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Weaving independently generated photons into an arbitrary graph state
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The controlled-Z (CZ) operations acting separately on pairs of qubits are commonly adopted in the schemes of
generating graph states, the multipartite entangled states for the one-way quantum computing. For this purpose,
we propose a setup of cascade CZ operation on a whole group of qubits in sequence. The operation of the setup
starts with entangling an ancilla photon with the first photon as qubit, and this ancilla automatically moves from
one entanglement link to another in assisting the formation of a string in graph states. The generation of some
special types of graph states, such as the three-dimensional ones, can be greatly simplified in this approach. The
setup presented uses weak nonlinearities, but an implementation using probabilistic linear optics is also possible.
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I. INTRODUCTION

The one-way quantum computing [1–3] attracts wide
attention because of its efficiency and simplicity. Different
from the traditional circuit-based quantum computing, it only
works with single-qubit measurements on the a priori prepared
multientangled states called graph states or cluster states. The
graph states form an important class of multipartite entangled
states. In addition to the two-dimensional (2D) graph states,
three-dimensional (3D) graph states have been suggested
for fault-tolerant one-way quantum computing [4]. How to
efficiently generate these graph states is the main problem in
realizing practical one-way quantum computing.

Photons have long coherence times and interact weakly
with their environment. Photonic qubits, including the discrete
ones (see, e.g., Refs. [5–8]) and the continuous-variable (CV)
ones (see, e.g., Refs. [9–11]), are among the first candidates for
the one-way quantum computing. Although many experiments
[12–17] demonstrate the generation of graph states of a few
photons, these linear optical approaches are not efficient
enough to make graph states of many qubits due to their
limited success probabilities in basic entangling operations.
Deterministic gates employing photonic nonlinearity are nec-
essary for the practical one-way quantum computing. The
straightforward way of entangling photonic qubits is to apply
a deterministic controlled-Z (CZ) gate working with strong
photon-photon interaction in nonlinear media. However, in
addition to the generic weak interaction between photons
and the accompanying decoherence from losses in media, the
realization of high-quality photon-photon gates is hindered
by physical limitations such as multimode effects [18–21].
An alternative for realizing deterministic photonic gates is
the weak nonlinearity between photons and coherent states
with large amplitude [22,23]. So far the schemes based on
weak nonlinearity have been proposed for generating 2D graph
states of atomic qubits [24–26] or photonic qubits [27,28]. The
operations in generating graph states of large numbers of qubits
should be also optimized, so that the demanded resources could
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be as few as possible [26]. This problem is more relevant to
graph states of photonic qubits, which should be prepared
quickly if given no perfect quantum memory.

To have a clearer picture of the problem, we look at how
a graph state is built up from the inputs. Most theoretical
works adopt the link by link entanglement connection between
qubits by separate CZ operations. Given weak nonlinearity,
each CZ operation requires two entangler or parity gate
operations, which consume an ancilla photon, respectively
[22]. Another approach for speeding up graph state generation
is to manufacture a target graph state with the building blocks
initially prepared from the elementary qubits. For example,
in Ref. [28] we propose a procedure of generating 2D graph
states in this fashion; the box-shaped building blocks are first
prepared from qubits with entangler operations together with
CZ operations, and then the building blocks are assembled to
the target graph state by CZ operations. This approach reduces
most of CZ operations to deterministic entangler or parity gate
operations. To reduce the total preparation time, however, a
considerable number of entanglers should be used to prepare
the building blocks simultaneously. This necessitates a trade-
off of the preparation times for the preparation resources.

Here we present an architecture of the cascade CZ operation
to solve the problem. By cascade CZ operation we mean
that the CZ operations to entangle qubits into a string are
bundled together and performed by a single setup called a
cascade entangler. Such an operation is assisted by only one
ancilla photon called the spider photon, which moves from
one entanglement link to another throughout a cascade CZ

operation and acts like a spider weaving qubits into a graph
state. With cascade CZ operations, the number of facilities for
simultaneous operations in generating a graph state, as well as
the corresponding ancilla photon number, can be reduced to
that of connected strings in the graph state. Moreover, because
of the flexible passage of a spider photon, such a setup is able
to generate an arbitrary graph state.

