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ABSTRACT 

Like H.264, AVS video coding standard also uses 

macroblock (MB) based motion compensation (MC) and 

mode decision (MD). Rate distortion optimization (RDO) is 

the best known mode decision method, but with a high 

computational complexity that limits its applications. In our 

paper, firstly an MD algorithm based on RDO is given, 

which makes more mode candidates enter into RDO mode 

decision with little hardware resource increment. We further 

analyze the pipeline structure in detail, and implement a  

block-level 5-stage hardware pipeline. It can support the real 

time RDO mode decision processing of 1080P@30fps, and 

the coding efficiency is about 0.5db higher than the 

traditional SAD method. Our design is described in highlevel Verilog/VHDL hardware description language and 

implemented under SMIC 0.18-μm CMOS technology with 

215K logic gates and 80 KB SRAMs.  

Index Terms— mode decision, RDO, AVS, pipeline

1. INTRODUCTION 

AVS video coding standard, which is established by China 

Audio Video Coding Standard (AVS) Working Group, has 

been accepted as an option by ITU-TFGIPTV for IPTV 

applications. The AVS part 2 (AVS-P2) is high resolution 

friendly profile, which is also known as the Jizhun Profile of 

AVS.   

Compared with the other coding standards, such as MPEG4, 

H.264/AVC main profile and above can achieve higher 

coding efficiency by adopting several kinds of complex 

techniques. But the corresponding substantial increase of 

computation becomes unbearable. The key reason of the 

unbearable computational burden is that H.264 coding 

standard provides an abundant set of intra-inter modes to 

choose from. While AVS-P2 offers less modes when 

compared with H.264. Further more, for high-resolution 
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applications, AVS-P2 Jizhun Profile shows comparable 

performance with H.264/AVC for most progressive 

sequences [1]. So, RDO based mode selection becomes 

possible for AVS-P2 systems with the reduced number of 

modes to be considered.  

Generally, there are two different categories of the 

algorithms to reduce the complexity of RDO method.  Some 

algorithms are proposed in the first category, like those in 

[2-4], to simplify the calculating process of distortion (D) 

and rate (R). These algorithms try to do a rough estimate on 

D and R instead of using the real distortion between the 

original picture and the reconstructed picture, and simplify 

the entropy coding process. Although these proposed 

algorithms can reduce the computational complexity 

dramatically, they are not hardware friendly to some extent, 

such as [2]. Some techniques, in the second category, are 

proposed to address the problem from another angle. 

Because there are so many modes to choose from, and this is 

the direct cause of computational complexity, these methods 

target at reducing the candidate modes [5-6]. But the less 

candidate modes result in significant degradation in 

encoding performance.  

The rest of this paper is organized as follows. In section 

2, we first give our proposed RDO-based MD method, and 

then analyze the complexity of the proposed method. To 

solve the computational complexity problem, in section 3, 

we analyze the pipeline throughput of our mode decision in 

detail and then give our proposed 5-stage pipeline structure. 

At last, the experimental results and the conclusion of our 

paper will be presented. 

2. OUR PROPOSED MD ALGORITHM 

2.1. Proposed MD method  

Different from the previous two category mode decision 

methods, the basic starting point of our mode decision is 

using the RDO method as much as possible to get high 

encoding performance.   

In AVS-P2, for every intra-luma block, there are 5 

different modes; and for every intra-chroma block, 4 

different modes in total. The inter modes for P-frame will be 

978-1-61284-350-6/11/$26.00 ©2011 IEEE{Pskip, P16x16, P16x8, P8x16, P8x8, Intra8x8}, while 

{Bdirect, B16x16, B16x8, B8x16, B8x8, Intra8x8} for Bframe.  

For every I-frame intra luma block, we choose the best 

modes according to RDcost from all 5 modes (vertical, 

horizontal, DC, diagonal down right and diagonal down left 

mode); for every intra chroma blocks of I frame we choose 

the best modes from all four modes (vertical, horizontal, 

DC, and plane mode), also based on RDcost. So, for I frame, 

we choose the best modes using Full-RDO method, not 

doing any simplification just for the purpose of obtaining 

high coding efficiency. 

Different from [6], for P-frame and B-frame we do not 

reduce any candidate modes to further enhance the coding 

efficiency. We choose the best MB modes from all modes 

(Pskip, P16x16, P16x8, P8x16, P8x8, Intra8x8) coming 

from fractional motion estimation (FME) for P-frame based 

on RDcost; and for B-frame we choose the best MB modes 

from Bdirect, B16x16, B16x8, B8x16, Bs8x8 and Intra8x8. 

