A HIGHLY EFFICIENT PIPELINE ARCHITECTURE OF RDO-BASED MODE DECISION

DESIGN FOR AVS HD VIDEO ENCODER

Chuang Zhu

1

, Yuan Li

1

, Hui-zhu Jia

1

, Xiao-dong Xie

1

, Hai-bing Yin

2

1

National Engineering Laboratory for Video Technology, Peking university, Bei Jing, China

2

School of Electrical Engineering, China Ji Liang University, Hang Zhou, China

12

{czhu, yuanli, hzjia, xdxie, hbyin}@jdl.ac.cn

ABSTRACT

Like H.264, AVS video coding standard also uses

macroblock (MB) based motion compensation (MC) and

mode decision (MD). Rate distortion optimization (RDO) is

the best known mode decision method, but with a high

computational complexity that limits its applications. In our

paper, firstly an MD algorithm based on RDO is given,

which makes more mode candidates enter into RDO mode

decision with little hardware resource increment. We further

analyze the pipeline structure in detail, and implement a

block-level 5-stage hardware pipeline. It can support the real

time RDO mode decision processing of 1080P@30fps, and

the coding efficiency is about 0.5db higher than the

traditional SAD method. Our design is described in highlevel Verilog/VHDL hardware description language and

implemented under SMIC 0.18-μm CMOS technology with

215K logic gates and 80 KB SRAMs.

Index Terms— mode decision, RDO, AVS, pipeline

1. INTRODUCTION

AVS video coding standard, which is established by China

Audio Video Coding Standard (AVS) Working Group, has

been accepted as an option by ITU-TFGIPTV for IPTV

applications. The AVS part 2 (AVS-P2) is high resolution

friendly profile, which is also known as the Jizhun Profile of

AVS.

Compared with the other coding standards, such as MPEG4,

H.264/AVC main profile and above can achieve higher

coding efficiency by adopting several kinds of complex

techniques. But the corresponding substantial increase of

computation becomes unbearable. The key reason of the

unbearable computational burden is that H.264 coding

standard provides an abundant set of intra-inter modes to

choose from. While AVS-P2 offers less modes when

compared with H.264. Further more, for high-resolution

 This work was supported by 2009CB320903 and NSFC

60802025

applications, AVS-P2 Jizhun Profile shows comparable

performance with H.264/AVC for most progressive

sequences [1]. So, RDO based mode selection becomes

possible for AVS-P2 systems with the reduced number of

modes to be considered.

Generally, there are two different categories of the

algorithms to reduce the complexity of RDO method. Some

algorithms are proposed in the first category, like those in

[2-4], to simplify the calculating process of distortion (D)

and rate (R). These algorithms try to do a rough estimate on

D and R instead of using the real distortion between the

original picture and the reconstructed picture, and simplify

the entropy coding process. Although these proposed

algorithms can reduce the computational complexity

dramatically, they are not hardware friendly to some extent,

such as [2]. Some techniques, in the second category, are

proposed to address the problem from another angle.

Because there are so many modes to choose from, and this is

the direct cause of computational complexity, these methods

target at reducing the candidate modes [5-6]. But the less

candidate modes result in significant degradation in

encoding performance.

The rest of this paper is organized as follows. In section

2, we first give our proposed RDO-based MD method, and

then analyze the complexity of the proposed method. To

solve the computational complexity problem, in section 3,

we analyze the pipeline throughput of our mode decision in

detail and then give our proposed 5-stage pipeline structure.

At last, the experimental results and the conclusion of our

paper will be presented.

2. OUR PROPOSED MD ALGORITHM

2.1. Proposed MD method

Different from the previous two category mode decision

methods, the basic starting point of our mode decision is

using the RDO method as much as possible to get high

encoding performance.

In AVS-P2, for every intra-luma block, there are 5

different modes; and for every intra-chroma block, 4

different modes in total. The inter modes for P-frame will be

978-1-61284-350-6/11/$26.00 ©2011 IEEE{Pskip, P16x16, P16x8, P8x16, P8x8, Intra8x8}, while

{Bdirect, B16x16, B16x8, B8x16, B8x8, Intra8x8} for Bframe.

