Abstract—Bag-of-visual Words (BoWs) representation has

been applied for various problems in the ﬁelds of multimedia

and computer vision. The basic idea is to represent images as

visual documents composed of repeatable and distinctive visual

elements, which are comparable to the text words. Notwithstanding its great success and wide adoption, visual vocabulary

created from single-image local descriptors is often shown to be

not as effective as desired. In this paper, descriptive visual words

(DVWs) and descriptive visual phrases (DVPs) are proposed as

the visual correspondences to text words and phrases, where

visual phrases refer to the frequently co-occurring visual word

pairs. Since images are the carriers of visual objects and

scenes, a descriptive visual element set can be composed by

the visual words and their combinations which are effective in

representing certain visual objects or scenes. Based on this idea,

a general framework is proposed for generating DVWs and

DVPs for image applications. In a large-scale image database

containing 1506 object and scene categories, the visual words

and visual word pairs descriptive to certain objects or scenes are

identiﬁed and collected as the DVWs and DVPs. Experiments

show that the DVWs and DVPs are informative and descriptive

and, thus, are more comparable with the text words than the

classic visual words. We apply the identiﬁed DVWs and DVPs in

several applications including large-scale near-duplicated image

retrieval, image search re-ranking, and object recognition. The

combination of DVW and DVP performs better than the state

of the art in large-scale near-duplicated image retrieval in terms

of accuracy, efﬁciency and memory consumption. The proposed

image search re-ranking algorithm: DWPRank outperforms the

state-of-the-art algorithm by 12.4% in mean average precision

and about 11 times faster in efﬁciency.

Index Terms—Image retrieval, image search re-ranking, object

recognition, visual phrase, visual word.
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I. INTRODUCTION

B

AG-OF-VISUAL words (BoWs) image representation

has been utilized for many multimedia and vision problems, including video event detection [36], [40], [46], object

recognition [16], [17], [24], [25], [27], [30], [35], image

segmentation [37], and large-scale image retrieval [10]–[12],

[23], [31], [39]. Representing an image as a visual document

composed of repeatable and distinctive visual elements that are

indexable is very desirable. With such a representation, many

matured techniques in information retrieval can be leveraged

for vision tasks, such as visual search or recognition. Recently,

it has been demonstrated that BoWs image representation is

one of the most promising approaches for retrieval tasks in

large-scale image and video databases [10]–[12], [23], [31],

[39].

However, experimental results of reported works show that

the commonly generated visual words [10], [21], [31], [37],

are still not as expressive as the text words. Traditionally, the

classic visual vocabulary is created by clustering a large number

of local feature descriptors. The exemplar descriptor of each

cluster is called a visual word, which is then indexed by an integer. In previous works [17], [23], [24], [27], [36], [39], [41],

[43], [44], various numbers of visual words are generated for

different tasks.

There are two general observations: 1) using more visual

words results in better performance [17], [23], [27] and 2)

however, the performance will be saturated when the number of

visual words reaches certain levels [17], [23], [27]. Intuitively,

a larger number of visual words indicates more ﬁne-grained

partitioning of the descriptor space. Hence, the visual words

become more discriminative in representing certain visual

contents. The second observation is that increasing the number

of visual words to certain levels ﬁnally saturates the performance of vision vocabulary. Intuitively, dividing the feature

space in ﬁner scales increases the quantization error in visual

vocabulary. This means local features near in the feature space

might be quantized into different visual words.

These observations strongly imply the limited descriptive

ability of the classic visual word. A toy example illustrating this

ﬁnding is presented in Fig. 1. In the ﬁgure, SIFT descriptors are

extracted on interest points detected by Difference of Gaussian

(DoG) [20]. The three images are then represented as BoWs

with a visual vocabulary containing 32 357 visual words, by

replacing their SIFT descriptors with the indexes of the closest

visual words. In the ﬁgure, two interest points are connected

with a red line (online version) if they share the same visual

word. As we can clearly observe, although the visual appearances of the plane and cat are very different, there are still

many matched visual words between them. It can be inferred
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Fig. 1. Matched visual words between the same and different objects.

Fig. 2. Two images show different semantics. However, they contain the identical visual word histogram. Obviously, traditional BoW representation loses the

spatial context in images.

that the visual word is noisy and indiscriminative, resulting in

its ineffectiveness in measuring the similarity between the two

images.

There are two problems in the classic visual words, which

may be the main causes for their limited descriptive power.

1) Single visual word contains limited spatial contextual

information, which has been proven important for visual

matching and recognition [16], [17], [31], [39]. Thus, it

is not effective in presenting the characteristics of objects

and scenes. This can be explained by an analogy between

basic English alphabets and single visual words. The

English alphabets, which are also basic components of

documents, present very limited ability for describing

semantics, if they are not organized in speciﬁc orders.

Similarly, the spatial layouts of different visual words

need to be taken into consideration to make the classic

visual words descriptive enough. Fig. 2 illustrates the

importance of spatial context.

2) Previous -means-based visual vocabulary generation

cannot lead to very effective and compact visual vocabulary [23], [31], [39]. This is because simply clustering

the local descriptors in unsupervised way generates lots

of unnecessary and nondescriptive visual words in the

cluttered background, e.g., the noisy mismatched visual

words in Fig. 1.

Aiming at the ﬁrst problem, many works are conducted to

combine multiple visual words to model their spatial relationships [1], [3], [17], [21], [27], [36], [39], [41]–[45]. As for the

second problem, novel feature quantization algorithms [14],

[15], [19], [22], [26], [38] have been proposed, targeting for

more discriminative visual vocabularies. We will review the

related works and state the differences and advantages of our

algorithm in detail in Section II.

In order to overcome the above two shortcomings and generate visual vocabulary that is as comparable to the text words

as possible, descriptive visual words (DVWs) and descriptive

visual phrases (DVPs) are proposed in this paper. DVWs are de-

ﬁned as the individual visual words speciﬁcally effective in describing certain objects or scenes. Similar to the semantic meaningful phrases in documents, DVPs are deﬁned as the distinctive and commonly co-occurring visual word pairs in images.

Intuitively, because DVWs and DVPs only keep the descriptive

visual words and visual word pairs, they would be descriptive,

compact, and clean. Once established, they will lead to compact

and effective BoWs representation.