The rest of the paper is organized as follows. In Sec. II we
provide a detailed description of how the cascade entangler
works for our purpose. The generation of cluster states is
illustrated in Sec. III with examples, where we emphasize
the advantage of the approach generating 3D graph states.
Finally, in Sec. IV we give more discussion on the core
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element, cross-Kerr-nonlinearity, in our setup and conclude the
paper.

II. CASCADE ENTANGLER AND CASCADE
CZ OPERATION

The design of the cascade entangler is based on the
following decomposition of a general graph state [29]:

|G〉 =
∏

(i,j )∈E

(CZ)i,j |+〉⊗V

=
∏

(i,j )∈E1

(CZ)i,j |+〉⊗V1 · · ·
∏

(i,j )∈En

(CZ)i,j |+〉⊗Vn, (1)

where |±〉 = 1√
2
(|0〉 ± |1〉) is a qubit on a vertex in the sets

Vi and (CZ)i,j denotes the CZ operation over the link between
vertex i and vertex j . By the above expression, a general
graph state is decomposed into a product of the connected
string structures Ei . Note that the CZ operations in the above
equation commute and the decomposition to the products of the
different connected strings is not unique. The setup is designed
to successively entangle the qubits to the string structures Ei ,
and the creation of these strings is assisted by a spider photon.
If a graph state is in the shape of a single-string E [the number
of set Ei in Eq. (1) equals to 1], the setup will directly generate
the graph state by the repeated entangling operations on the
input qubits. Given n simultaneous operations to generate the
strings Ei , a graph state could be created in an efficient way.

We illustrate the operation of a cascade entangler with
the following input state involving photons p and r and the
spider photon a as the ancilla (the qubits are encoded with the
polarization modes, |0〉 ≡ |H 〉 and |1〉 ≡ |V 〉):

|�〉in = (|ψ1〉|0〉p|+〉a + |ψ2〉|1〉p|−〉a) ⊗ (|0〉r + |1〉r )

= (|ψ1〉|00〉|+〉 + |ψ1〉|01〉|+〉 + |ψ2〉|10〉|−〉
+ |ψ2〉|11〉|−〉)pra, (2)

where |ψi〉, for i = 1 and 2, are the proper unnormalized pure
states involving photons other than p. Here we assume that the
spider photon a has been entangled to the finished piece of a
graph state and that photon r will be attached to this piece. The
already prepared piece |ψ1〉|0〉p + |ψ2〉|1〉p can be a general
graph state, but the spider photon a is always entangled to
the neighboring photon in the finished piece (photon p, for
example) in a specific way, i.e., |+〉a (|−〉a) is guaranteed
to be in the same terms with |0〉p (|1〉p); see Eq. (2). The
purpose for such a choice in the cascade CZ operation is given
below.

We begin with using two polarization beam splitters (PBS)
to divide the photons r and a into two spatial modes,
respectively. Then two quantum bus (qubus) beams in the
coherent state |α〉 are coupled with single photons r and a

through the weak cross-Kerr-nonlinearities; see Fig. 1 for the
coupling pattern. All induced phase shifts from cross-phase-
modulation (XPM) between coherent and single-photon state
are assumed to be θ . After that, two phase shifters of −θ are
respectively applied to the qubus beams to obtain the state

(|ψ1〉|0〉p|0〉r |0〉a + |ψ1〉|0〉p|1〉r |1〉a)|α〉|α〉
+ (|ψ2〉|1〉p|0〉r |0〉a − |ψ2〉|1〉p|1〉r |1〉a)|α〉|α〉

FIG. 1. (Color online) Cascade entangler based on cross-phase-
modulation between photons and coherent states. The two qubus
beams are coupled to the |0〉 and |1〉 of the photons r and a as
indicated. The ancilla photon (spider photon) is denoted as a. A
phase shift, −θ , is applied to the qubus beams respectively. The qubus
beam is divided and merged by 50:50 beam splitters. The single-qubit
operations σx and σz are conditionally implemented according to the
detection results of the quantum non-demolition detection (QND)
module.

+ (|ψ1〉|0〉p − |ψ2〉|1〉p)|0〉r |1〉a|αe−iθ 〉|αeiθ 〉
+ (|ψ1〉|0〉p + |ψ2〉|1〉p)|1〉r |0〉a|αeiθ 〉|αe−iθ 〉. (3)

Next, one 50:50 beam splitter performs the transformation
|α1〉|α2〉 → | α1−α2√

2
〉| α1+α2√

2
〉 of the qubus coherent states.

