论 文 www.scichina.com csb.scichina.com

6-氯嘌呤与人血清白蛋白的相互作用及分析应用

耿韶光^①, 贠嫣茹², 江晓莹^①, 崔凤灵^{□*}, 郭海明^①

① 河南师范大学化学与环境科学学院,新乡 453007;
 ② 许昌职业技术学院,许昌 461000
 * 联系人, E-mail: fenglingcui@hotmail.com

2011-07-08 收稿, 2011-11-09 接受 国家自然科学基金(30970696)和河南省高校科技创新团队支持计划(2012IRTSTHN006)资助

摘要 在模拟生理条件下,运用荧光光谱和分子对接方法研究了核苷衍生物 6-氯嘌呤 (6-CP)与人血清白蛋白(HSA)的相互作用.结果表明, 6-CP 对 HSA 内源荧光的猝灭类型 为形成复合物的静态猝灭,通过热力学参数确定 6-CP 与 HSA 之间存在氢键和范德华力,分子对接结果也证明了氢键和疏水作用力的存在.三维荧光光谱研究了 6-CP 对 HSA 构象的影响,并以华法令和布洛芬为分子探针进行竞争实验.在此基础上,以 6-CP 为分子探针,运用固定波长同步荧光光谱法测定了生物样品中的蛋白质含量.在最佳实验条件下,对 11 份空白溶液进行平行测定,检测限达到 0.511 mg/L,相对标准偏差为 0.324%.运用此方法对血清、唾液进行了加标回收实验.

关键词 6-氯嘌呤(6-CP) 人血清白蛋白(HSA) 三维荧光光谱 分子对接 相互作用

嘌呤衍生物是一种重要的医药中间体. 在嘌呤环的 2,6 或 8 位碳原子上引入某些取代基所得的衍生物具有抗病毒、抗癌和降血压等重要的生物医学活性,因此,研究嘌呤类衍生物具有重要意义^[1]. 6-氯嘌呤(6-CP)是嘌呤类产品的中间体,它在体内能转化为相应的核苷酸. 在医药方面,以 6-CP 为核苷基的几种核苷衍生物,表现出了很强的抗病毒活性^[2],可用于成人急性白血病的治疗. 同时在有机原料、医药、农药等领域也都有着重要用途. 6-CP 的结构如图 1 所示.

人血清白蛋白(HSA)是血浆中的重要载体蛋白. 药物进入人体后,通过血浆的贮存和运输,到达受体

部位发生药理作用^[3].因此,研究药物分子与HSA之间的相互作用,有助于理解药物在人体内的运输、分布和代谢情况^[4],HSA与内源及外源性化合物的结合机制对于生命科学、化学、药学和临床医学具有重要的意义^[5].

目前用光谱技术研究生物体系的结构、动力学及 作用力已经引起了人们的广泛关注^[6].荧光光谱法具 有灵敏度高、选择性好、测量方法简单等优点.我们 已报道了硫脲衍生物和蛋白质相互作用的研究^[7,8]. 本文运用三维荧光光谱法研究了 6-CP 对 HSA 构象的 影响,结合分子对接方法研究了 6-CP 与 HSA 的作用 力类型,并测得了它们之间的结合距离,竞争实验研 究了它们的作用位点.该项工作对研究药代动力学 以及以蛋白为作用靶的药物分子的筛选和设计等具 有一定的参考和指导作用^[9],可为药物分子的结构与 其药效方面的对应关系提供理论基础,并在人类疾 病的诊断与预防、疾病机制的探究等方面具有重要的 指导意义^[10].

英文引用格式: Geng S G, Yun Y R, Jiang X Y, et al. 6-Chloropurine interactions with human serum albumin and its application analysis (in Chinese). Chin Sci Bull (Chin Ver), 2012, 57: 805-812, doi: 10.1360/972011-1341

1 实验

(i) 仪器和试剂. TU-1810 紫外可见分光光度 计(北京普析通用仪器有限责任公司), BS-110S 型电 子天平(北京赛多利斯天平有限公司), FP-6500 荧光 分光光度计(日本分光公司), 智能型低温恒温槽 DC-0515(上海恒平科学仪器有限公司), PFS-80 型氟 度计(上海大中分析仪器厂), CARY Eclipse 型荧光光 度计(美国瓦里安公司).