Generating DVW and DVP set seems to be a very difﬁcult

problem, but statistics in large-scale image datasets might

provide us some help. Because images are carriers of different

visual objects or visual scenes, classic visual words and their

combinations that are descriptive to certain objects or scenes

could be selected as DVWs and DVPs, respectively. The corresponding DVWs and DVPs will function more similar to the

text words than the classic visual words because of the reasons

given here.

1) Only unique and effective visual words and combinations

are selected. Thus, the selected set would be compact to

describe speciﬁc objects or scenes. In addition, this significantly reduces the negative effects of visual words generated from the cluttered background. Therefore, the DVWs

and DVPs would be more descriptive.

2) Based on the large-scale image training set containing different scenes and objects, DVWs and DVPs might present

better descriptive ability to the real word and could be scalable and capable for various applications. Consequently,

our algorithms identify and collect DVWs and DVPs from

a large number of object and scene categories.

To gather reliable statistics on the large-scale image dataset,

we collect about 376 500 images, belonging to 1506 categories,

by downloading and selecting images from Google Image. We

will give the details of our data collection in Section V-A. Fig. 3

illustrates the framework of our algorithm. A classic visual word

vocabulary is ﬁrst generated based on the collected image database. Then, the classic visual words appear in each category are

considered as the DVW candidates, from which we will identify

the DVWs that are descriptive for the corresponding categories.

DVP candidates in each category are generated by detecting

the co-occurring visual words within a certain spatial distance

threshold. A novel visual-word-level ranking algorithm: VisualWordRank which is similar to the PageRank [2] and VisualRank

[13] is proposed for identifying and selecting DVWs efﬁciently.

Based on the proposed ranking algorithms, DVWs and DVPs

for different objects or scenes are discriminatively selected. The

ﬁnal DVW and DVP set is generated by combining all of the selected DVWs and DVPs across different categories. Extensive

experiments on image retrieval tasks show that the DVW and

DVP present stronger descriptive power than the classic visual

words. Furthermore, DVW and DVP show promising performance in image search reranking and object recognition tasks.

In summary, the contributions of our work are given here.

• The drawbacks of classic visual words are discussed. A

novel large-scale web image-based solution is proposed for

generating DVWs and DVPs.

• The idea of PageRank [2] and VisualRank [13] is leveraged

in VisualWordRank for DVW selection. Experiments validate the effectiveness and efﬁciency of VisualWordRank.2666 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 3. Proposed framework for DVW and DVP generation.

• The proposed DVWs and DVPs are general and perform

impressively in three applications: large-scale near-duplicated image retrieval, web image search reranking, and object recognition with simple nonparametric algorithms.

The remainder of this paper is organized as follows. Section II

reviews and summarizes the related works on visual vocabulary. DVW and DVP candidate generation will be introduced

in Section III. The DVW and DVP selection is presented in

Section IV. Section V discusses the applications and evaluations. Finally, Section VI concludes the paper.

II. RELATED WORK

To improve the descriptive power of visual vocabulary, many

approaches have been proposed. These approaches can generally be divided into two categories, i.e., they either try to optimize the unsupervised clustering for feature quantization, or try

to model more spatial information among the visual descriptors. In the following two paragraphs, we will review these algorithms in detail.

For visual vocabulary generated from unsupervised clustering, lots of noisy visual words can be generated from the local

features in the cluttered background and large quantization error

could be introduced. To overcome these shortcomings, many

works have proposed novel feature quantization algorithms

[15], [22], [26], targeting for more effective and discriminative

visual vocabularies, e.g., an interesting work is reported by

Lazebnik et al. [15]. Using the results of -means as initializations, the authors generate discriminative vocabularies

according to the Information Loss Minimization theory [15].

In [22], Extremely Randomized Clustering Tree is proposed

for visual vocabulary generation, which shows promising performance in image classiﬁcation. The visual word ambiguity

and the inﬂuences of visual vocabulary size on quantization

error and retrieval performance are studied in [7]. To reduce

the quantization error introduced in feature space partition,

soft-quantization [10], [27] quantizes a SIFT descriptor to

multiple visual words.

In addition, to generate the visual vocabulary from singleimage local descriptors, the -means clustering commonly employs a general distance metric, such as Euclidean distance, to

cluster or quantize the local features. This is unsatisfactory since

it largely neglects the semantic contexts of the local features.

With a general distance metric, local visual features with similar

semantics may be far away from each other, while the features

with different semantics may be close to each other. As a result,

the local features with similar semantics can be clustered into

different visual words, while the ones with different semantics

can be assigned into the same visual words. This defection results in some incompact and noisy visual words, which are also

closely related with the mismatches occurred between images.

There have been some works attempting to address this phenomenon by posing supervised distance metric learning [19],

[38], [42], [45]. In [19], the classic visual vocabulary is used

as the basis, and a semantic distance metric is learned to generate more effective high-level visual vocabulary. In a recent

work [38], the authors capture the semantic contexts in each object category by learning a set of effective distance metrics between local features. Then, semantic-preserving visual vocabularies are generated for different object categories. Experiments

on large-scale image database demonstrate the effectiveness of

the proposed algorithm in image annotation. However, the codebooks in [38] are created for individual object categories, thus

they are not universal and general enough, which limits their applications.

It has been illustrated that a single local feature cannot preserve enough spatial information in images, which has been to

be proven important for visual matching and recognition [16],

[17], [21], [27], [31], [39], [42], [45]. To combine BoWs with

more spatial information, spatial pyramid matching is proposed

to capture the hierarchical spatial clues of visual words in

images [16]. Video Google utilizes structure-free spatial clues

in neighboring visual words to remove the mismatched visual

words between images [31].

Recently, many works have been conducted to seek visual

word combinations to capture the spatial information among

visual words [17], [21], [27], [39], [42], [45]. This may be

achieved, for example, by using feature pursuit algorithms such

as AdaBoosting [34], as demonstrated by Liu et al. [17]. Visual

word correlogram and correlation [27], which are leveraged

from the color correlogram [27], are utilized to model the

spatial relationships among visual words for object recognition

in [27]. In a recent work [39], visual words are bundled and

the corresponding image indexing and visual word matching

algorithms are proposed for large-scale near-duplicated image

retrieval. Deﬁned as descriptive visual word combination in

[42], collocation pattern captures the spatial information among

visual words and presents better discriminative ability than

the traditional visual vocabulary in object categorization tasks.

Generally, considering visual words in groups rather than single

visual word could effectively capture the spatial conﬁguration

among them.

