(t)>,O
Furthermore,
V(z) =V(0) — ¢|z| forz <O. (1.3)

The next section is devoted to finding the optimal dividend strategy for our problem.

2 HJB equation, the verification theorem and the char-
acterization of the value function

In this section, firstly, some properties of the value function are given. Then, we employ
the dynamic programming principle to derive the HJB equation. Furthermore, we give the
verification theorem and show the characterization of the solution to the HJB equation.

2.1 The value function

We start with giving some properties of V' (z).

Lemma 2.1 The function V(z) is increasing with V(z) = V(y) 2z —y for0 <y <z
and Lipschitz continuous on [0,00), and therefore absolutely continuous. Furthermore, for
any x = 0,

OB V] < V() <o+ BEE

The proof follows the same line as in proving Lemma 2 and Lemma 5 in [8].

Lemma 2.2 The function V(z) is concave.

Proof The proof follows the similar line as in proving Lemma 1 in [8]. Let z,y € R
and «,3 € (0,1) with o + 8 = 1. Consider the strategies (D*,Z*) and (DY, ZY) for the
initial capitals  and y. Define D(t) = aD*(t) + BDY(t), Z(t) = aZ®(t) + BZY(t), we have

N1(8)+Ne(t) Na(8)+Ne(t)
ar+fy+et— > Un— >, Va—D()+Z(t) >0.
n=1 n=1

Therefore, the strategy (D(t), Z(t)) is admissible and that Z*+8Y(t) < aZ%(t) + BZY(t). Tt
follows that

V(az + By) > E, (/000 e %tdD(t) — ¢/OOO e“”dZ‘WJfﬁy’D(t))

> E, (/: e~dD(t) - ¢ (a /: e dZ™P(t) + B /: e“”dZy’D(t)»

= aVP" () + sV (y).
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Taking the supremum over all admissible strategies D, we obtain that

V(ax + py) = aV(x) + BV (y).

2.2 The HJB equation and the optimal strategies

With reference to the standard theory of optimal controll®, the following dynamic
programming principle holds:

Vix) = iggEz {/oi eiéSdD(s) — (b/()i eiéSdZ(s) + eiéTV’T(X”(T)) , (2.1)

for any F;— stopping time 7. This principle serves us to derive the HJB equation.

For x > 0, and any admissible strategy m, let A > 0. The waiting time 77 until the first
claim caused by U alone has density A\je~*1*, and caused by V alone has density Ape™*2!,
caused by both U and V together with probability A.e~*<!. Define 7 by D(t) = 0 and
Z(t) =0 for t < 7. Using the law of total probability and taking 7 = 7™ = T3 A h in (2.1),
we write

V(z) > E, [6_6T”V(X7w)}
— 6_(5+)\1+)\2+>\C)h‘/($ + Ch)

h poo
FAre” RaAeh /0/0 e~ TNy (g 4t — u)dFy (u)ds

h roo
Fhge” RaAe)h // e~ 0Ty (4 et — v)dFy (v)ds
0Jo

h poo
FAcemArFA)h // e~ OFA)SY (1 4 et — w)d Fyy (w)ds,
0Jo

where Fyy(u) is the distribution function of U; which arrives alone, Fy (v) is the distribution
function of V; which arrives alone and Fy (w) is the distribution function of W; which
expresses that U; and V; arrive simultaneously. Rearranging the terms, dividing h, letting
h — 0, we obtain

cV'(x) = (6+ NV (z) + M1 /OOO V(z —u)dFy(u) + A2 /000 V(z —v)dFy (v)

+ )\C/ V(e — w)dFy(w) <0,
0

where A = Ay + Ay + A..

Now, considering such strategy with an initial payout of size ¢, and then following the
optimal policy, we have

V(z) 2V(r—e¢)+e.

Subtracting V(x — &) from both sides, dividing by &, and letting ¢ — 0 yields V'(z) > 1.

On the other hand, consider a strategy by receiving ¢ > 0 from the shareholder
immediately and following the optimal strategy for the capital = + ¢ afterwards, then
V(x) 2 V(x+e)— ¢e. Letting e — 0, we get

V'(z) < ¢.
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Now we have the following HJB equation
max {CV’(:E) -0+ NV(z)+ M / V(e —u)dFy(u) + )\2/ V(z —v)dFy(v)
0 0
—i—)\c/ V(x — w)dFy (w), V/(z) — 6,1 — V’(ac)} 0. (2.2)
0

Moreover, V(z) is concave, so there exists a dividend barrier b := inf{z > 0: V'(z) = 1}.