A proper output state can be obtained by a continued
projection |n〉〈n| on the qubus beam in the state |±√

2α sin θ〉
or |0〉. If n = 0, we will have

(|ψ1〉|0〉|0〉|0〉 + |ψ1〉|0〉|1〉|1〉 + |ψ2〉|1〉|0〉|0〉
− |ψ2〉|1〉|1〉|1〉)pra; (4)

if n 	= 0, we can also get the above state by a σz operation
on photon p and by a σx operation and a σz operation on
photon a, which are performed conditionally on the classically
feed-forwarded measurement results.

The projection |n〉〈n| can be performed by a QND module
employing coherent state comparison [30,31]. While the
stronger beam of the qubus in the state |√2α cos θ〉 or |√2α〉
will be recycled for the next entangling operation, the other
beam in the state | ± √

2α sin θ〉 or |0〉 will be coupled in
the module to one of the beams in the coherent state |γ 〉
by the same weak cross-Kerr-nonlinearity, so that the output
of the QND module will be obtained from the process

|±
√

2α sin θ〉|γ 〉|γ 〉 →
∞∑

n=0

e−|α sin θ |2 (±√
2α sin θ )n√

n!
|n〉

×
∣∣∣∣γ einθ − γ√

2

〉∣∣∣∣γ einθ + γ√
2

〉
. (5)

If the amplitude |γ | of the beams is large enough, the Poisson
peaks of the states | γ einθ−γ√

2
〉 in the above output can be

mutually separated; see Ref. [32]. Then, for the different

number n occurring with the probabilities e−2|α sin θ |2 |√2α sin θ |2n

n! ,
a detector without the capability of resolving photon numbers
could respond distinguishably to the measured beam proba-
bilistically in the states |ζn〉 = | γ einθ−γ√

2
〉, realizing the photon
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number resolving detection in an indirect way. The mutually
distinct readings of the detector could be a monotonic function
of the expectation values 〈ζn|	̂|ζn〉, where 	̂ = ∑

m{1 − (1 −
η)m}|m〉〈m| is the positive-operator-value measure element
describing the action of a photon number nonresolving detector
with efficiency η. Note that, due to the finite range of photon
numbers n for the Poisson distribution of |√2α sin θ〉, the
readings of the detector are virtually finite too. The error
probability in one operation of such a QND module is [32,33]

PE ∼ exp
{ − 2

(
1 − e− 1

2 ηγ 2θ2)
α2 sin2 θ

}
. (6)

Even if θ � 1 due to the weak cross-Kerr-nonlinearity, the
operation can be effectively deterministic given α sin θ  1
and γ θ  1.

Going back to the operation of our entangler, we finally
apply a Hadamard operation on the spider photon a to yield
the output state

|�〉out = (|ψ1〉|0〉|0〉|+〉 + |ψ1〉|0〉|1〉|−〉 + |ψ2〉|1〉|0〉|+〉
−|ψ2〉|1〉|1〉|−〉)pra. (7)

If the spider photon a were projected out by a measurement
on the |0〉a or |1〉a basis, the completed operation by the
entangler would be (CZ)p,r (the output due to the projection
on |1〉a should be modified with a single-qubit operation σz on
the target photon r), which connects the entanglement bond
between photon p and r .

In the input state of Eq. (2), photon a is specifically
correlated to photon p such that |+〉a (|−〉a) is in the same
terms with |0〉p (|1〉p). After the operation described above,
such correlation is transferred to between photon a and photon
r; see Eq. (7). One could use the output state as the input in the
form of Eq. (2) to entangle the next photon to photon r , and
so on. The operations of entangling a number of independent
photons to a string can be therefore assisted by the same spider
photon a, as the specific entanglement with the spider photon
is transferred from photon to photon; see Fig. 2(b) for a basic
two-cascade entangler operation. The spider photon is the only
ancilla for implementing a cascade entangler operation, and it
will not be destroyed before we complete the whole operation.

Obviously, the starting piece or the Bell pair between
the first photon p1 and the spider photon a [here we have
no other photons in |ψ1〉,|ψ2〉 of Eq. (2)] can be prepared
by the same entangler as well. Now photon p1 should take
the position of photon r in Fig. 1. The coupling of the
cross-Kerr-nonlinearities in the same pattern, as well as the
detection by the QND module, transforms the state |+〉p1 |+〉a
to either |0〉p1 |0〉a + |1〉p1 |1〉a or |0〉p1 |1〉a + |1〉p1 |0〉a , which
can be converted to |0〉p1 |+〉a + |1〉p1 |−〉a by local operations.
Compared with the strategy in Ref. [28], all operations here
can be performed by the same entangler as shown in Fig. 1.