Although these approaches have shown impressive performance in many vision tasks, most of them are small-scale

problem-oriented [15], [16], [19], [22], [26], [27], [42], [45] or

do not take the spatial contexts into consideration [10], [15],

[19], [22], [26], [27], [38]. Moreover, most of these generated

visual vocabularies are speciﬁcally designed for one problem

(i.e., for image or classiﬁcation, image annotation), thus these

proposed visual vocabularies are still not comparable with

the text words, which could be used as effective features and

perform impressively in various information retrieval tasks.ZHANG et al.: GENERATING DESCRIPTIVE VISUAL WORDS AND VISUAL PHRASES FOR LARGE-SCALE IMAGE APPLICATIONS 2667

Our proposed algorithm is different from the previous ones in

the following aspects.

1) We identify the DVWs and ﬁlter the noisy visual words,

thus the shortcomings of unsupervised -means clustering

are depressed. Additionally, we extract DVPs to capture

more spatial clues. Therefore, we integrate the two solutions in a joint framework. This is different from the previous works, which commonly only consider one of the

two factors, i.e., optimizing unsupervised clustering, modeling more spatial contexts.

2) The DVWs and DVPs are capable to handle large-scale

image datasets and show promising performance in three

applications, i.e., large-scale image retrieval, objection

recognition, and image search reranking. Therefore, our

approach shows advantages in generalization ability and

scalability than previous algorithms.

III. CANDIDATE GENERATION

The DVWs and DVPs are deﬁned as the representative visual

words and co-occurring visual word pairs that are descriptive to

certain objects or scenes, respectively. According to our framework in Fig. 3, we select DVWs and DVPs from their candidates

in each category. The DVW candidates for a certain category

are deﬁned as the classic visual words appear in this category.

While the DVP candidates for a certain category are deﬁned as

the co-occurring classic visual word pairs within a certain spatial distance. Thus, generating the classic visual vocabulary and

identifying the appeared classic visual words in each training

category are the ﬁrst steps of our framework. Here, we ﬁrst introduce how we generate the classic visual vocabulary, and then

proceed to induce the generation of DVW and DVP candidates.

A. Classic Visual Vocabulary Generation

Similar to existing works [23], [39], we train classic visual vocabulary by clustering a large number of SIFT descriptors [20].

We adopt hierarchical -means to conduct the clustering for

its high efﬁciency. Though some other clustering methods such

as Afﬁnity Propagation [6] or some recent visual vocabulary

generation methods [14], [15], [19], [22], [26], [38], could also

be adopted, they are expensive to compute, in terms of either

time or space complexity. Another advantage of hierarchical

-means is that the generated visual words can be organized

in the vocabulary tree and the leaf nodes are considered as the

classic visual words [23]. Thus, with the hierarchical structure,

searching the nearest visual word for a local feature descriptor

can be performed efﬁciently. More details about the vocabulary tree can be found in [23]. By searching hierarchically in

the vocabulary tree, images in each training category are represented as BoWs representation by replacing their SIFT descriptors with the indexes of the corresponding nearest visual words

[23]. During this process, the scale of each local feature is kept

for the corresponding visual word to achieve scale invariance

when computing the DVP candidates.

B. DVW Candidate Generation

Recall that the DVW candidates for a certain category are

deﬁned as the classic visual words appearing in this category. In

our experiment, for a vocabulary tree with 32357 visual words,

Fig. 4. Sorted number of DVW candidates in the 1506 categories.

Fig. 5. Utilized DVP candidate detector.

the corresponding numbers of appeared visual words, i.e., the

DVW candidates, in 1506 categories are sorted in ascending

order and shown in Fig. 4. Obviously, the DVW candidates in

each category are portions of the total visual vocabulary (i.e.,

the blue line, 32 357 classic visual words). It can be inferred

that only parts of the entire visual vocabulary are descriptive to

the corresponding categories. Thus, selecting DVWs from their

candidates would be more efﬁcient and reasonable than from the

entire visual vocabulary.

C. Descriptive Visual Phrase Candidate Generation

In literature, different algorithms are proposed for capturing

the spatial clues among visual words, e.g., the spatial histogram

proposed in [17]. However, these algorithms are expensive to

compute, additionally, capturing complicated spatial relationships commonly causes the sparseness of the generated visual

word combinations [17] and accumulates the quantization error

introduced in the visual vocabulary. Therefore, we capture the

simple co-occurring clues between two visual words, and the

corresponding DVP candidates for a certain category are deﬁned

as the co-occurring classic visual word pairs in this category.

Suppose visual word and co-occur in an image category

. Then, the DVP candidate containing the two visual words for

this category can be denoted as

where is the overall average frequency of co-occurrence

computed between the visual word and in image category

, e.g., if visual word and frequently co-occur in the category will present a large value. Hence, reﬂects

the strength of their spatial relationship in category .

In order to identify co-occurring visual word pairs, we deﬁne

a spatial distance which is related to the constraint of co-occurrence. As illustrated in Fig. 5, each visual word co-occurring

with the visual word within the distance composes a

DVP candidate with .2668 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 6. Number of DVP candidates in each image category of our training set,

which contains 1506 image categories.

As shown in Fig. 5, the distance is an important parameter

related to the constraint of co-occurrence. Because objects may

have various scales, we compute the in

(1)

to achieve scale invariance, where is the scale of the interest point [20] from which the instance of visual word is

computed, and controls the constraint of co-occurrence. Intuitively, if an image is magniﬁed, the co-occurrence relationships

among the visual words within it remain the same because of the

magniﬁed Scale. From our experiments, larger is necessary

for identifying reliable spatial co-occurrence between two visual words and overcoming the sparseness of the generated DVP

candidates. However, large also increases the computational

cost and the occurrence of noise. In this paper, we experimentally set as 4, which is a good tradeoff between efﬁciency

and performance.

The DVP candidates can be identiﬁed by scanning the neighborhood of each visual word with the detector in Fig. 5. Meanwhile, the co-occurrence frequency can be computed by

counting the time of co-occurrence within the spatial distance

between visual word and in category .

The numbers of generated DVP candidates in each image category are sorted and presented in Fig. 6. We can observe that,

although the generated candidates are only small portions of the

entire possible visual word pairs , their sizes are still

very huge. Therefore, effective and compact DVP set needs to

be selected from the candidates.