Now we define the strategy 7* as follows:

D*(0) = max(z — b,0),

t
D*(t) = D*(0) +/ Cl{X*(S):b}dS for t > 0, (2.3)
0
N(t)
* _ s _ r *
Z (t)—max{ Og;fgt (w—i—ct ;Wn D (t)),O}.

The strategy m* = {D*, Z*} restricts the process into the band with upper barrier b and
lower barrier 0.

Theorem 2.1 The strategy (2.3) is optimal, i.e.,

Proof We denote by X*(t) the corresponding surplus process under the strategy (2.3).
We have V/(X*(t)) = 1 on {X*(t) = b} and V/(X*(t)) > 1 on {X*(t) < b}. Applying the
1t6 formula, we have

V(X*(t))e 0
N(t)
= V(X7(0)) + Z e TV(XH(Ty) - V(X (T;-))]

N()
+ Z [V(X*(Ti_))eﬂSTif _ V(X*(Tifl))eiaTifl]

+ V(X*(t))ef‘” — V(X*(TN(t)))ef‘;TN(w

N1 (t)
= VX() + 020+ Y e “V(Xf,_ —Ui) = V(X5 )]
i=1
Na(t) Ne(t)
+ 20 V(X = V) = VXl + 3 e VX - W) - V(X))
=1 i=1
N(t) N(t

)
- [V(X*(Ti_))eféTif _ V(X*(Ti_l))eféTi,l]

F V(X (8)e % — V(X (Typy))e *Tve

+o> e iz +
i=1



3 HA Optimal dividend payments of the two-dimensional compound Poisson risk model 125

&

N2(t)
eV (XG_ — U~ VXA + Y e [V(XH_ — Vi) — V(X3,_)]

K2
i=1

t

N>

1

|
(]

Il
=
o
—~

£ ‘
+ e_‘ss[V(Xif -Wi) - V(X7 )+ ¢/ e %547,
1 0—

3
N(#)

@+ / () — OV (X () T (cnpe**dls

Ti—1

¢
+/ [cV!(X*(5)) — OV (X*(8))|T{x-(s)<ppe *°ds
Tn(t)

t

N -
- Z / 5V(X*(S))I{X*(S):b}eiésds - / 5V(X*(S))I{X*(5):b}6768d5.
i=1 /Tim1 T

When the claim arrives,

)

2

1

WG =0 = Ve - [ o] [TV —wars - v, )

<.
—

2
-~
~
N

2

V(X5 — Vi) — V(X5 )]~ Ao /6[ v - varv) - v, s

™

2~
2
- =

) t oo
e VI(XG_ - W) = V(X )] - Aﬁ/o e % [/0 V(XF,_ —w)dFw (w) — V(X:’Fi_)]ds,

Il
-

i

are martingales with mean value 0, or equivalently, the process
t t
{V(X*(t))e‘” —V(z)—¢ | e %®dz,— / {cv’(x*(s))
0— 0

+A1 /OOO V(X:f — u)dFU(u) + A2 /OOO V(X:f — v)dFv(’U)

he [TV = 0B ) = 0+ OV (52D T oampe*ods

—/ [Al/ V(X* — u)dFy(u) +)\2/ V(XP_ —v)dFy (v)
a [TV = wdF )—(A+5>v<X*<s—>>_I{X*<S_>_b}e“ds}

is a martingale. Because V' (z) is concave, the derivatives of V(x) from left and right exist.
Moreover, we have assumed that Fy(u), Fy(v) and Fy (w) are continuous, so V (z) fulfills
(2.2) and is continuously differentiable. For V/(X ) > 1 on {X} < b}, the first term on the
left-hand side of (2.2) is 0, thus the integral over {X} < b} on the expression above is 0.
Furthermore, from V/(X?) =1 on {X} = b} and (2.2), it follows that

—(+NV(X*(s=))+ M1 /OOO V(X! —w)dFy(u) + Ao /OOO V(X —v)dFy(v)

—|—/\c/ V(X —w)dFwy(w) = —c.
0
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Thus, we get that
t t
{V(X*(t))e“” —V(z)—o¢ | e %dZ, + / cI{X*(S)_b}e_‘sSds}
0— 0
is a martingale with expected value 0. From the martingale property we get that

t
V(z) = E, | V(X*(t)e % — ¢ *JSdZSJr/ cI{XS*_b}e‘ssds].
0

Since V(X *(t))e~% is bounded and converges to 0 when ¢t — co. By the bounded conver-

gence theorem, we have
Jim E.[V(X*(t))e %] =0.