人血清白蛋白(HSA, 华兰生物工程股份有限公司) 2.0 × 10⁻⁵ mol/L 水溶液, 保存于 1~4℃冰箱中; 6-氯嘌呤(6-CP) 1.0 × 10⁻³ mol/L 水溶液; pH 7.4 的 Tris-HCl (Tris 为三羟甲基氨基甲烷)缓冲溶液; 0.5 mol/L 的 NaCl 水溶液. 实验用二次蒸馏水, 所用试剂 均为分析纯.

(ii) 实验方法. 依次取适量的 HSA 和 6-CP 溶 液, 1.5 mL 的 NaCl 水溶液, 3.0 mL Tris-HCl 缓冲溶液 加入到 10 mL 比色管中,用二次水定容至刻度,摇匀. 用 1 cm 的石英吸收池在 $\lambda_{ex} = 280$ nm 时扫描体系在 290~450 nm 范围内的荧光发射光谱,荧光发射和激 发狭缝宽度均为 5 nm,在 $\Delta \lambda = 30$ nm 时扫描体系的 同步荧光光谱.分子对接中 HSA 与华法令配合物的 晶体结构来源于 Brookhaven 的蛋白质数据库(编码 1h9z). 6-CP 与 HSA 的作用模型用分子模拟软件 Syby1 6.9.1 中的 FlexX 模块来计算.在对接过程中每 个化合物产生 30 个构象,根据化合物在活性位点的 构象分布计算得到的结合能量,选取 6-CP 在活性位 点最合理的结合模型.

2 结果与讨论

2.1 最佳实验条件的选择

为寻找最佳实验条件,我们考察了 pH、离子强 度、加入顺序、药物浓度以及Δλ对荧光强度的影响. 研究结果表明,最佳实验条件是:介质为 pH 7.4 的 Tris-HCl缓冲溶液 3.0 mL;离子强度是 0.075 mol/L; 加入顺序为HSA→6-CP→NaCl→Tris-HCl;6-CP的最 佳浓度为 1.0 × 10⁻⁵ mol/L;为得到较高灵敏度和较 好的峰形,选定Δ λ = 30 nm.

2.2 荧光光谱特征

HSA 的荧光来源于色氨酸、酪氨酸和苯丙氨酸 残基,因为苯丙氨酸的产量很低,而酪氨酸的荧光在 被离子化或接近氨基、羧基或色氨酸时几乎完全被猝 灭,所以 HSA 的固有荧光主要来自色氨酸残基^[11]. 当小分子物质与 HSA 结合成键时,色氨酸残基微环 境的改变导致 HSA 的固有荧光强度也发生变化^[12].

结果表明,在 pH 7.4 的 Tris-HCl 中,随着 6-CP 的增加,HSA 的荧光强度逐渐减小(图 2),说明 6-CP 猝灭了 HSA 的固有荧光,这可能是因为加入的 6-CP 与 HSA 发生了相互作用,影响了色氨酸残基的微环 境,进而导致 HSA 固有荧光强度改变.

2.3 猝灭机理

药物与 HSA 相互作用的猝灭机理常用 Stern-Volmer 方程来解释^[13].