IV. DVW AND DVP SELECTION

A. DVW Selection

DVWs are deﬁned as the representative visual words that are

descriptive to certain objects or scenes. It is designed to describe

certain categories, thus several unique features are desired in

them.

1) If one object or scene appears in some images, the DVWs

descriptive to it should appear more frequently in these

images. Also, they should be less frequent in images that

do not contain such object or scene.

2) They should be frequently located on the object or scene,

even though the scene or object is surrounded by cluttered

background.

Inspired by PageRank [2], we design a novel visual-word-level

ranking algorithm: VisualWordRank to combine the two clues

for DVW selection.

According to the ﬁrst criterion, the frequency of occurrence

of DVW candidates in the total image set and in each individual image category would be an important clue for identifying DVWs. Fig. 7(a)–(d) shows the frequencies of occurrence

of visual words with index number: – in four

categories. The frequencies shown are normalized between 0

and 1. It is clear that, the same visual words (e.g., visual words

with index number 14 000–16 000) present different frequencies

in different image categories. Thus, their different signiﬁcances

for each category can be indicated.

Besides the frequency information of single visual word, if

two visual words frequently co-occur within short spatial distance in images containing the same object or scene, strong spatial consistency could be inferred between them in such images. Considering that these images contain the same object

but different backgrounds, the spatially consistent visual words

are more likely to be located on the foreground and the object.

Hence, the spatial co-occurrence frequency between two visual

words, i.e., is adopted in DVW selection to depress the

negative inﬂuences caused by the cluttered background. As a

result, the second criterion can be met.

Therefore, we use two clues: 1) each DVW candidate’s

frequency information and 2) its co-occurrence with other

candidates to identify DVWs. This can be formalized as a

visual word ranking problem which is very similar to the one

of webpage ranking. Thus, we propose the VisualWordRank

algorithm which leverages the idea of well-known PageRank

[2]. In PageRank, a matrix is built to record the inherent importance of different webpages and the relationships among

them. Iterations are then carried out to update the weight of

each webpage based on this matrix. After several iterations,

the weights will stay stable and the ﬁnal signiﬁcance of each

webpage is obtained combining both its inherent importance

and the relationships with other webpages [2].

Based on the same idea, for an image category , we

build a matrix to combine

the frequency and co-occurrence cues for DVW selection.

is the number of DVW candidates for category .

In matrix , we deﬁne the diagonal element as

(2)

where is a DVW candidate and and denote its average

frequency in all categories and the within-category frequency in

category respectively. stands for the inherent-importance of candidate . Thus, would be inherently more significant to category if has larger values. and are

computed beforehand when transforming the images in training

dataset into BoWs representations.

The nondiagonal element is deﬁned as the average

co-occurrence frequency of visual word and as

(3)

where is computed during DVP candidate generation.

After computing , we normalize the diagonal elements

and nondiagonal elements, respectively and assign them with

weights and , respectively. The two input weights

control the inﬂuences of frequency factor and co-occurrence

factor, respectively. From extensive experiments, we concludeZHANG et al.: GENERATING DESCRIPTIVE VISUAL WORDS AND VISUAL PHRASES FOR LARGE-SCALE IMAGE APPLICATIONS 2669

Fig. 7. Visual word frequencies in different categories. Frequency in: (a) “cell phone,” (b) “airplane,” (c) “ant,” and (d) “bike.”

that setting the two weights equal value results in good performance for most of the image categories.

Algorithm 1: VisualWordRank

Input: ; maximum iteration time: maxiter.

Output: The rank value of each DVW candidate to the

category

Initialize each element in the sized rank

vector: as 1; Normalize the sum of each

column of as 1 [2]; Set

While

If break

End

With the matrix , we set the initial rank value of

each DVW candidate equal and then start the rank-updating

iterations. The detailed descriptions of VisualWordRank are

presented in Algorithm 1. Intuitively during the iteration, the

candidates having large inherent-importance and strong co-occurrence with large-weighted candidates will be highly ranked.

After several iterations, the DVWs in object category can be

identiﬁed by selecting the top ranked candidates or choosing

the ones with rank values larger than a threshold.

Fig. 8(a) shows the DVW candidates in image categories: butterﬂy, ceiling fan, ant, and crab. The selected DVWs in the corresponding categories are presented in Fig. 8(b). Obviously, although there are many candidates (i.e., classic visual words) on

the cluttered background, most of the selected DVWs appear on

the object. In order to show the descriptiveness of the selected

Fig. 8. DVW candidates, the selected DVWs, and the matched DVWs (red

lines) and matched visual words (green lines) between the same and different

objects. (a) DVW candidates before VisualWordRank. (b) Selected DVWs in

corresponding categories. (c) Matched DVWs and visual words between same

and different objects.

DVW set, the matched classic visual words and matched DVWs

between same and different objects are compared in Fig. 8(c).

In the ﬁgure, visual words and DVWs are denoted by green dots

and red dots, respectively. The identical visual words and DVWs

across images are connected by green lines and red lines, respectively. In the left three images, matches are conducted between same objects. It can be observed that, though some DVWs

exist on the background, most of the matched ones locate on

the object. In the right three ﬁgures, which show the matched

DVWs and classic visual words between different objects, lots

of classic visual words are wrongly matched. Nonetheless, there

are very few mismatches occurred between DVWs. Thus, it can

be observed that DVWs are more descriptive and more robust

than classic visual words. The detailed evaluations of DVWs

are presented in Section V.

B. Descriptive Visual Phrase Selection

Similar to the DVW selection, the DVP selection is desired

to select the visual word pairs descriptive to certain objects

or scenes. Since the co-occurrence information of visual word2670 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 9. Selected DVPs and the matched DVPs between the same and different

objects. (a) Selected DVPs in: “inline skate,” “revolver,” and “cannon.”

(b) Matched DVPs between the same and different objects.

pair has already been integrated in the generated DVP candidates (i.e., the DVP candidates with high frequency of co-occurrence have high spatial consistency and strong spatial

relationships in category ), we now compute the DVP candidate frequencies within a certain category and the overall categories. According to the TF-IDF weighting in information retrieval theory, a DVP candidate is considered important to a category if it appears more often in it and less often in others. Based

on this strategy, the importance of a DVP candidate to the category is computed as

(4)

where is the importance of the DVP candidate to the

category and and stand for the frequencies of

occurrence of DVP candidate in category and all categories,

respectively. Suppose there are image categories and visual

word and visual word are contained in DVP candidate , then

the and can be computed with

(5)

Consequently, after computing the importance of each DVP

candidate, the DVPs for category could be identiﬁed and selected by ranking the candidates based on .