For every I-frame intra luma block, we choose the best

modes according to RDcost from all 5 modes (vertical,

horizontal, DC, diagonal down right and diagonal down left

mode); for every intra chroma blocks of I frame we choose

the best modes from all four modes (vertical, horizontal,

DC, and plane mode), also based on RDcost. So, for I frame,

we choose the best modes using Full-RDO method, not

doing any simplification just for the purpose of obtaining

high coding efficiency.

Different from [6], for P-frame and B-frame we do not

reduce any candidate modes to further enhance the coding

efficiency. We choose the best MB modes from all modes

(Pskip, P16x16, P16x8, P8x16, P8x8, Intra8x8) coming

from fractional motion estimation (FME) for P-frame based

on RDcost; and for B-frame we choose the best MB modes

from Bdirect, B16x16, B16x8, B8x16, Bs8x8 and Intra8x8.

For MB-level intra mode of P or B frame we do not use

RDO method choose the best block-level modes of all

blocks (six blocks in total) in one MB because of the

intolerable computational complexity. Instead, we just use

sum of absolute difference (SAD) method to choose the best

block-level modes of MB-level Intra8x8 mode in P or B

frame.

2.2. Complexity analysis of our proposed MD method

Considering the Function (1) bellow,

 RD t D R cos = + λ (0)

D, which is described as sum of squared differences

(SSD) for AVS RDO based mode decision, stands for the

distortion between the original picture and the reconstructed

picture. λ is a weight parameter. R is the real coding bits for

every Block. To get RDcost, we need to obtain the

reconstructed pixels and the coding bits, R.

Notice that the Pskip mode of P-frame, we can get the

RDcost directly, because on one hand, the reconstructed

pixels are identical to the predicted pixels transmitted from

FME, and on the other hand, the R equals 0. Besides, based

on the analysis before, the computational complexity of our

proposed MD method, as shown in Table 1, can be obtained.

Table 1. Computational complexity for I P B frame

PICTURE-TYPE RDcosts for one MB(6 blocks)

I 4 x 5 + 2 x 4 = 28 (RDcosts)

P 5x6 = 30 (RDcosts)

B 6x6 = 36 (RDcosts)

Actually, in order to get SSD, we need to perform

discrete cosine transform (DCT), quantization (Q), inverse

quantization (IQ), inverse discrete cosine transform (IDCT),

and reconstruction (REC) functions for every block. As the

same, we need to perform DCT, Q, IQ, zigzag scan

(ZIGZAG), context-based 2D-VLC (C2DVLC) entropy

coding for every block to generate R. If all these processing

units are connected in the serial order, the whole processing

time will be unendurable. In the next section, we will

analyze the structure of our MD method based on the

pipelining theory and give our proposed efficient pipeline

structure.

3. PIPELINE STRUCTURE ANALYSIS

3.1. Throughput analysis of ideal pipeline

Fig. 1. Generally k-stage pipeline space time-diagram

Take a k-stage pipeline, space time-diagram Fig.1, for

example. Assuming the condition is ideal, the k stages are

perfectly balanced. The processing time of every stage is the

same and assuming the value is “t”. If there are N tasks in

total to process in the pipeline, we can get the throughput,

which is defined as the number of completed tasks per unit

time, of the k-stage pipeline. And the throughput can be

described as a function in the following.

k

() 1

total

N N

k N t

throughput

T

= =

+ − ×

 (2)

Also, assuming the ideal condition, if the whole

processing time of one task through the k-stage processing

units is

c0

, then we know that

0

t

k

c

= (3)

 So, throughput can be described as in the Function (4),

()

0

1 1

1

k

total

N

N N

k N t N

k

throughput

T

c

=

= =

+ − × ⎛ ⎞ −

⎜ ⎟ +

⎝ ⎠

 (4)

We can see from Function (4) that, if the pipeline

design is ideal, the more pipeline stages, the more

throughput. 3.2. Restrictions of RDO-based MD pipeline structure

Of course, we can’t achieve the ideal pipeline condition in a

RDO-based MD. For our mode decision, there are 3

restrictions that must be considered:

• Data dependency

• Bottleneck of the pipeline

• The increase of hardware usage with the increase of

number of stages

The first limitation, is that the pipeline will be

interrupted once every five modes, as shown in Fig.3, for

luma blocks, due to data dependency, as shown in Fig.2.

Because b01 needs the reconstructed pixels of b00, the

reconstructed pixels at the rightmost column, as shown in

Fix.2, to perform the intra prediction (IP) of b01. The same

situation also happens to b10, which needs the bottom line

of reconstructed b01, and b11, that needs the rightmost

column of reconstructed b10.