Moreover, extra entanglement links between qubits in an
already connected piece can be built up by the entangler. One
example of this case is that photons p and r are entangled to
a third photon so that their total state is not separable. The
entangler will operate in the same way except for processing
a more general input like

|�〉in = |ψ00〉|0〉p|0〉r |+〉a + |ψ01〉|0〉p|1〉r |+〉a
+ |ψ10〉|1〉p|0〉r |−〉a + |ψ11〉|1〉p|1〉r |−〉a. (8)

FIG. 2. (Color online) (a) Preparation of a linear and a star-shaped
graph state. The red circle denotes an entangler operation, and H a
Hadamard operation. The initial building blocks for the graph states
are single-photon qubits, as well as Bell pairs which can be prepared
by the entangler in Fig. 1 without using an ancilla. (b) Realization of a
two-cascade CZ operation. The entangler first entangles photon a and
photon p by putting p at the position of r in Fig. 1. Then, photon a

assists the connection of the entanglement bonds between photons p

and r and between photons r and q in succession. It acts like a spider
weaving these photons together into a string. A general cascade CZ

operation like that in the dash-dotted line can be implemented in this
fashion.

This implies that spider photons can make circles by going
through the same qubit in graph states for more than one
time.

There is also a linear optical version for the cascade
entangler; see Fig. 3. By the photon-photon interference via
the polarization beam splitters and the coincident photon
detection, the linear optical circuit effectively realizes a CZ

operation as the nonlinear one in Fig. 1. Such a linear optical
cascade entangler only works with a success probability 1/2n

FIG. 3. (Color online) Linear optical realization of the cascade
CZ operation. Via the polarization beam splitters, the spider photon in
the state |+〉 interferes with the photons p, r , and q in succession. The
PBS act as entanglers or parity gates, thus realizing a two-cascade
CZ operation associated with Hadamard operations performed on the
ancilla between two PBS and the coincidence measurement.
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in generating a string of n photonic qubits, but it could be used
for experimental demonstration of this type of entangler.

III. GENERATION OF GRAPH STATES

In the generation of graph states, we stipulate that the spider
photons should move along the paths that do not retrace an
already connected link; otherwise it will destroy the bonds by
the operation of the entangler. This requirement is the same
as that for walking through the edges of a graph once and
only once; cf. the problem of Seven Bridges of Königsberg, a
notable mathematics problem solved by L. Euler.

The generation strategy we have presented can be viewed
as weaving up a graph network by spider photons following
the above rule. One could have an optimal decomposition of a
graph state, such that the number of parallel or separate opera-
tions for generating the state is minimized by letting one spider
photon go through as many vertexes as possible. This spider
photon could pass through a qubit in graph states for any num-
ber of times as long as it obeys the rule of not stepping on the al-
ready connected links, as a cascade entangler is able to process
the most general input in Eq. (8). In what follows we give a few
examples of generating graph states by the weaving strategy.

The first example is a square-shaped 2D graph state.
Without loss of generality, we demonstrate the preparation
of a 5 × 5 one in Fig. 4. The initial building blocks, the short
chains of two or three qubits, can be prepared by the same
cascade entangler beforehand or generated simultaneously
with different entanglers, while the unlinked qubits will be
connected to a single string from one of the initially linked
qubits. During the operation, the unlinked qubits are woven by
a spider photon (not shown explicitly in the figure) in turn to the
string, as it makes the indicated paths going through the qubits

FIG. 4. (Color online) Generation of a 5 × 5 graph state. Some
linear graph states (denoted by green lines) are prepared at the
beginning as the building blocks. Then, one ancilla photon (not shown
explicitly), which is entangled to one of the linear graph states, is used
as the spider photon to connect the entanglement bonds. In each step,
its starting point is marked by a triangle and its ending point marked
by a square. The paths of the spider photon are denoted by red lines
(the added lines between the square and triangle in each step).

FIG. 5. (Color online) Generation of a 4 × 4 alveolate graph state.
Some linear graph states are used as the building blocks. In each step,
the starting point of the spider photon is marked by a triangle and its
ending point is marked by a square.

inside the square for more than one time. This string covers all
entanglement links except for those initially connected.