Because dD*(t) = 0 on {X*(t) < b} and dD*(t) = edt on {X*(t) = b}, by the monotone
convergence theorem, we finally get that

t t
V(.I) = hm Ex |:/ CI{X*(S):b}G_(sSdS — gf)/ 6_5SdZS:|
0 0—

=E, [/OOO e %%dD*(s) — ¢/io e‘;stS} =V*(z).

2.3 Characterization of the solution

Because we have neither an explicit solution nor an initial value, we need to characterize
the solution V(z) among other possible solutions.

Theorem 2.2 V(x) is the minimal non-negative solution to (2.2).

Proof If f is a solution to the HJB equation, then f(x) is increasing. Let X* be the
process under the optimal strategy. From Theorem 2.1,

{f(X*(t))e‘”—f(w)—cﬁ ez, / [cf’(X*(s))
+/\1/ f dFU +/\2/ f ’U)dFv(’U)
o [0 - k() - <A+5>f<X*<s—>>'I{X*<S><b}e-58ds

_/ [Al/ X7 = u)dFy () +A2/ F(X2 —v)dFy ()

+A / f de( ) ()\—FKS),]C(X*(S—)) I{X*(S_)_b}e‘ssds}
is a martingale with expected value 0. By (2.2),
A u)d A h r —v)dFy(v
of (X +1/f — () +de | FX = 0Py (o)
he [ X~ B () - (91X (9) <0



3 HA Optimal dividend payments of the two-dimensional compound Poisson risk model 127

Because f'(z) >

)\1/ f dFU +)\2/ f ’U)dFv(v)
A / FXE —w)dFiy (w) — (A +8)f(X2) < —ef'(X*(5)) < —c.
This yields
t
f(@) =By [ F(X*(1))e ¢ e %% dZ, + / clix~(s)=b}€ “ds]

2 Eg

t
/ —5sdD (b/ —6st
0

Letting t — oo gives f(z) > V(z).

3  Solution to the problem

In order to obtain an explicit solution to the HJB equation (2.2) and an optimal dividend
payment policy, we assume that the claim size distribution is given by dFy(u) = Bre~?%du,
dFy(v) = pae P2%dv. Since we assume that U; and V; are independent, dFyy (w) =
&(6_52“’ — e A1) dw. To solve this HIB equation, we start with the following equation

B1—P2
V(@)= 0+ NV (z) + X\ /000 V(x — u)dFy(u)
+ A2 /000 V(z —v)dFy (v) + A /000 V(z — w)dFw (w) = 0.
Combining with

dFy(u) = e P"du, dFy(v) = Boe ?Vdv, dFw(w) = %(e‘ﬁzw — e 1) duw,
1— P2

we have

o0

V() + M / V(z —u)Bre P%du + Ay / V(z —v)fre P2V dv
0 0

+Ac /000 V(e — w)%(eiﬁw —e M) dw — (A +6)V(x) = 0. (3.1)

In view of (1.3), we have
/OO V(z —u)fre P4du
0
= [V wme s [TI0) + ol - e
0 T

/Ox V(u)Bre= " du + (V(O) ;) e
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Similarly,

/000 V(z — v)Bae P2dv = /01 V(0)Bae™ 2@y + (V(O) - %)eiﬁ”.