For MB-level intra mode of P or B frame we do not use 

RDO method choose the best block-level modes of  all 

blocks (six blocks in total) in one MB because of the 

intolerable computational complexity. Instead, we just use 

sum of absolute difference (SAD) method to choose the best 

block-level modes of MB-level Intra8x8 mode in P or B 

frame.   

2.2. Complexity analysis of our proposed MD method  

Considering the Function  (1) bellow,  

                                RD t D R cos = + λ                          (0) 

D, which is described as sum of squared differences 

(SSD) for AVS RDO based mode decision, stands for the 

distortion between the original picture and the reconstructed 

picture. λ is a weight parameter. R is the real coding bits for 

every Block. To get RDcost, we need to obtain the 

reconstructed pixels and the coding bits, R.  

Notice that the Pskip mode of P-frame, we can get the 

RDcost directly, because on one hand, the reconstructed 

pixels are identical to the predicted pixels transmitted from 

FME, and on the other hand, the R equals 0. Besides, based 

on the analysis before, the computational complexity of our 

proposed MD method, as shown in Table 1, can be obtained.  

Table 1. Computational complexity for I P B frame

PICTURE-TYPE RDcosts for one MB(6 blocks) 

I  4 x 5 + 2 x 4 = 28   (RDcosts) 

P        5x6          = 30    (RDcosts) 

B        6x6          = 36    (RDcosts) 

Actually, in order to get SSD, we need to perform 

discrete cosine transform (DCT), quantization (Q), inverse 

quantization (IQ), inverse discrete cosine transform (IDCT), 

and reconstruction (REC) functions for every block. As the 

same, we need to perform DCT, Q, IQ, zigzag scan 

(ZIGZAG), context-based 2D-VLC (C2DVLC) entropy 

coding for every block to generate R. If all these processing 

units are connected in the serial order, the whole processing 

time will be unendurable. In the next section, we will 

analyze the structure of our MD method based on the 

pipelining theory and give our proposed efficient pipeline 

structure. 

3. PIPELINE STRUCTURE ANALYSIS 

3.1. Throughput analysis of ideal pipeline 

Fig. 1. Generally k-stage pipeline space time-diagram 

Take a k-stage pipeline, space time-diagram Fig.1, for 

example. Assuming the condition is ideal, the k stages are 

perfectly balanced. The processing time of every stage is the 

same and assuming the value is “t”. If there are N tasks in 

total to process in the pipeline, we can get the throughput, 

which is defined as the number of completed tasks per unit 

time, of the k-stage pipeline. And the throughput can be 

described as a function in the following. 

k
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Also, assuming the ideal condition, if the whole 

processing time of one task through the k-stage processing 

units is 
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 So, throughput can be described as in the Function (4), 
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We can see from Function (4) that, if the pipeline 

design is ideal, the more pipeline stages, the more 

throughput.  3.2. Restrictions of RDO-based MD pipeline structure 

Of course, we can’t achieve the ideal pipeline condition in a 

RDO-based MD. For our mode decision, there are 3 

restrictions that must be considered: 

• Data dependency 

• Bottleneck of the pipeline 

• The increase of hardware usage with the increase of 

number of stages 

The first limitation, is that the pipeline will be 

interrupted once every five modes, as shown in Fig.3, for 

luma blocks, due to data dependency, as shown in Fig.2. 

Because b01 needs the reconstructed pixels of b00, the 

reconstructed pixels at the rightmost column, as shown in 

Fix.2, to perform the intra prediction (IP) of b01. The same 

situation also happens to b10, which needs the bottom line 

of reconstructed b01, and b11, that needs the rightmost 

column of reconstructed b10.  

Another limitation comes from the bottleneck of the 

pipeline. We can’t reduce the processing time of every stage 

without a limit and we can’t balance all the stages perfectly 

due to the inherent processing dependency and the 

unbearable control complexity with the increase of number 

of stages. So, generally, different stage has different time 

consumption in the pipeline. What’s more, because the basic 

data processing unit is one 8x8 block, the memory usage 

will increase significantly due to buffer the output of the 

additional stage along with the increase of number of stages. 

In fact, we need additional 2x8x8 bytes of memory for every 

one increased stage at least. 

     Fig. 2. Data dependency 

3.3. Throughput analysis of RDO-based MD pipeline 

and our proposed RDO-based MD pipeline structure 

In Haibing Yin’s work [6], it assumes each stage of the 

block level mode decision pipeline has the same time 

consumption T, and the whole mode decision pipeline is 

divided into 6 stages. In fact, different stage has different 

time consumption due to the restrictions mentioned above.  