The generation of the alveolate graph state [8,34], a special
kind of 2D graph state, is similar. Following the rule for the
spider photon, a general alveolate graph state can be generated
as it walks through the paths denoted by red lines in Fig. 5.

The advantage of the weaving strategy is more obvious in
3D graph state generation. Three-dimensional graph states are
proposed for fault-tolerant one-way quantum computing [4].
The three dimensions of a graph state stand for the cubically
increasing entanglement bonds, which demand much more
operations than in preparing 2D graph states. Here we use
the example of a 3 × 3 × 3 graph state in Fig. 6 to illustrate

FIG. 6. (Color online) Generation of a 3 × 3 × 3 graph state. The
building blocks used here are the star-shaped and linear graph states
prepared as in Fig. 2(a), as well as the individual photonic qubits.
In each step, the starting point of the spider photon is marked by a
triangle and its ending point is marked by a square.

062312-4



WEAVING INDEPENDENTLY GENERATED PHOTONS INTO . . . PHYSICAL REVIEW A 84, 062312 (2011)

3 4 5 6 7 8
n

500

1000

1500

2000

2500

N

CCZ

box

CZ

FIG. 7. (Color online) Comparison of the numbers of the indi-
vidual entangler operations in generating an n × n × n cubic graph
state. The number by the cascade entangler (CCZ) in this paper
is N = 3(n − 1)n2 + 1. By the block by block (box) strategy in
Ref. [28], the corresponding number is n = 4(n − 1)n2 − 2n + 1, if n

is even; and N = 4(n − 1)n2 − n + 1, if n is odd. The corresponding
number by the direct CZ operations on each entanglement bond is
N = 6(n − 1)n2.

the generation of a 3D graph state by cascade CZ operations.
The building blocks are two star-shaped graph states and one
linear graph state prepared as in Fig. 2(a), as well as a Bell
pair, and the rest are unconnected single-photon qubits. The
star-shaped graph states and the Bell pair are denoted with
the green bonds in Fig. 6. All these pieces can be generated
by the simultaneous operation of more entanglers, or by the
same entangler beforehand or afterward. The passage of the
spider photon is shown with the red lines in each step of Fig. 6.
The spider photon keeps traveling side by side on the cubic
until it connects all entanglement links other than the initially
connected links.

Only counting the number of the individual entangling
operations in generating an n × n × n graph state, this weaving
strategy improves on other approaches by requiring fewer
operations; see Fig. 7. Such improvement is due to the fact that
the passage of a spider photon can be on different 2D planes of a
cubic. Since the operations in generating each string Ei can be
bundled together by a cascade entangler, the actually number
of separate operations in preparing an n × n × n cubic graph
state is in the order of that of the linked initial building blocks

in Fig. 6, whose quantity is in the order of n. By our weaving
strategy, therefore, the quantity of the necessary resource for
preparing a 3D graph state only grows with the size number n

rather than its link number n3.

IV. DISCUSSION AND CONCLUSION

The core element for our cascade entangler is a proper weak
cross-Kerr-nonlinearity for entangling operations and in QND
modules. The recent experimental progress on photonic XPM
can be found in, for example, Refs. [35–39]. More progress in
the research of such photonic nonlinearity is expected in the
near future.

Most of theoretical studies thus far (including the present
one) adopt the simplified single-mode treatment for XPM
between photons and coherent states. This picture is criticized
in Ref. [40], which considers the quantum noise effect due to
the noninstantaneous response of nonlinear media. However,
in the regime of the very small conditional phase θ , a
multimode XPM from the instantaneous photonic interactions
works almost in the same way as that of the single-mode
approximation [20,21]. Given a small conditional phase θ �
1, our deterministic entangler should work in the regime of
α sin θ  1. Such compatibility between a small conditional
phase and a large average photon number of the qubus beams
in the realistic multimode XPM is clarified in Ref. [41], where
we adopt a continuous-mode interacting quantum field model
to show the validity of the single-mode approximation in this
regime.

We have illustrated how to apply cascade entangler opera-
tions to entangle independent single photons into an arbitrary
graph state. This approach is highly efficient and suitable to
preparing the graph states of a large number of qubits. It could
make the photon a suitable qubit for realistic one-way quantum
computing.
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