 $F_0/F = 1 + K_q \tau_0[Q] = 1 + K_{sv}[Q]$, (1) 式中 F_0 和 F分别表示 6-CP 加入前后 HSA 的荧光强 度, τ_0 是不存在 6-CP 时荧光分子的平均寿命, K_{sv} 为 Stern-Volmer 猝灭常数, K_q 是生物大分子的猝灭常 数, [Q]表示 6-CP 的浓度. 分别测定 293, 301 和 310 K 时溶液的荧光强度, 以 F_0/F 对[Q]作图得到一条直线 (图 3), 由直线的斜率可求得 K_q 以及 $K_{sv}(表 1)$. 结果表 明, K_q 随着温度的升高而降低. 初步证明 6-CP 对 HSA 的猝灭类型为静态猝灭; K_q 值均大于猝灭剂对生物大 分子的最大碰撞猝灭速率 2.0 × 10¹⁰ L/(mol s)^[14], 再次 证明猝灭类型为静态猝灭.

2.4 结合常数和结合位点

Scatchard 方程^[15]通常用来求算结合常数和结合 位点数,如下式所示:

国 2 0-CP 約 HSA 的父元猝火菌 T = 293 K, 1~6: $C_{6-CP} = 1.0 \times 10^{-5}$ mol/L, $C_{HSA} = 0, 4.0 \times 10^{-7}, 8.0 \times 10^{-7}, 12 \times 10^{-7}, 16 \times 10^{-7}, 20 \times 10^{-7}$ mol/L

806

R

0.9994

0.9999

表1 6-CP 对 HSA 内源荧光猝灭速率常数

$r/D_{\rm f} = nK - rK,$ (2)

其中 $D_{\rm f}$ 为游离药物的浓度, n是结合位点数, K是结合 常数, r 表示每摩尔蛋白质结合的药物的摩尔数. 用 r/D_f对r作图(图4),可求得结合位点数n和结合常数 *K*(表 2).

2.5 结合距离

HSA 有较强的荧光, 且 HSA 的荧光光谱和 6-CP 的吸收光谱有较大的重叠,如图 5 所示.根据 Förster^[16]能量转移理论,如果 6-CP 与 HSA 的结合距 离小于7 nm,将发生非辐射能量转移.6-CP的吸收光 谱与 HSA 的荧光光谱的重叠积分可由下式求得:

$$J = \Sigma F(\lambda) \varepsilon(\lambda) \lambda^4 \Delta \lambda / \Sigma F(\lambda) \ \Delta \lambda, \tag{3}$$

式中 $F(\lambda)$ 是 HSA 在波长 λ 处的荧光强度, $\epsilon(\lambda)$ 为 6-CP 在波长λ处的摩尔吸光系数,J表示重叠面积.

由下式可求得结合距离 r:

$$R_0^{\ 6} = 8.8 \times 10^{-25} k^2 N^{-4} \Phi J, \qquad (4)$$

$$E = 1 - F/F_0 = R_0^{\ 6}/(R_0^{\ 6} + r^6), \qquad (5)$$

式中 N 为介质折射指数,
$$k^2$$
 表示偶极空间取向因子,

图 5 6-CP 的吸收光谱与 HSA 的荧光光谱重叠图

 R_0 是能量转移效率为 50%时的临界距离, Φ 是给体的 荧光量子产率.

根据方程(3)将光谱部分进行重叠积分, 重叠面 积 J 为 0.599 × 10⁻¹⁴ cm³ L/mol, Φ = 0.118, k^2 = 2/3, N = 1.336^[17]. 将这些数值代入方程(4)和(5)中, 求得

<i>T</i> (K)	Scatchard 方程	K (L/mol)	п	R
293	$Y = 1.06 \times 10^4 - 1.24 \times 10^4 r$	1.24×10^{4}	0.86	0.9982
301	$Y = 0.83 \times 10^4 - 0.79 \times 10^4 r$	0.79×10^{4}	1.06	0.9963
310	$Y = 0.66 \times 10^4 - 0.53 \times 10^4 r$	0.53×10^{4}	1.24	0.9932

表 2 体系 6-CP-HSA 结合常数和结合位点数

⁽a) HSA 的荧光发射光谱(4×10⁻⁷ mol/L); (b) 6-CP 的吸收光谱 $(4 \times 10^{-7} \text{ mol/L})$

HSA 的结合距离为 4.90 nm, 该值小于 7 nm, 说明 6-CP 与 HSA 之间存在能量转移.