In Fig. 9(a), the visual words are denoted as green dots and the

dots connected by red lines denote the selected DVPs. Because

there are dense visual words on the background in each image,

it can be inferred that there would be a lot of DVP candidates

generated on the object and background. As we can clearly observe, most of the selected DVPs appear on the object and maintain obvious spatial characteristics of the corresponding object.

Fig. 9(b) shows the matched DVPs across same and different

objects. All of the DVPs in the example images are denoted as

red lines and the matched ones are connected by blue lines. It

can be seen that, many DVPs are correctly matched between the

same objects, while between images containing different objects, none of the DVPs is matched. Therefore, it can be concluded that the selected DVPs are valid and descriptive.

After selecting DVWs and DVPs in each category, the ﬁnal

DVW and DVP set can be created by combining all of the selected candidates across different categories. Since the DVWs

and DVPs are descriptive for certain objects or scenes, the ﬁnal

DVW and DVP sets are desired to be descriptive and general.

Further tests on DVWs and DVPs are carried out in Section V.

C. Discussion About the Computational Complexity

The generation of DVWs and DVPs mainly consists of three

steps: classic visual word generation, candidate extraction, and

DVW, DVP selection. The classic visual word generation is ﬁnished efﬁciently with hierarchical -means clustering [23]. The

DVW candidate extraction is ﬁnished by simply counting the

frequency of the visual words appeared in each category. As for

the DVP candidate generation, because of the limited number

of local features in images (typically 500 for a 480 320 sized

image), and the properly selected distance in (1), this operation is also efﬁcient by linearly scanning the images with the

detector illustrated in Fig. 5 in each category.

The most time consuming operation in our algorithm should

be the DVW and DVP selection. Suppose the number of candidates in a category is , the complexity of the VisualWordRank

would be . Because of the limited number of DVW candidates in each category (the average number is about 25 000 in

Fig. 4), and the fast convergence of the random walk algorithm

[2], the efﬁciency of this process is still acceptable. The extraction of DVWs for 1506 categories can be ﬁnished within one

day on a server with 2.9-GHz CPU, 8-GB memory. The DVP

selection is efﬁcient by computing the (5) and sorting the DVP

candidates by their importance. Thus, the complexity would be

.

V. APPLICATIONS AND EVALUATIONS

A. Image Dataset Collection

1) Image Category Collection for DVW and DVP Generation: The DVW and DVP generation is based on the statistics of their candidates in different image categories. Moreover,

the DVW and DVP sets are desired to be semantically meaningful, descriptive, and general for different objects and scenes.

Thus, we spend a huge amount of time and energy to systematically select our training dataset. The raw image dataset is

collected with the method similar to [4] and [33]. We ﬁrst use

WordNet [5] to get a comprehensive list of objects and scenes

by extracting 117 097 nonabstract nouns. The extracted list is

then used for searching and downloading image categories from

Google Image. The top 250 returned images of each query are

saved. The downloading task is ﬁnished within one month by 13

servers and 65 downloading processes. In the collected raw database, categories with images less than 100 are removed. Then,

from the remaining images, we carefully select 1506 categories

with visually consistent single objects or scenes, by viewing the

thumbnails in each category. Finally, we form a dataset composed of about 376 500 images. The ﬁnal dataset sufﬁciently

covers the common visual objects and scenes. Thus, extracting

DVWs and DVPs based on it would be statistically reasonable.

Based on the collected dataset, a vocabulary tree containing

32357 visual words is generated. We do not generate larger numbers of visual words because of the following three considerations: 1) large visual vocabulary results in huge number of possible visual word pairs and low repeatability of the DVP candidate; 2) single visual word shows limited descriptive ability, noZHANG et al.: GENERATING DESCRIPTIVE VISUAL WORDS AND VISUAL PHRASES FOR LARGE-SCALE IMAGE APPLICATIONS 2671

TABLE I

QUERY WORDS OF THE SELECTED TRAINING CATEGORIES AND CORRESPONDING TEST CATEGORIES FOR OBJECT RECOGNITION

matter how ﬁne-grained it is [17], [23], [27]; and 3) we evenly

select the training images from the representative database to

get a better description of the feature space as much as possible.

Based on the generated visual words, the entire image dataset

(376 500 images) is then used for candidate generation and ﬁnal

DVW and DVP selection.

2) Dataset Collection for Large-Scale Image Retrieval: In

order to test the DVW and DVP in large-scale image retrieval,

we ﬁrst build a one-million basic image dataset by crawling images from the Internet. To ﬁnish this, we build a web-image

crawler which recursively downloads webpages and extracts the

URLs of images on them. Then we download images according

to these URLs. This is a similar process of the one in bundled feature [39]. Then, we manually download 315 images belonging to ten categories, including “Abbey Road,” “American

Gothic,” “Pisa Tower,” as the image set with ground-truth labels. The images in each category are partial duplicates of each

other. Similar to [39], we add these labeled images into the

basic dataset to construct an evaluation dataset for large-scale

near-duplicated image retrieval.

3) Dataset Construction for Image Search Re-Ranking: An

image re-ranking dataset is created by ﬁrst selecting 40 image

categories from the image database collect by Google Image.

Each selected category contains 250 images and presents single

visual concept (i.e., same objects or scenes). Hence, we assume

all of the 250 images are relevant to the concept. Then, 100 randomly selected images are added to each of these categories. Finally, we construct a dataset containing 40 categories and 14 000

images as our evaluation dataset.

4) Training Set and Test Set Collection for Object Recognition: We select 15 commonly used object categories from the

Caltech 101 and Caltech 256 datasets as the test set. For each

test category, the training category containing the same object is

selected from the image database collected from Google Image.

The query words of training categories and the corresponding

test categories are listed in Table I. Note that each training category contains 250 images returned from Google Image, and

each category contains some noisy images.

B. Large-Scale Image Retrieval Based on DVW and DVP

In recent work, BoWs image representation has been proven

promising in large-scale image retrieval [23], [39] by leveraging

the classic information retrieval algorithms such as inverted

ﬁle indexing and TF-IDF weighting. In this part, experiments

are carried out to compare the state-of-the-art algorithms with

the proposed DVWs and DVPs on large-scale near-duplicated

image retrieval tasks. Near-duplicated image retrieval differs

with common image retrieval in that the target images are

usually obtained by editing the original image with changes

Fig. 10. Comparison of MAP among three features.