Another limitation comes from the bottleneck of the

pipeline. We can’t reduce the processing time of every stage

without a limit and we can’t balance all the stages perfectly

due to the inherent processing dependency and the

unbearable control complexity with the increase of number

of stages. So, generally, different stage has different time

consumption in the pipeline. What’s more, because the basic

data processing unit is one 8x8 block, the memory usage

will increase significantly due to buffer the output of the

additional stage along with the increase of number of stages.

In fact, we need additional 2x8x8 bytes of memory for every

one increased stage at least.

 Fig. 2. Data dependency

3.3. Throughput analysis of RDO-based MD pipeline

and our proposed RDO-based MD pipeline structure

In Haibing Yin’s work [6], it assumes each stage of the

block level mode decision pipeline has the same time

consumption T, and the whole mode decision pipeline is

divided into 6 stages. In fact, different stage has different

time consumption due to the restrictions mentioned above.

Here, the more detailed analysis will be presented and then

our more efficient pipeline strategy will be given.

Different from [6][7], which adopt 4-way Q and IQ, we used

8-way Q and IQ. In order to address the bottleneck of the

pipeline, we also use the 4-way zigzag scan [7], and the

zigzag scan with the process of determining the C2DVLC

table number will cost 22 cycles. The processing time of

C2DVLC is not unique since it is related to the number of

run-level pairs. Through a large scale statistical analysis, we

observed that the processing time consumption is about 24

cycles in our 4-way C2DVLC in average. Due to this, we

can get the time consumption of all the processing units, in

Table 2, all include 8 cycles of data access time due to

caching one 8x8 block pixels.

Table 2. Time consumption of every processing unit

Processing Unit Time

Consumption(cycles)

DCT-H 18

DCT-V 18

Q(8-way) 16

IQ(8-way) ZIGZAG-

SCAN(4-way)

14 22

IDCTH C2DVLC(4-way) 18 24

IDCTV - 18 -

REC && RDCOST && MD 17

Based on Function (2) and the data dependency

described before, also noticing that there are no data

dependency for chroma blocks, we divide N into 2 parts,

one part is for luma blocks which suffer from the data

dependency, the other part is for the chroma blocks which

don’t. So, N = 4x5(modes) + 2x4(modes) = 28. For the luma

part, based on Fig.3, the time consumption can be described

as Function (5).

Fig. 3. Pipeline structure of luma blocks

() { }

{ }

1 2 1

1

1 2 1

1

4 5 1 max , ,..., ,

4 4 max , ,..., ,

k

luma i k k

i

k

i k k

i

T t t t t t

t t t t t

−

=

−

=

⎧ ⎫

= × + − × ⎨ ⎬

⎩ ⎭

⎧ ⎫

= × + × ⎨ ⎬

⎩ ⎭

∑

∑

 (5)

We notice that there are many “holes” in the pipeline,

so for the chroma part, we can make use of these “holes”.

Then, the total processing time can be drawn as Function (6)

(To simplify the analysis process, we assume a constant

T luma

 because the pipeline filling of chroma samples will

just slightly affect

T luma

).

{ }

{ } () { }

() { }

()

1 2 1

1

1 2 1 1 2 1

1 2 1

1 ()

4 4 max , ,..., ,

8 max , ,..., , 3 1 max , ,..., ,

4 27 3 max , ,..., ,

vacancy chroma

if

luma

k

luma chroma holes i k k

i

total

k k k k

k

i k k

i other

T T

k

k

T

T T T t t t t t

T

t t t t t t t t

t t t t t

≥

−

=

− −

−

=

⎧ ⎫

⎪ ⎪

⎧ ⎫

+ − = × + × + ⎨ ⎬

⎩ ⎭

= ⎨ ⎬

× − × − ×

= × + − ×

⎩

∑

∑

⎭

 (6)

Besides, T T h o l e s c h r o m a

≥

 is equivalent to

3 1 8 () k − ≥
, so

Function (6) can be re-written as Function (7). { }

() { }

()

() 4,5,6......