2.6 作用力类型

药物与生物分子的作用力主要有静电作用力、氢 键、疏水作用力和范德华力等^[18].如果研究发现Δ*H* 随温度的变化不是特别的明显,那么Δ*H*和ΔS都可以 通过范特霍夫方程求出^[19].

 $lnK = -\Delta H/RT + \Delta S/R,$ (6) K是相应温度下的结合常数, R 是气体常数. 以 lnK 对 1/T 作图得一直线,由直线的截距和斜率可求得熵变 ΔS 和焓变 ΔH ,将 ΔS 和 ΔH 的值代入公式(7),即可以 求得 ΔG (表 3).

表 3 体系 6-CP-HSA 的热力学参数

体系	<i>T</i> (K)	ΔG (kJ/mol)	ΔH (kJ/mol)	ΔS (kJ/mol)
	293	-22.92		
6-CP-HSA	301	-22.52	-37.72	-50.50
	310	-22.06		

 $\Delta G = \Delta H - T \Delta S = -RT \ln K. \tag{7}$

从表 3 可以看出 ΔG < 0, 说明反应是自发过程; ΔS < 0, ΔH < 0, 说明 6-CP 与 HSA 的结合过程是焓驱 动过程^[20],同时也证明了 6-CP 与 HSA 相互作用的主 要作用力是氢键和范德华力^[21].

2.7 6-CP 对 HSA 构象的影响

三维荧光最初被 Lloyd 引进,用来研究蛋白质构 象的变化,要求同时扫描激发和发射波长,最大发射 波长的改变,可以说明发色团附近的极性发生变 化^[22].实验得到 HSA 和 6-CP-HSA 体系的三维荧光 光谱(图 6),并得到了相应的等高线图(图 7).

三维荧光光谱主要呈现两类峰,一类是图 6 中形 似"山脊"的瑞利散射峰,对应于图 7 中的两条"铅笔" 形纹线,特征是 $\lambda_{em} = \lambda_{ex} (\Delta \lambda = 0)$;另一类是图 6 中形 似"驼峰"形宽峰,是荧光峰特征,对应于图 7 中瑞利 散射峰右方的"指纹"区($\lambda_{em} > \lambda_{ex}, \Delta \lambda > 0$).荧光峰 1 的激发在 288 nm,主要由 HSA 中色氨酸和酪氨酸残

 $C_{\rm HSA} = 8 \times 10^{-7} \text{ mol/L}; C_{6-\rm CP} = 2 \times 10^{-5} \text{ mol/L}$

基的芳杂环的π-π*电子跃迁引起的, 主要揭示的是 色氨酸和酪氨酸残基的荧光光谱特征;荧光峰2的激 发在 229 nm, 是由 HSA 分子多肽链中 C=O 键的 p→ p*电子跃迁所引起, 主要揭示 HSA 分子中肽链结构 的荧光光谱特征,峰的位置和强度与蛋白质的二级 结构有关^[23].图 7(a)中,荧光峰1 与荧光峰2 的峰顶 坐标(F, λ_{ex}/λ_{em})分别是 244.9, 288/340; 53.4, 229/337. 加入 6-CP 后, 荧光峰 1 的峰顶坐标(F, $\lambda_{ex}/\lambda_{em}$)是 205.6, 283/336, 荧光峰 2 也发生了很强的猝灭, 如图 7(b)所示. 荧光峰 1 最大发射波长由 340 nm 蓝移至 336 nm, 强度也降低了 39.3 nm, 表明加入 6-CP 使 HSA 中的酪氨酸和色氨酸所处的环境疏水性增加了, 极性减弱; 荧光峰 2 发生了很强的猝灭, 说明 6-CP 的加入使 HSA 的二级结构也发生了变化. 通过对两 个荧光峰的分析, 表明 6-CP 分子与 HSA 的结合部位 可能处于氨基酸残基所处的疏水腔中,正是 6-CP 分 子的加入导致了疏水腔微环境的改变,从而导致了 HSA 构象的变化.