Fig. 11. Comparisons of memory consumption and efﬁciency. (a) Size of the

index ﬁle when 0.5 million images are indexed. (b) Total time needed by the

three features to retrieve 315 images.

in color, scale, or partial occlusion. In near-duplicated images,

different parts are often cropped from the original image and

pasted in the target image with modiﬁcations. The result is a

partial-duplicated version of the original image with different

appearances.

Our large-scale image dataset is introduced in Section V-A.

Each image in the database is ﬁrst represented as BoWs, with the

classic visual word [23], DVW, and DVP, respectively. Then, the

images are indexed using inverted ﬁle structure. In the retrieval

process, TF-IDF weighting [23] is applied for similarity computation. All of the images with ground truth i.e., the 315 images,

are used as queries. For each query, we compute the MAP, which

takes the average precision across all different recall levels in

the ﬁrst 30 returned images. The DVW and DVP combination,

classic visual word [23], and bundled feature [39] are compared.

Fig. 10 shows their overall MAPs in image datasets with different image numbers.

From Fig. 10, it is clear that the A2 (i.e., bundled feature) and

A3 (i.e., DVW and DVP combination) perform better than the

classic visual word. This is because they capture more spatial

cues by combining several visual words. It is also obvious that

A3 outperforms A2. The reason why we do not test the bundled

feature in larger image databases (i.e., 1 million images) is because the index size of bundled feature is large, and 0.5 million

is the maximum image number that the 4.0-GB memory of our

computer could handle. The sizes of index ﬁles of the three features are compared in Fig. 11(a).2672 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Intuitively from Fig. 11(a), the bundled feature needs larger

memory to load the index for image retrieval. This is because

for each visual word, it needs to store certain numbers of 19-b

“bundled bits [39],” which records the spatial contexts of visual words in each image. The bundled bit number equals to

the number of bundled features where this visual word appears.

Thus, in addition to 32-b image ID and the 16-b visual word frequency, extra space is needed, resulting in the large index ﬁle.

Differently, for DVP and DVW based image index, we only need

to store the image ID and the frequency for each DVP and DVW.

Thus, the DVP and DVW based image index captures spatial

contexts with more compact index size. It should be noted that

the size of inverted ﬁle index is largely decided by two factors:

the total number of images and the average number of classic

visual words/DVWs/DVPs contained in each image. Although

the DVP set size is signiﬁcantly large, the average DVP number

in each image is limited. This is because the DVP set only contains the descriptive and stable visual word pairs and discards

most of the unstable ones in images. Therefore, the index size

based on DVP is limited. As shown in Fig. 11(a), the index size

based on is acceptable, i.e., 1.63 GB for 0.5 million images. We will further discuss the possible solutions to

make the DVP set more compact in Section V-E.

Besides the comparisons of precision and memory consumption, the efﬁciency is compared in Fig. 11(b). From the ﬁgure,

it can be observed that bundled feature is time consuming. This

is because the spatial veriﬁcation between bundled features is

carried out during the retrieval process [39], and large memory

is needed to store the spatial conﬁguration of the retrieved images for the spatial veriﬁcation. Consequently, we can conclude

that, the DVP and DVW show better performance than the bundled feature [39] and classic visual word in large-scale near-duplicated image retrieval. In addition, the DVP and DVW are

proven better than the bundled feature in efﬁciency and memory

consumption.

Fig. 12 shows some examples of DVP and DVW based nearduplicated image retrieval before the return of ﬁrst false positive

images, and the matched DVPs between queries and retrieved

images. Obviously, although the images are edited by afﬁne

transformations, cropping, and cutting, they still can be retrieved

with DVW and DVP. It is also obvious that DVPs between two

near-duplicated images can be correctly matched. The images

which cannot be retrieved by classic visual word are highlighted

by the color boxes. We can infer that the classic visual word is

not effective in retrieving the near-duplicated images with large

cropping and cutting, which introduce more cutter background,

and noisy visual words.

In order to show the difference between DVW and DVP, and

compare their performances, we carry out further experiments

on image retrieval. We choose Corel 5000 as the testset because

it is a widely used benchmark dataset in CBIR community. In

addition, it contains both rigid and nonrigid objects, thus is more

general and fair for image retrieval tasks. In this dataset, 50

image categories are included and each contains 100 images.

All of the 5000 images are indexed and used for retrieval.

To make the performance comparisons between classic visual

words and DVWs, DVPs more visible, we use PrecisionRatio

computed with

(6)

Fig. 12. Results of near-duplicated image retrieval and matched DVPs.

as a measurement, where and are the

retrieval precision based on two different image features and

(i.e., DVW, DVP, or classic visual word) in the ﬁrst returned

images, respectively. Thus, if , these two

image features show the same performance.

As shown in Fig. 12, although the dartboards are different

in scales and surrounding backgrounds, they still share stable

spatial contexts, and thus their DVPs can be correctly matched.

Therefore, we can conclude that the DVP captures more spatial information and is descriptive to the images containing rigid

objects or stable spatial contexts. To further illustrate this conclusion, we ﬁrst carry out some experiments showing the cases

where the DVPs work or may fail. The DVPs are used

as feature , and the 32 357 classic visual words are used as feature . The for several image categories are

computed with (6) and are shown in Fig. 13. Obviously, DVPs

work well for the image categories in Fig. 13(a), which contain stable spatial contexts. As for the nonrigid scene images in

Fig. 13(b), because they lack stable spatial contexts, the DVPs

cannot describe them effectively. As a result, the classic visual

word outperforms the DVP.

Fig. 14 demonstrates the performance comparisons between

classic visual words and DVWs in the entire dataset. The

classic visual word [23] is used as feature . Different numbers

of DVWs are collected from the training image categories. The

ratio curves in the ﬁgure are computed based on the overall

average precisions of the 5000 queries. From Fig. 14, it can

be seen that DVW set with the size 13 057 shows obviousZHANG et al.: GENERATING DESCRIPTIVE VISUAL WORDS AND VISUAL PHRASES FOR LARGE-SCALE IMAGE APPLICATIONS 2673

Fig. 13. Cases where DVP (a) outperforms the classic visual word and (b)

fails.

