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Abstract: In this present study, the entrained sediment particles from the bed were recorded 
using image processing facilities and techniques. The instantaneous velocities of the flow were 
measured using electromagnetic velocity meter. The bed of the flume was covered by 6 mm sand 
particles. The entrainment of sediment particles from the bed was recorded using CCD camera. 
An image processing technique was used to derive the difference between images. The number 
of sediment particles from the bed was counted with time. The Poisson distribution function was 
applied to the number of entrained particles and entrainment intensity from the bed. It was found 
that the poission distribution well defined the entrainmnet process. For the experimental data and 
at a sequential time, the Markov process was applied to the data. The AIC and BIC criteria were 
tested to find the appropriate model. It was found that the first order Mrkove chain was the 
appropriate model for definition of the sequential occurrence of the bursting process.   
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1. INTRODUCTION 
The importance of the initiation of individual sediment particle motion arises from the 

stochastic nature of sediment entrainment from the bed.  There is also a difficulty for the 
definition of incipient particle motion over a flat bed. The difficulty arises from the influence 
of turbulence on sediment motion which has been discussed by Ball and Keshavarzy (1995) 
and Keshavarzy and Ball (1995, 1999). The entrainment of particles from a mobile bed in an 
open channel flow has been investigated in several studies; for example by Einstein and Li 
(1958), where it was pointed out that this process is completely stochastic in nature due to the 
effect of turbulence One reason for this is the difficulty of observing sediment particles at the 
initiation of motion.  Recently, attention has been focused on the use of image processing 
techniques for observing the motion of sediment particles.  In several studies, for example 
those by Nelson et al. (1995), image processing techniques were used as a tool to investigate 
the intermittent nature of particle entrainment upstream and downstream of dunes. The 
application of image processing techniques has the potential to assist in understanding the 
processes influencing incipient of particle motion. This technique can show the entrainment of 
particles from the bed, settlement of particles, speed of particle movement, transport mode, 
and resting periods of a particle on the bed.  With the capturing and collection of these data, 
it is possible to develop a statistical description of particle entrainment or particle initiation at 
the bed.  

In this study attention is paid to define the initiation of sediment particle motion. An 
experimental test was undertaken over a mobile bed in a flume. In order to understand this 
process an image processing technique was used to observe the particle movement in an 

International Conference on Estuaries and Coasts
November 9-11, 2003, Hangzhou, China 



 454

instant of time over a desired area.  A probability distribution function was applied to the 
entrained sediment particles from the bed. 

2. ANALYSIS OF IMAGES OF PARTICLE MOTION 
To analyze the captured images, two different techniques were used in this study.  These 

techniques were 
 

• Probability analysis of the entrained particles determined by counting the number of 
particles in motion at an instant.  This approach was useful to obtain an exceedance 
probability of particles in motion in time, respective to the exceedance probability of 
shear stresses of the bursting process at the bed.   

• Application of some image processing technique to determine the displacement of 
particles between images.  

 
The number of entrained and deposited particles was obtained by computing the difference 

between two sequential images. The subtraction technique was used for this purpose. 
Computing the difference between the light intensities at all pairs of corresponding pixels 
from image one and image two can compare two images.  This technique was used and a 
sequence of images were compared to find the number of particles which entrained and 
deposited over specified area and in a given time increment. For analysis of the images, each 
image was digitized into an array of 384 by 288 pixels.  Two different types of format were 
selected in digitizing process, a BMP format in color (24 b/p) and a PGM Grey scale (8 b/p) 
sub-format. The PGM Grey format was selected for its lower storage requirements and the 
ease of processing and file transfer between different computers.  

The images were digitized using a Pentium II 950 MHz computer. Using a software to 
convert video film to a series of separate frames and hence to store them as a group of files in 
the computer. Initially this software captures a sequence of frames as a large file and then in 
another process converts this file to a series of frames with the desired format.  It was these 
series of images that were analyzed to investigate the initiation of sediment motion.  In this 
part of this study the purpose is to derive the difference between two sequential images in 
order to ascertain the number of particles entrained in an instant of time.  To meet this aim 
and in order to analyze the images a specially written computer program was required to read 
the binary files and to process them for analysis. This program was developed in the C++ 
language due to its utility and capability for image processing.   