2.8 结合位置的确定

华法令和布洛芬可作为荧光探针分别标记 HSA 的 site I 和 site II^[24].为了考察 6-CP 与 HSA 的结合 位置,用华法令和布洛芬进行竞争实验.向 6-CP-HSA 体系中加入华法令和布洛芬,通过观察 6-CP 与 HSA 作用的荧光强度和发射波长的变化来确 定 6-CP 与 HSA 作用的结合位置.

在竞争实验中, 6-CP 逐渐加入到含有相同浓度的 HSA 和位置标记药物(华法令和布洛芬)的溶液中, 在含有华法令的溶液中(图 8),最大发射波长由 340 nm 红移至 350 nm,并且猝灭作用增强.随着 6-CP 的加 入,HSA 的荧光强度逐渐减小,并发生蓝移,表明色 氨酸附近的疏水性增强,加入的华法令影响了 HSA 的构象.在含有布洛芬的溶液中(图 9),HSA 的发射 波长几乎没有什么变化.对比图 9 和 10,加入布洛芬 的 6-CP-HSA 体系的最大发射波长、荧光强度的改变 和 6-CP-HSA 体系的最大发射波长、荧光强度的改变 和 6-CP-HSA 体系的基本上一致,说明布洛芬没有影 响 6-CP 与 HSA 的结合位置.实验结果表明,6-CP 与 HSA 的结合位置在 site I 附近.

2.9 分子对接

6-CP 与 HSA 相互作用的分子对接结果如图 11 所示. 研究蛋白质的晶体结构表明 HSA 包含 3 个区域(I,

图 8 华法令对 6-CP-HSA 体系的影响

T = 298 K, $\lambda_{ex} = 290$ nm, 1~6: $C_{\# \pm 0} = C_{HSA} = 4 \times 10^{-7}$ mol/L; $C_{6-CP} = 0, 1 \times 10^{-5}, 2 \times 10^{-5}, 3 \times 10^{-5}, 4 \times 10^{-5}, 5 \times 10^{-5}$ mol/L

图 9 布洛芬对 6-CP-HSA 体系的影响

T = 298 K, $\lambda_{ex} = 290$ nm, 1~6: $C_{\text{#Ж#}} = C_{\text{HSA}} = 4 \times 10^{-7} \text{ mol/L};$ $C_{6-CP} = 0, 1 \times 10^{-5}, 2 \times 10^{-5}, 3 \times 10^{-5}, 4 \times 10^{-5}, 5 \times 10^{-5} \text{ mol/L}$

图 10 6-CP 对 HSA 的荧光猝灭图 T = 298 K, $\lambda_{ex} = 290$ nm, 1~6: $C_{HSA} = 4 \times 10^{-7}$ mol/L; $C_{6-CP} = 0, 1 \times 10^{-5}, 2 \times 10^{-5}, 3 \times 10^{-5}, 4 \times 10^{-5}, 5 \times 10^{-5}$ mol/L

图 11 6-CP 与 HSA 相互作用的模型 实线代表氨基酸残基, 球棍模型代表 6-CP 配合基的结构, 虚线代表氢键

Ⅱ,Ⅲ): I (氨基酸残基 1-195)、Ⅱ (氨基酸残基 196-383)和Ⅲ(氨基酸残基 384-585),每一个区域包 含 2 个亚区域(A和B)^[25].大多数药物分子与 HSA的 作用位置位于由亚结构 ⅡA,ⅢA 形成的疏水腔中, 分别对应 site I和 site Ⅱ^[26],如图 11 所示,在亚区域 Ⅱ A内有一个大的疏水腔(形成疏水腔的残基有 Ala291, Leu238, His242, Lys199, Trp214, Arg218,其 中 Trp214 是唯一存在疏水腔中的色氨酸残基),这个 位置能与许多药物结合.