Fig. 14. Performance comparison between DVW and classic visual word.

improvements over the classic visual words. This result proves

that DVW set has stronger descriptive ability with more compact size. It is also interesting in Fig. 14 that DVW sets with

the sizes 3484 and 7562 show worse performance in the ﬁrst

25 returned images, but outperform classic visual words when

more images are returned. This can be explained by the fact

that, for the relevant images presenting weak visual similarities

to the query image (e.g., the relevant images ranked after 25

in the returned image list), their similarities with the query

image are more likely to be disturbed by the negative effects

of cluttered background. Because the DVW set with small

size keeps the most descriptive visual words and has removed

most of the noisy ones, the background noise is depressed.

Consequently, DVWs perform better than the classic visual

words in the case where more noises exist. Since DVWs are

selected from classic visual words, DVW sets with larger sizes

will contain more noises and will function more similar to the

classic visual words. This could explain why if more DVWs are

selected (e.g., DVW set with the size 26 280), the performance

will start to decrease. Therefore, we could conclude that DVW

is more compact and descriptive than the classic visual word.

To evaluate the performance of the DVPs, we adopt the classic

visual words as the baseline. The DVP numbers and the corresponding experimental results are presented in Fig. 15. From the

ﬁgure, it can be observed that the DVP set with larger number

shows better performance. This indicates valid DVPs are selected by our algorithm from the huge possible visual word pair

space. Since DVP candidates contain both spatial and appearance cues, they are assumed to be more informative than the

classic visual words. This might be the reason why the performance of DVPs remains increasing even with large size. It can

also be observed that image retrieval based on DVPs cannot

guarantee that the ﬁrst returned image is the query one. This

is because some nonrigid query images in categories such as

“Beach” and “Wave” do not present consistent spatial contexts

Fig. 15. Performance comparison between DVP and classic visual word.

Fig. 16. Comparison among classic visual word, DVW, and DVP.

and contain very few or even zero DVPs. Thus, DVPs do not

work well for these cases. As we discussed before, the DVPs

are more effective in recognizing the near-duplicated images of

the query one. This could be the reason why DVPs show obvious advantages in the ﬁrst several returned images but perform worse when the returned images exceed certain numbers.

From Figs. 14 and 15, it can be observed that DVPs and DVWs

can be complemented to each other. Thus, the performance of

is further evaluated in Fig. 16.

Obviously in Fig. 16, medium number of DVWs plus a large

number of DVPs show the best performance. The combination

containing 13 057 DVWs and DVPs shows the best performance and outperforms the classic visual words by 19.5% in

term of MAP computed in the top 100 returned images. Accordingly,we can concludethatDVWs andDVPsaremore descriptive

for image retrieval than the widely used classic visual words.

C. Image Re-Ranking

Image search re-ranking is a research topic catching more and

more attentions in recent years [9], [10], [18], [32]. The goal is

to resort the images returned by text-based search engines according to their visual appearances to make the top-ranked images more relevant to the query. Generally, image re-ranking

can be considered as identifying the common visual concept

(i.e., scene, object, etc.), in the returned images and re-ranking

the images based on how well each one ﬁts the identiﬁed concept. DVWs and DVPs are effective in describing the objects

and scenes where they are selected. Therefore, they can be utilized to measure the relevance between images and the concept.

Based on this idea we proposed the DWPRank, which is detailed

in Algorithm 2. We ﬁrst carry out DWPRank on our database

where each category contains the top 250 images returned from

Google Image. Fig. 17 presents an example.

Extensive tests of DWPRank are carried out by comparing

it with VisualRank on the image re-ranking testset introduce in2674 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

Fig. 17. Re-ranked images with query “all-terrain bike”.

Section V-A. AP (Average Precision) computed in (7) is adopted

to measure the effectiveness of the two algorithms.

(7)

where, is the number of relevant images in the top

re-ranked images. Thus, if , it can be inferred that all

of the 250 relevant images are in the top re-ranked image list,

which is the most ideal case in image re-ranking.

Algorithm 2: DWPRank

Input: Images returned from the image search engine:

weight of DVW and DVP:

.

Output: Re-ranked image list:

Suppose: describes the relevance

between image and the query concept.

In , generate the DVW and DVP

candidates.

In , select DVWs and DVPs.

For do

For each DVW or DVP candidate in image do

if ( is a DVW)

if ( is a DVP)

End

End

For do

Find which has the -th largest value.

End

Fig. 18. The comparisons of MAP and efﬁciency (a) The MAP obtained by

VisualRank and DWPRank, (b) Average time needed by VisualRank and DWPRank.

In our experiment, we run the standard VisualRank algorithm

and DWPRank on the collected image database. 150 DVWs and

6000 DVPs are selected from each category. Three groups of

DWPRank based on DVW, DVP and are carried

out by setting in Algorithm 2 as (1, 0), (0, 1) and

(1, 1) respectively. Fig. 18 presents the results.

Obviously, from Fig. 18, DWPRank outperforms VisualRank. This is mainly because of two aspects: 1) more

information and constrains (i.e., spatial and frequency clues)

are considered in DVW and DVP, thus DVWs and DVPs are

more effective in identifying and describing the visual concepts

in returned images and 2) VisualRank computes the image-pair

similarities based on all of the SIFT descriptors in each image,

thus the cluttered background might disturb its performance.

Differently, such inﬂuences are depressed in DWPRank through

DVW and DVP selection. From Fig. 18, it can be also seen

that compared with DVWs, DVPs are more effective in image

re-ranking. Again, this can be explained by the fact that DVPs

are more descriptive with more spatial information. We conclude that improvements of 7.4%, 12.4%, and 10.1% over the

VisualRank are achieved by DWPRank with DVW, DVP and

DVW+DVP, respectively.ZHANG et al.: GENERATING DESCRIPTIVE VISUAL WORDS AND VISUAL PHRASES FOR LARGE-SCALE IMAGE APPLICATIONS 2675

Fig. 19. Comparisons of object recognition among DVWs, DVPs and classic visual words (baseline).

Besides the improvements on accuracy, it is necessary to point

out that, DWPRank is more efﬁcient than VisualRank. The average time needed by VisualRank and DWPRank for re-ranking

350 images is compared in Fig. 18(b). Obviously, about 11

improvement is achieved by DWPRank. The low efﬁciency of

VisualRank is mainly rooted in the expensive image similarity

computation based on SIFT and LSH [8]. VisualRank ﬁrst maps

each SIFT feature into , i.e., 40, hash tables, each table with

, i.e., three hash functions. Then, to check if two features are

matched across two images, VisualRank checks if they share

three identical hash tables. This step is time consuming. For instance, if two images have and features. Then the total

checking operation is . However, in DWPRank,

DVP candidate generation and DVW selection, which are the

most time-consuming operations, can be ﬁnished efﬁciently.