Here, the more detailed analysis will be presented and then 

our more efficient pipeline strategy will be given. 

Different from [6][7], which adopt 4-way Q and IQ, we used 

8-way Q and IQ. In order to address the bottleneck of the 

pipeline, we also use the 4-way zigzag scan [7], and the 

zigzag scan with the process of determining the C2DVLC 

table number will cost 22 cycles. The processing time of 

C2DVLC is not unique since it is related to the number of 

run-level pairs. Through a large scale statistical analysis, we 

observed that the processing time consumption is about 24 

cycles in our 4-way C2DVLC in average. Due to this, we 

can get the time consumption of all the processing units, in 

Table 2, all include 8 cycles of data access time due to 

caching one 8x8 block pixels.  

Table 2. Time consumption of every processing unit

Processing Unit Time 

Consumption(cycles) 

DCT-H 18 

DCT-V 18 

Q(8-way) 16 

IQ(8-way) ZIGZAG- 

SCAN(4-way) 

14 22 

IDCTH C2DVLC(4-way) 18 24 

IDCTV - 18 - 

REC && RDCOST && MD 17 

Based on Function (2) and the data dependency 

described before, also noticing that there are no data 

dependency for chroma blocks, we divide N into 2 parts, 

one part is for luma blocks which suffer from the data 

dependency, the other part is for the chroma blocks which 

don’t. So, N = 4x5(modes) + 2x4(modes) = 28. For the luma 

part, based on Fig.3, the time consumption can be described 

as Function (5). 

Fig. 3. Pipeline structure of luma blocks 
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We notice that there are many “holes” in the pipeline, 

so for the chroma part, we can make use of these “holes”. 

Then, the total processing time can be drawn as Function (6) 

(To simplify the analysis process, we assume a constant 

T luma

 because the pipeline filling of chroma samples will 

just slightly affect

T luma

). 
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  (6)  

Besides, T T h o l e s c h r o m a

≥

 is equivalent to 

3 1 8 ( ) k − ≥
, so 

Function (6) can be re-written as Function (7). { }
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According to Function (2), Function (7) and the basic 

processing units in Table.2, we can get the throughputs of 

different pipeline structure with different number of stages 

through combining or splitting the basic processing units. 

Table 3. Throughput of different stages

K

1

k

∑ i = t i

max , ,..., , {t t t t 1 2 1 k k −

} T total k

throughput

1 91 91 2548 0.0110 

2 91 51 1435 0.0195 

3 107 37 1094 0.0256 

4 105 34 946 0.0296 

5 105 24 804 0.0348 

6 115 24 844 0.0332 

7 133 24 916 0.0306 

Fig. 4. MD Pipeline Throughput 

From Table.3 and Fig.4, one can clear see that, 5-stage 

MD pipeline structure will obtain the highest throughput 

when considering the restrictions discussed before. Another 

observation we can get from Table.3 is that  1

k

t

i

i

∑

=

 is 

increasing with the increase of number of stages. It is 

because of the additional data memory access time when 

splitting a big processing unit into 2 smaller processing units 

without inherent data dependency. For example, if we split 

(DCTV+Q) into DCTV and Q, we need additional 8 data 

preparation cycles of data access time which is redundant in 

fact and that leads to the increase of  1

k

t

i

i

∑

=

, as shown in Fig.5. 

But this will not happen in the case when there are some 

inherent data dependency, such as splitting DCT into DCTH 

and DCTV, as shown in Fig.6, will not make  1

k

t

i

i

∑

=

 increase 

significantly. DCTV can’t be started unless all the output of 

DCTH are generated and the output pixels of DCTH are 

transformed from the rows into columns (H-V transform). 

So, in this situation the 8 cycles data access time, with 

which to complete the H-V transform, is not redundant due 

to the inherent dependency between DCTH and DCTV. 

Further more, when k is more than 5, due to the bottleneck 

of processing one 8x8 block, C2DVLC, the throughput 

begin to decrease, as shown in Fig.4. So, we choose 5-stage 

pipeline structure for mode decision, and the whole structure 

of mode decision is given by Fig.7. The corresponding 

space time-diagram of I, P, B frame are shown in Fig.8, 

Fig.9, Fig.10 respectively. 