竞争实验也表明 6-CP 与 HSA 的作用位置在 site I (即 II A)附近. 从对接图 11 中还可以看出 6-CP 与 HSA 的作用力有疏水力同时也存在氢键(形成氢键的 残基 Arg222, Lys199), 与热力学参数计算出来的相 互作用力类型氢键和范德华力相统一. 通过分子对 接得到ΔG 的大小为–15.20 kJ/mol, 与实验所得数值 –22.92 kJ/mol 有一定差距,可能是由于实验是在溶 液环境中进行的,而分子对接使用的是 HSA 的 X 衍 射晶体结构.

3 生物样品中蛋白质含量的测定

3.1 同步荧光光谱

在最佳实验条件下,固定 6-CP 的浓度,逐渐增加HSA的浓度,进行同步荧光光谱扫描(图 12).从图 12 中可以看出,荧光强度和 HSA 的浓度在一定的范围内呈现出良好的线性关系.据此建立了以 6-CP 为分子探针,运用同步荧光光谱测定生物样品中蛋白质含量的新方法.

图 12 最佳实验条件下体系的同步荧光光谱 $C_{6-CP} = 1.0 \times 10^{-5} \text{ mol/L}; 1 \sim 16: C_{HSA} = 0, 0.2 \times 10^{-5}, 0.4 \times 10^{-5}, 0.6 \times 10^{-5}, 0.8 \times 10^{-5}, 1.0 \times 10^{-5}, 1.2 \times 10^{-5}, 1.4 \times 10^{-5}, 1.6 \times 10^{-5}, 1.8 \times 10^{-5}, 2.0 \times 10^{-5}, 2.2 \times 10^{-5}, 2.4 \times 10^{-5}, 2.6 \times 10^{-5}, 2.8 \times 10^{-5}, 3.0 \times 10^{-5} \text{ mol/L}$

3.2 回归方程、线性关系、检测限与精密度

最佳的实验条件下,在 1.38~276.00 mg/L 的浓 度范围内,测得蛋白质的浓度与同步荧光强度的线 性回归方程为 $I_{SF} = 23.35 + 1.31 \times 10^7 C_{HSA}$ (mol/L) (HSA 的分子量为 69000 g/mol),线性相关系数为 0.9992. 根据 IUPAC 的定义,对 11 份空白溶液进行 平行测定,求得相对标准偏差为 0.324%,检出限为 0.511 mg/L.

3.3 样品的测定和回收率实验

对人血清(来自河南师范大学校医院)和唾液样 品进行平行测定,并进行加标回收实验,测得的结果 如下表 4.

样品	标准加入量 (mg/L)	测得值 (mg/L)	回收率 (%)	相对标准偏差 RSD (%)
血清	0	50.6	_	0.4
	27.6	77.4	97.1	0.4
	55.2	105.0	98.6	0.4
	82.8	131.5	97.7	0.5
唾液	0	13.9	-	3.6
	27.6	41.0	101	1.2
	55.2	68.0	98.0	0.8
	82.8	95.1	98.1	0.1

表4 生物样品中蛋白质含量的测定

表 5 共存物质的影响

共存物质	干扰倍率	相对误差 (%)	共存物质	干扰倍率	相对误差 (%)
CO3 ²⁻	1	4.3	PO4 ³⁻	28	-5.0
Ca ²⁺	36	4.9	SO4 ²⁻	31	-4.8
Zn ²⁺	1	-5.0	淀粉	29	4.8
Mg ²⁺	2	-4.7	葡萄糖	145	-4.6
$\mathrm{NH_4}^+$	143	-4.7	麦芽糖	58	4.0

3.4 共存物质的影响

在最佳条件下,考察了一些共存物质对蛋白质测 定的影响,相对误差控制在±5%之内.实验结果见表 5.