D. Object Recognition

Since DVWs and DVPs are designed to effectively describe

certain objects or scenes. It is straightforward that the DVWs

and DVPs of each image category should be discriminative for

the corresponding object. Consequently, we utilize the object

recognition task to test their discriminative ability. Moreover,

this experiment is also carried out to test the validity of our algorithm in improving the discriminative power of original visual

words, form which DVWs and DVPs are generated.

In the experiment, we ﬁrst identify and collect 150 DVWs

and 6000 DVPs from each training category. Then, for each object, we establish three discriminative feature pools containing

DVWs, DVPs and both of them, respectively. In the testing

phase, a naïve vote-based classiﬁer is utilized, e.g., if most of the

DVW candidates of an image appear in the DVW feature pool

of “Accordion,” then this image will be recognized as “Accordion.” Similarly, another two recognition results based on DVP

and can also be obtained. In the baseline algorithm, each test image is recognized by computing its ten nearest

neighbors in the training dataset. Classic visual word histogram

is computed in each image, and histogram intersection is used as

the distance metric. Note that, since simple nonparametric classiﬁers are used, the discriminative abilities of these features can

be clearly illustrated. Fig. 19 presents the experimental results.

Obviously from Fig. 19, the DVWs and DVPs outperform the

baseline algorithm by a large margin for most of the categories,

and the DVPs are more discriminative than the DVWs. The

DVWs perform better than the classic visual words, from which

they are selected. This shows the validity of our VisualWordRank. From the ﬁgure, it can be concluded that the combination of DVW and DVP shows the best performance and achieves

improvement over the baseline by 80% in average. Especially

for the category: Panda, Scissors, Windsor-Chair and Wrench,

recognition accuracies over 90% are achieved. The good performance comes from two aspects: 1) our training set is representative of these objects, thus meaningful DVWs and DVPs can be

obtained and 2) these objects present relatively constant appearances and spatial conﬁgurations, thus they can be effectively

described by the DVPs. The bad performances for the two categories: Grand-piano and Headphone, show the weakness of our

selected training dataset for these two objects. This is because

the 250 training images are hard to cover all of the possible appearances of some objects (e.g., Grand-piano and Headphone).

This issue will be discussed in detail in the next part. From this

experiment, the discriminative ability of the selected DVWs and

DVPs can be clearly illustrated. It also can be concluded that our

algorithm is effective in improving the discriminative power of

the original visual words, from which the DVW and DVPs are

selected.

E. Discussions About Limitations and Solutions

In addition to the advantages, here we shall discuss the limitations of our schemes, as well as provide feasible directions for

solutions in our future work.

The ﬁrst limitation is the incompactness of the DVPs. From

our experiments, millions of DVPs are needed. This limitation

is mainly due to the quantization error introduced during the visual word generation. With the quantization error, local features

should be matched in the feature space may fail to match, and

this error can be accumulated in the visual word combination,

i.e., DVPs with similar semantics may fail to match each other,

and huge amount of DVPs are needed to capture certain semantics. To overcome this defect, two strategies might be effective:

1) pattern summarization can be utilized to summarize DVPs

sharing similar semantics together to generate high-level visual

phrase vocabulary and 2) spatial-appearance preserving visual

vocabulary can be generated by treating local features combinations, rather than visual word combinations. Meaningful local

feature pairs can be detected and quantized into visual vocabulary. Because rich spatial and appearance cues are included2676 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 20, NO. 9, SEPTEMBER 2011

in these pairs, the corresponding generated visual vocabulary

could be more informative. In addition, the parameter in

DVP candidate generation, i.e., (1), plays an important role in

capturing meaningful visual word pairs. The correlations of a

salient point to the other points may depend on both its scale and

the speciﬁc properties of the object in the category. For example,

the larger objects may need larger values to capture their spatial conﬁgurations than the ones for smaller objects. Therefore,

a single may not work well for all categories and some category-wise optimization may be beneﬁcial.

The second limitation is that DVWs and DVPs are generated

based on the classic visual vocabulary, which is generated in unsupervised way. This is not ideal since the lassic visual vocabulary largely ignores the semantic contexts exist between local

features i.e., local features with similar semantics may be far

from each other in the feature space, while the ones with different semantics may be near to each other. This defect limits the

performance of classic visual vocabulary and the corresponding

DVWs and DVPs. Thus, more semantic contexts should be introduced in the visual vocabulary generation process to make

the generated DVWs and DVPs semantically more meaningful.

The third issue should be discussed is the inﬂuence of the

training set. Since the proposed framework is data-driven, the

completeness and diversity of training data would inﬂuence

the descriptive power and generalization ability of the corresponding DVWs and DVPs. For instance, if all of the images in

a category are near-duplicated images (i.e., low diversity), then

the extracted DVWs and DVPs would be focused on a certain

appearance of the object, which would largely decrease their

descriptive ability for this object. In addition, if the number of

images in a category is not enough to show the common visual

patterns (i.e., low completeness), valid DVPs and DVWs will

cannot be identiﬁed. This is why we spend a great deal of time

carefully selecting our training set. In order to utilize the publically available large-scale image dataset such as ImageNet [4]

and LabelMe [28], it would be necessary to study the strategy

to automatically evaluate the quality of each image category,

i.e., the completeness and the diversity, and then decide the

number of DVWs and DVPs should be selected.

VI. CONCLUSION

In this paper, we propose the DVW and DVP, which are designed to be the visual correspondences to text words. A novel

framework is proposed to generate DVWs and DVPs for various applications utilizing a representative training set collected

from web images. Comprehensive tests on large-scale near-duplicated image retrieval, image search re-ranking, and object

recognition show that our selected DVWs and DVPs are more

informative and descriptive than the classic visual words.

Future work will be carried out focusing on the following

three aspects: 1) multimillion-scale training database will be

utilized; 2) more effective visual vocabularies (e.g., the ones in

[14], [15], [22], and [26]) will be tested for DVW and DVP generation; and 3) the incompactness of the DVPs will be further

studied.
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