1 2 1

1

1 2 1

1 1,2,3

4 4 max , ,..., ,

4 27 3 max , ,..., ,

k

k

i k k

i

total

k

i k k

i k

k

t t t t t

T

t t t t t

=

−

=

−

= =

⎪ ⎪ × + × ⎨ ⎬

⎩ ⎭

= ⎨ ⎬

⎪ ⎪

× + − ×

⎩ ⎭

∑

∑

 (7)

According to Function (2), Function (7) and the basic

processing units in Table.2, we can get the throughputs of

different pipeline structure with different number of stages

through combining or splitting the basic processing units.

Table 3. Throughput of different stages

K

1

k

∑ i = t i

max , ,..., , {t t t t 1 2 1 k k −

} T total k

throughput

1 91 91 2548 0.0110

2 91 51 1435 0.0195

3 107 37 1094 0.0256

4 105 34 946 0.0296

5 105 24 804 0.0348

6 115 24 844 0.0332

7 133 24 916 0.0306

Fig. 4. MD Pipeline Throughput

From Table.3 and Fig.4, one can clear see that, 5-stage

MD pipeline structure will obtain the highest throughput

when considering the restrictions discussed before. Another

observation we can get from Table.3 is that 1

k

t

i

i

∑

=

 is

increasing with the increase of number of stages. It is

because of the additional data memory access time when

splitting a big processing unit into 2 smaller processing units

without inherent data dependency. For example, if we split

(DCTV+Q) into DCTV and Q, we need additional 8 data

preparation cycles of data access time which is redundant in

fact and that leads to the increase of 1

k

t

i

i

∑

=

, as shown in Fig.5.

But this will not happen in the case when there are some

inherent data dependency, such as splitting DCT into DCTH

and DCTV, as shown in Fig.6, will not make 1

k

t

i

i

∑

=

 increase

significantly. DCTV can’t be started unless all the output of

DCTH are generated and the output pixels of DCTH are

transformed from the rows into columns (H-V transform).

So, in this situation the 8 cycles data access time, with

which to complete the H-V transform, is not redundant due

to the inherent dependency between DCTH and DCTV.

Further more, when k is more than 5, due to the bottleneck

of processing one 8x8 block, C2DVLC, the throughput

begin to decrease, as shown in Fig.4. So, we choose 5-stage

pipeline structure for mode decision, and the whole structure

of mode decision is given by Fig.7. The corresponding

space time-diagram of I, P, B frame are shown in Fig.8,

Fig.9, Fig.10 respectively.

Fig. 5. DCTV-Q Splitting/Combining

Fig. 6. DCT Splitting/Combining

 Fig. 7. MD pipeline structure

As Fig.7 shows, the RDO core (middle section) is

divided into 5 stages, the first stage is DCTH and the second

stage is DCTV-Q. After quantization, the pipeline is divided

into 2 branches. IQ-IDCTH and ZIGZAG are both belong to

the third stage, while IDCTH and C2DVLC are at the same

stage, the fourth stage. At the last stage, the 2 branches of

the pipeline again merging into one part, for one part we can

calculate SSD with the data from IDCTV and the ORGPRED data from the outside buffer; for the other part we can

get the real coding bits R which have already been generated

in the C2DVLC processing unit. Then the RDcost, from

which to choose the best mode, can be generated based on

the SSD and R. All the buffers between 2 stages are pingpong buffered inside the pipeline structure. Fig. 8. Pipeline space time-diagram for I-frame

Fig. 9. Pipeline space time-diagram for P-frame

Fig. 10. Pipeline space time-diagram for B-frame

4. EXPERIMENTAL RESULTS

4.1. Encoding performance comparison

To implement our architecture using hardware, we first

verified the encoding performance of our encoder. We

compare the coding performance between our proposed

mode decision algorithm and traditional SAD method based

on AVS reference code RM52J. The test results are shown

in Fig.11 (a ~d), all the sequences tested are high definition

sequences. From the figure we can see that the encoding

performance of our proposed method is far higher, about

0.5db rise in PSNR, than the traditional SAD method. We

also compared our proposed method with the MD method

by reducing the candidate modes, pre-select method like [6],

also in Fig.11. From the figure we can clearly see that our

proposed RDO-based method outperform the pre-select

method, and the increase of PSNR is 0.15~0.2(db) in

average.