4 结论

本文用荧光光谱结合分子对接法考察了 6-CP 与 HSA 的相互作用,证明了它们之间的作用力主要为

致谢 感谢为本研究提供测试仪器的卢雁教授.

参考文献

- 1 张康康. 嘌呤衍生物的合成. 硕士学位论文. 南京: 南京理工大学, 2005
- 2 Ikejiri M, Saijo M, Morikawa S. Synthesis and biological evaluation of nucleoside analogues having 6-chloropurine as anti-SARS-CoV agents. Bioorg Med Chem Lett, 2007, 17: 2470–2473
- 3 梁晶, 冯素玲. 光谱法和分子对接法研究盐酸氨溴索与人血清白蛋白的相互作用. 光谱学与光谱分析, 2011, 31: 1020-1024
- 4 刘彩虹,李玉琴,齐永秀.光谱法及分子模拟研究荠菜素与人血清白蛋白的相互作用.分析测试学报,2010,29:918-922
- 5 裴明砚,郑学仿,曹洪玉,等.3-溴丙酮酸与人血清白蛋白相互作用的光谱学研究.分析化学,2010,38:948-952
- 6 Banerjee P, Pramanik S, Sarkar A, et al. Deciphering the fluorescence resonance energy transfer signature of 3-pyrazolyl 2-pyrazoline in transport proteinous environment. J Phys Chem, 2009, 113: 11429–11436
- 7 Cui F L, Cui Y R, Luo H X, et al. Interaction of APT with BSA or HSA. Chin Sci Bull, 2006, 51: 2201–2207
- 8 Cui F L, Fan J, Li J P, et al. Interactions between 1-benzoyl-4-*p*-chlorophenyl thiosemicarbazide and serum albumin: Investigation by fluorescence spectroscopy. Bioorg Med Chem, 2004, 12: 151–157
- 9 王公柯, 席辉, 田芳, 等. 光谱和分子模拟法研究乙硫异烟胺与木瓜蛋白酶的分子作用机制. 化学学报, 2011, 69: 95-100
- 10 吕茜茜. 荧光光谱研究几种药物小分子与人血清白蛋白的相互作用. 硕士学位论文. 西安: 西北大学, 2011
- 11 Nail P N, Chimatadar S A, Nandibewoor S T. Interaction between a potent corticosteroid drug—Dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and fourier transformation Infrared spectroscopy study. J Photochem Photobiol, 2010, 100: 147–159

氢键、范德华力和疏水作用力,猝灭类型为静态猝灭, 运用三维荧光光谱研究了 6-CP 对 HSA 构象的影响, 用竞争实验和分子对接验证了它们的结合位置在 site I即IIA 附近.在此基础上,建立了以 6-CP 为分 子探针,运用固定波长同步荧光光谱法分析测定 生物样品中蛋白质含量的新方法.该方法简单、快 速、灵敏度高,可用于生物化学、临床诊断、质量检 验等.