Fig. 5. DCTV-Q Splitting/Combining 

Fig. 6. DCT Splitting/Combining

       Fig. 7. MD pipeline structure 

As Fig.7 shows, the RDO core (middle section) is 

divided into 5 stages, the first stage is DCTH and the second 

stage is DCTV-Q. After quantization, the pipeline is divided 

into 2 branches. IQ-IDCTH and ZIGZAG are both belong to 

the third stage, while IDCTH and C2DVLC are at the same 

stage, the fourth stage. At the last stage, the 2 branches of 

the pipeline again merging into one part, for one part we can 

calculate SSD with the data from IDCTV and the ORGPRED data from the outside buffer; for the other part we can 

get the real coding bits R which have already been generated 

in the C2DVLC processing unit. Then the RDcost, from 

which to choose the best mode,  can be generated based on 

the SSD and R. All the buffers between 2 stages are pingpong buffered inside the pipeline structure. Fig. 8. Pipeline space time-diagram for I-frame 

Fig. 9. Pipeline space time-diagram for P-frame 

Fig. 10. Pipeline space time-diagram for B-frame 

4. EXPERIMENTAL RESULTS 

4.1. Encoding performance comparison 

To implement our architecture using hardware, we first 

verified the encoding performance of our encoder. We 

compare the coding performance between our proposed  

mode decision algorithm and traditional SAD method based 

on AVS reference code RM52J. The test results are shown 

in Fig.11 (a ~d), all the sequences tested are high definition 

sequences. From the figure we can see that the encoding 

performance of our proposed method is far higher, about 

0.5db rise in PSNR, than the traditional SAD method.  We 

also compared our proposed method with the MD method 

by reducing the candidate modes, pre-select method like [6], 

also in Fig.11. From the figure we can clearly see that our 

proposed RDO-based method outperform the pre-select 

method, and the increase of PSNR is 0.15~0.2(db) in 

average.  

(a) Result 1  (b) Result 2 

(c) Result 3 

(d) Result 4 

Fig. 11.  Encoding performance of different MD methods 

     4.2. Implementation 

The actually implementation result shows that we can 

accomplish one MB-level mode decision in 864 cycles, 831 

cycles, and 975 cycles for I, P, B frame respectively. We 

implemented our design based on SMIC 0.18-μm CMOS 

technology, the on-chip memory is 77824 bits and the gate 

count is 215088 as shown in Table 4. And the final 

frequency is 234HZ, with which the system can support real 

time 1080p@30fps .   

Table 4. Gate count

Functional module Gate count 

DCTH 8928 

DCTV-Q 25560 

ZIGZAG 16356 

IQ-IDCTH 22188 

C2DVLC 35940 

IDCTV 12660 

RDCOST-MD 11304 

OTHERS 82152 

TOTAL 215088 

Finally, our MD module is integrated to the encoder 

system, as shown in Fig.12, which is composed of 2 parts: 

Frame-level pipelining and MB-level pipelining. As the 

figure shows, firmware takes on the central control of the 

Frame-level pipelining. The first stage of the Frame-level 

pipelining is capturing the original uncompressed data. The 

second stage of the Frame-level pipelining is the encoding 

core. 

Fig. 12. MB-level pipeline structure 

MB_CTRL is for the control of the hardware part, 

which configures all the MB-level pipelining modules. We 

adopt 4-stage MB-level pipelining structure, and they are 

integer motion estimation (IME), FME, MD, bit stream 

generating unit (BG) and de-blocking effect unit (DBK). 

Besides, we used Multi-stage Motion Vector Prediction 

(MVP) Schedule Strategy for AVS HD Encoder, to solve the 

data dependency problem [8]. Our MD module, which 

belongs to the fourth stage of the MB-level pipelining, get 

the original and predicted pixels from FME and IP, and then 

choose the best mode based on RDcost. After that, MD  

transmits  the codenums, the values of encoding coefficients 

generated by C2DVLC, and reconstructed pixels  of the best 

mode to BG, which generate bit stream, and DBK, filtering 

the reconstructed pixels to filter out the block effect, 

respectively. 

5. CONCLUSION 

In video system, RDO technique plays an important role in 

choosing the optimal prediction mode. However, its 

implementation complexity increases drastically due to the 

calculation of RDcosts. In this work, we adopted a RDObased method, which can make more candidate modes to 

choose based on RDO. The performance of our MD method 

outperform both the pre-select method and the traditional 

SAD method. At the same time, we proposed an efficient 5-

stage pipeline structure, with which to address the high 

computational complexity problem, based on the detailed 

analysis about the pipeline throughput. In the future, we will 

further our study in MD algorithms without data 

dependency and try to solve the bottleneck, C2DVLC, of the 

pipeline.
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