(a) Result 1 (b) Result 2

(c) Result 3

(d) Result 4

Fig. 11. Encoding performance of different MD methods

 4.2. Implementation

The actually implementation result shows that we can

accomplish one MB-level mode decision in 864 cycles, 831

cycles, and 975 cycles for I, P, B frame respectively. We

implemented our design based on SMIC 0.18-μm CMOS

technology, the on-chip memory is 77824 bits and the gate

count is 215088 as shown in Table 4. And the final

frequency is 234HZ, with which the system can support real

time 1080p@30fps .

Table 4. Gate count

Functional module Gate count

DCTH 8928

DCTV-Q 25560

ZIGZAG 16356

IQ-IDCTH 22188

C2DVLC 35940

IDCTV 12660

RDCOST-MD 11304

OTHERS 82152

TOTAL 215088

Finally, our MD module is integrated to the encoder

system, as shown in Fig.12, which is composed of 2 parts:

Frame-level pipelining and MB-level pipelining. As the

figure shows, firmware takes on the central control of the

Frame-level pipelining. The first stage of the Frame-level

pipelining is capturing the original uncompressed data. The

second stage of the Frame-level pipelining is the encoding

core.

Fig. 12. MB-level pipeline structure

MB_CTRL is for the control of the hardware part,

which configures all the MB-level pipelining modules. We

adopt 4-stage MB-level pipelining structure, and they are

integer motion estimation (IME), FME, MD, bit stream

generating unit (BG) and de-blocking effect unit (DBK).

Besides, we used Multi-stage Motion Vector Prediction

(MVP) Schedule Strategy for AVS HD Encoder, to solve the

data dependency problem [8]. Our MD module, which

belongs to the fourth stage of the MB-level pipelining, get

the original and predicted pixels from FME and IP, and then

choose the best mode based on RDcost. After that, MD

transmits the codenums, the values of encoding coefficients

generated by C2DVLC, and reconstructed pixels of the best

mode to BG, which generate bit stream, and DBK, filtering

the reconstructed pixels to filter out the block effect,

respectively.

5. CONCLUSION

In video system, RDO technique plays an important role in

choosing the optimal prediction mode. However, its

implementation complexity increases drastically due to the

calculation of RDcosts. In this work, we adopted a RDObased method, which can make more candidate modes to

choose based on RDO. The performance of our MD method

outperform both the pre-select method and the traditional

SAD method. At the same time, we proposed an efficient 5-

stage pipeline structure, with which to address the high

computational complexity problem, based on the detailed

analysis about the pipeline throughput. In the future, we will

further our study in MD algorithms without data

dependency and try to solve the bottleneck, C2DVLC, of the

pipeline.

6. REFERENCES

[1].Wen Gao, et al. AVS Vide Coding Standard. Studies in

Computational Intelligence, 2010, Volume 280, Intelligent

Multimedia Communication: Techniques and Applications,

Pages 125-166.

[2].Xin, Z., et al., Novel Statistical Modeling, Analysis and

Implementation of Rate-Distortion Estimation for

H.264/AVC Coders. Circuits and Systems for Video

Technology, IEEE Transactions on, 2010. 20(5): p. 647-660.

[3].Qiang, W., et al. Low complexity RDO mode decision

based on a fast coding-bits estimation model for

H.264/AVC. in Circuits and Systems, 2005. ISCAS 2005.

IEEE International Symposium on. 2005.

[4].Sarwer, M.G. et al. Fast Bit Rate Estimation for Mode

Decision of H.264/AVC. Circuits and Systems for Video

Technology, IEEE Transactions on, 2007: p. 1402-1407.

[5].Tianruo, Z., et al. High throughput VLSI architecture of

a fast mode decision algorithm for H.264/AVC intra

prediction. in Communications, Circuits and Systems, 2008.

ICCCAS 2008. International Conference on. 2008.

[6].Hai, B.Y., et al. Hardware Friendly Mode Decision

Algorithm for High Definition AVS Video Encoder. in

Image and Signal Processing, 2009. CISP '09. 2nd

International Congress on. 2009.

[7].Xiao, H.W., et al. Fast Mode Decision Based on RDO

for AVS High Definition Video Encoder .Lecture Notes in

Computer Science, 2011 Advances in Multimedia

Information Processing-PCM 2010, Pages 62-72.

[8].Wei, Y., et al. Multi-stage motion vector prediction

schedule strategy for AVS HD encoder. in Consumer

Electronics (ICCE), 2010 Digest of Technical Papers

International Conference on. 2010.