- 12 Cui F L, Zhang Q Z, Yao X J, et al. The investigation of the interaction between 5-iodouracil and huamn serum albumin by spectroscopic and modeling methods and determination of protein by synchronous fluorescence technique. Pestic Biochem Physiol, 2008, 90: 126–134
- 13 Ding F, Zhao G Y, Chen S C, et al. Chloramphenicol binding to serum albumin: Determination of binding constants and binding sites by steady-state flurescence. J Mol Struct, 2009, 929: 159–166
- 14 Gao D J, Tian Y, Bi S Y, et al. Studies on the interaction of colloidal gold and serum albumins by spectral methods. Spectrochim Acta Part A, 2005, 62: 1203–1208
- 15 Nanda R K, Sarkar N, Banerjee R. Probing the interaction of ellagic acid with human serum albumin: A fluorescence spectroscopic study. J Photochem Photobiol A, 2007, 192: 152–158
- 16 Förster T, Sinanoglu O. Modern Quantum Chemistry. New York: Academic Press, 1966. 3
- 17 Stryer L. Fluorescence energy transfers as a spectroscopic rular. Annu Rev Biochem, 1978, 47: 819-946
- 18 Li Y, Yao X J, Jin J, et al. Interaction of rhein with human serum albumin investigation by optical spectroscopic technique and modeling studies. Biochim Biophys Acta, 2007, 1774: 51–58
- 19 Hu Y J, Liu Y, Pi Z B, et al. Interraction of cromolyn sodium with human serum albumin: A fluorescence quenching study. Bioorg Med Chem, 2005, 13: 6609–6614
- 20 Li Y S, Ge Y S, Zhang Y, et al. Interaction of coomassie brilliant blue G250 with human serum albumin: Probing of the binding mechanism and binding site by spectroscopic and molecular modeling methods. J Mol Struct, 2010, 968: 24–31
- 21 Xu Z C, Yang W B, Dong C. Determination of human albumin using an intramolecular charge transfer fluorescence probe: 4'-Dimethylamino-2,5-dihydroxychalcone. Bioorg Med Chem Lett, 2005, 15: 4091–4096
- 22 Yue Y Y, Liu J M, Fan J, et al. Bing studies of phloridzin with human serum albumin and its effect on the conformation of protein. J Pharm Biomed Anal, 2011, 56: 336–342
- 23 Wang Y Q, Zhang H M, Zhou Q H. Investigation of the interaction between pentachlorophenol and human serum albumin using spectral methods. J Mol Struct, 2009, 932: 31–37
- 24 Joseph K S, Moser A C, Basiaga S B G. Evaluation of alternatives to warfarin as probes for sudlow site I of human serum albumin characterization by high-performance affinity chromatography. J Chromatogr A, 2009, 1216: 3492–3500
- 25 Tang J H, Luan F, Chen X G. Binding analysis of glycyrrhetinic acid to human albumin: Fluorescence spectroscopy, FTIR, and molecular modeling. Bioorg Med Chem, 2006, 14: 3210–3217
- 26 Maiti T K, Ghsh K S, Debnath J. Binding of all-trans retinoic acid to human serum albumin: Fluorescence, FT-IR and circular studies. Int J Biol Macromol, 2006, 38: 197–202

6-Chloropurine interactions with human serum albumin and its application analysis

GENG ShaoGuang¹, YUN YanRu², JIANG XiaoYing¹, CUI FengLing¹ & GUO HaiMing¹

¹School of Chemistry and Environmental Science, Henan Normal University, Xinxiang 453007, China;
²Xuchang Vocational and Technical College, Xuchang 461000, China

The binding of 6-chloropurine (6-CP) with human serum albumin (HSA) was investigated by fluorescence spectroscopy and molecular modeling under simulated physiological conditions, which results showed that 6-CP formed a complex with HSA and strongly quenched the intrinsic fluorescence of HSA through static quenching. The change in enthalpy (ΔH) and entropy (ΔS) were calculated by the van't Hoff equation. These data suggested that there were hydrogen bonds and van der Waals forces between 6-CP and HSA. These results agreed with those obtained by molecular modeling, which also showed hydrophobic interactions between HSA and 6-CP. The effect of 6-CP on the conformation of HSA was analyzed by three-dimensional fluorescence spectroscopy, and Warfarin and Ibuprofen were used as molecular probes to investigate the interaction sites of 6-CP and HSA. Under the optimum conditions, based on that the synchronous fluorescence intensity (I_{SF}) of the system was in direct proportion to the concentration of protein, the method of determining the protein used 6-CP as a fluorescence probe was applied with the detection limit 0.511 mg/L. And the amount of the proteins in human serum and saliva samples were detected and the recovery was 97.1%~101%. This method is simple, rapid, high sensitivity and could be used in biochemistry, clinical diagnosis or quality inspection.

6-chlorine purine, human serum albumin, three-dimensional fluorescence spectrum, molecular modeling, interaction

doi: 10.1360/972011-1341

812