B1— B2

/00 V(e — w)ﬂ(e_ﬁzw —e Py
0

’ _ BrBa —Bw _ —Fiw
/0 V(z w)ﬁl s (e e )dw

- T — ﬂ e Pew _ —hiw
+ [ W) +ole - w322 Jdw

/m V(w) ke (e~ Pelomw) — e=Pr@=w)yqyy 4+ (V(0) + pa) B1532 (e_ﬁﬂ B e‘ﬁlw>
0

61 - 52 61 — 62 62 61
_ ¢6162 <$6ﬁ2ac 4 e Pz _ re— Pz B 6511)
-\ kR B A &)

Therefore, putting all the pieces together, we have

V(@) + M\ /O V(u)Be M@ dy 4 A, (V(O) - %)6_6”

o /Om V (0) B2 du 1 Mg (V(O) - i)e*ﬁﬂ

’ 152 —B2(z—w) _ ,—pi(z—w) A2 i _ —p1z
+)\C/O Vi) g (e e Jw + 5 (ﬁl V(O))e
)‘cﬁl

[
B1— B2

+ (V(O) - —)e-ﬂﬂ — A+ )V (z) = 0. (3.2)
We use the notation Z for the identity operator and D for the differentiation operator

B2
with respect to the function on which the operator is performed. Applying the operator
D(D + /1Z) + B2(D + £1Z) to both sides of (3.2) yields

V" (x) + (cPr 4 cf2 — A= 0)V"(x) + [Mf1 + X2 2
—A+8)(B1+ B2) + 413V (x) — 5518V (x) = 0. (3.3)

In order to find the solution of the above ordinary differential equation, we consider the
roots of the characteristic equation

k(I) = C:E3 + (061 + 062 — A= 5){E2 + [/\151 =+ /\252
—(A+0)(B1 + B2) + cP1fa)r — 65132 = 0. (3.4)

Note that
k(0) = =661 02, HIJP k(x) — +oo0,
we can conclude that (3.4) has at least one positive root. By calculation, we have

k(0) = =00102,  lim k(z) — —oo.
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kE(=p1) = =B1(Ai(B1 — B2) — Acf2),
kE(=B2) = —P2(A2(B2 — B1) — Acfh).

If 81 > B2, then k(—32) > 0. If B1 < B2, then k(—pB1) > 0. So we have the conclusion that
(3.4) has two negative roots s1, s2 and one positive root s3. Moreover, the two negative
roots si, So satisfy that

s1 < —(61 /\62) < 59 < 0.
From the above analysis, the solution to this ordinary differential equation is given by
V(z) = B1e°'" 4+ Be®*® 4+ Bse®”, (3.5)

where s1, s2 and s3 are the roots of the characteristic equation (3.4). Substituting (3.5) into
equation (3.2) and equating the coefficients of terms involving e =#1% to zero gives

Bisy Bssy Bsss ¢

si+0 s2+f1 ss+f

=0, (3.6)

and equating the coefficients of terms involving e =727 to zero gives

Bysy Basa B3s3 [

——=0. 3.7
s1+02 s2+f2 s3+fP2 [ (8.7)

Additionally, from V’(b) = 1, we have
Bis1€°'? 4+ Bysge®?? + Bysge®™t = 1. (3.8)

Solving (3.6), (3.7) and (3.8)
B, = e b 4 {6—51b+53b53 K _e®Psis n 651b8182> (_ e*1b sy L8 )
51 s1+pP1 s2+ B2 51+ 2
(651175152 es2b5152> < s1 651b¢51)] }/{ { ( 105,35
_ _ _ 51| — (2122
So+ P2 s+ P2 ) \s1+ B B1 53+ B
es?’bslsg) (eslbslsg 652b8182) N (eslbslsg 652b8182>
s1+ 31 52 + B2 51+ B2 s2 + B 51+ B
( bsys3 _ 653b5153>} } + 1 651b+s2b52{( s1 eslb¢51>
s3+ P2 51+ B2 51 51+ B B1
" ( bg1se  e2bsysy ) B (eslbsl s3  e®sbg 33) ((eslbslsg e2bgy 32)
B1 + s2 B1+ s1 B1+ 83 B1+s1 B1 + s2 B1+ s1
( eslbsl(b) (eslbslsg 652b8182> ( 51 eslb31¢)>
B2 + 51 B2 B2 + s2 B2 + 51 B1+s1 B1
/{( bs189 es2bslsg> [ (eslbsls3 es3b3133) (eslbslsg es2b3132)
B1+ s2 B1+ s1 B1+ s3 B1+s1 B2 + s2 B2 + 51

1bgi g9 es2b5152> <eslb5153 es3b81$3>} }} (3.9)
514-82 B1 + 51 B2 +5s3 B2+ ’ '

X
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B _( 51 51b¢sl) (652b8182 B eslbslsg>1 N [(eslbslsg B 653b8183)
51 +51 B B1+ s1 B1 + s2 B1 + s3 B1+ s1
105150 520559 S1 651b¢51 S1 651b¢51
<51+82 - 51+81><81+ﬁ2 B >_ <81+51 A )
eS1bs1sy  e%20sy 5 e1bs1sy  e%20gy 5 e3bg1s3  e®1bgysg
B2 + s2 B 524-81))}/{(514-82 - 514-81)[(514-81 - 514—53)
€151 59 652b5152

x( <652b5152 eslbslsg> <eslbsls3 653b8183):|} (3.10)
524—82 B2 + 51 Br+s1 B+ s B2 +s3 P2+ s1 T

X

Slb

5152 5152

e b sy S1 e 10 psy
{ B+ s1 51+S2)<81+52 B2 >_<81+51_ B >
" e51b g1 59 B estslsg)]/[<eSSb3133 B eslbsls3) (eslbslsg 3 652b8182>
524-52 B2 + 51 B1+s1 B1+ s3 B2 + s2 B2 + 51

(G )] (3.11)
Bo+s3  Potsi )] '

8182 e’ 5152

51 +s1 Prits2
From V”(b) =0, i.e.
Bys?e®'? 4 Bysie™’ + Bysie®s? =0, (3.12)

we obtain the equation that b satisfies:
e o1 " {651b+53b83 [( _ e*2%s; 59 n 651b5182) (_ es1Pgs; L5 )
S1 s1+ B s2 + B B2 51+ B2
<851b5182 es2b5152>< 51 651b¢51)]}/{ { (eslbslsg 653b81$3)
_ _ _ s1| — _
So+ P2 s+ P2 ) \s1+ B B1 s3+ /1 s+
" (eslbslsg 652b8182> n (eslbslsg 652b8182) (eslbslsg esSbslsg)]}
s2 + B2 51+ B2 s2 + B1 s1+ B 53 + B2 51+ B2
—l—i 651b+szb52{< 51 651b¢51> <€Slb5152 _ 652b8152>
51 51+ B B1 B1+s2  Bi+s;
(eslbslsg 653b5153) (<651b5152 652b81$2) ( s1 eslbsld))
B1 + s3 B1+ s1 B1 + s2 B1 + s1 B2 + s1 B2
( 15159 652b8182>< Slb81¢)>
B2 +s2  PBat+s1)\P1+s1 B1
{( bg1sg  e° 5152> [ < 5153 3133> < bs189 es2b3132>
B1+s2  Bi+s; 514—83 514—81 Bo+s2 P2+
(e <e LEIES 3153 $2eont
B B2 + 53 52 + 81
{( Slb(bsl) < bs159 b81$2) n K bs1s3 653b8183)
s14+ 61 Bi+s1  Bi+s2 B1+s3  BrL+s:

( 51b¢81> ( 51b¢81>
s14+ 02 si+0 A

5180 €8 5152>
1+s2 B+

_|_

estbgisy  e%20gy 5y

X

B1 + s2 B1+ s1
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y e1bs1 89 _ e2bgy 89 e51bgy 89 _ e2bg; 89 e%3bg; 83 _ 105155
B2 + s2 B2 + 51 B1 + s2 B1+ s1 B1+ s1 B1+ 83
" (651b5152 es2b5152> <es2b5152 eslb5152> <651b5153 es3b5153>]}
B2 +s2  Ba2t sy Br+s1  Br+ s B2 +s3 P2+ s1
e%20g; 5 e1g; g s 10 s s e s
xsge”b—l- [( 182 12>< T ¢s1 B T $s1
Br+s1 Bir+s2)\s1+ B2 B2 51+ A I3}
" (651175152 es2b5152>}/[<653b5153 eslb5153> <eslb5152 es2b5152>
B2 +5s2 B2t sy B1+s1 P13 B2 +s2 B2+ sy
es2bgy s esibgys esibgys essbgys
B I ) o
61+ s1 b1+ s2 B2 + s3 B2 + s1

From the above analysis, the solution to the problem is given by

Bi1e®'" + Boe®2® + Bge®* 0 < x < b;

Vi) = { x—b+V(b), b < (3.14)

where s1, so and s3 are the roots of the characteristic equation (3.4), By, Bs and Bs are
determined by (3.9), (3.10) and (3.11), b by (3.13).
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