The number of entrained particles over a specified area will vary with time.  The entrained 
particles at any time depend on the instantaneous turbulent shear stress arising from the 
velocity fluctuations and the instantaneous shear stresses at the bed.  Shown in Figure 1 are 
the velocity fluctuations of the flow with time and the corresponding instantaneous shear 
stress at the bed. This relation was investigated using a cross correlation analysis between 
instantaneous shear stress in sweep events and the number of particles entrained.  The 
number of entrained particles were counted in a sequence of produced images derived from 
subtraction of sequential recorded images.  The dimensionless shear stress in sweep events 
was computed also from a time series of the velocity fluctuations recorded at the same 
timescale of the images. Due to the temporal nature of turbulent boundary layer, definition of 
the initiation of sediment resting on the channel bed is very difficult and complicated.  This 
arises from the need to consider the instantaneous turbulent shear stress, which is sometimes 
lower and sometimes higher than the critical shear stress for a particle. The concept of 
bursting process was introduced by Kline et al. (1967) as a process which consists of four 
categories of events; these categories are the sweep (u'>0, v'<0), ejection (u'<0, v'>0), outward 
interaction (u'>0, v'>0) and inward interaction (u'<0, v'<0) with each event having a different 
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phase of action. The above concept was recognized as a means of momentum transfer 
between the turbulent and laminar regions near the boundary. Shown in Fig. 1 is a phase 
diagram with the zone of each event indicated.  Bridge and Bennett (1992) noted that these 
four alternative types of bursting events have different effects on the mode and rate of 
sediment transport.  Studies by for example; Thorne et al. (1989), Nelson et al. (1995), and 
Drake et al. (1988) indicated that close to the bed most of the sediment entrainment occurs 
during the bursting events. Also, the entrainment of particles from a mobile bed in an open 
channel flow has been investigated in several studies; for example by Einstein and Li (1958), 
where it was pointed out that this process is completely stochastic in nature due to the effect 
of turbulence. 

Recently, the contributions of coherent structures, such as the sweep and ejection events, to 
momentum transfer have been extensively studied by quadrant analysis or probability 
analyses based on two-dimensional velocity information. Studies by Nakagawa and Nezu 
(1978) and Grass (1971) have indicated that just above the channel bed, the sweep event is 
more responsible than the ejection event for transfer of momentum into the bed layer. 
Nakagawa and Nezu (1978), Thorne et al. (1989) and Keshavarzy and Ball (1995, 1999) 
concluded that sweep and ejection event occurred more frequently than outward and inward 
interaction. 

The four types of bursting events identified earlier have different influences on the rate, and 
mechanisms of sediment entrainment in a turbulent flow. Despite the importance of the 
bursting events in sediment transport, the statistical characteristics of bursting events have not 
been investigated in sufficient detail.  The probability density function was adopted as an 
appropriate approach for the investigation of the contribution of bursting events in the 
entrainment process. This was pointed out by Nakagawa and Nezu (1978), Bridge and 
Bennett (1992), Grass (1971) who suggested that the contribution of bursting events must be 
treated in the form of probability function.  

In this study, the first order Markov chain was applied to the time series of the events. 
Additionally, the organization of bursting events was investigated using conditional 
probability analysis. The movement probability between the events was also investigated.  

3. EXPERIMENTAL APPARATUS AND SETUP 
The experimental tests in this study were carried out in a non-recirculating tilting 

rectangular flume. To perform a series of the experimental tests with different bed roughness, 
the bed was covered by sand particles of D50= 6mm. The longitudinal and vertical 
components of the instantaneous velocity were measured using a small electromagnetic 
velocity meter. The measurements were performed along centerline of the flume and at the 
location of ensured developed flow. The experiments were carried out with different flow 
condition. These recorded velocities were analyzed to calculate the time averaged velocity in 
the horizontal and vertical directions, the overall mean shear stress, turbulent velocity 
fluctuations, the mean shear stress for each event, and to count the number of bursting events 
during the sample period.   

The captured data were analyzed to calculate the following characteristics of the flow: 
Time-averaged velocity, velocity fluctuations, root mean square and the Reynolds shear 

stress.  
• For the time averaged mean velocity of the longitudinal and vertical components 
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where; ui and vi  are instantaneous velocities, U and V are the local temporal mean 
velocities in the longitudinal and horizontal directions, respectively and N is the number of 
samples.   
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• For the velocity fluctuations in two components about the mean value were given by 
  ′ = −u u Ui i  and    ′ = −v v Vi i       (2) 

where u′i and v′i are the velocity fluctuations in the longitudinal and vertical directions, 
respectively. The experimental data were employed also to calculate the turbulence intensity 
of flow in the horizontal and vertical directions.  

4. MARKOV CHAIN MODELS FOR BURSTING PROCESS 
A discrete random variable was defined as {St} in which St is a quadrant zone or event in 

time (t). Therefore, in an instant of the time the St can be in quadrant 1, 2, 3 and 4, (outward 
interaction, ejection, inward interaction and sweep), respectively. Here, the change in the 
situation or state of the events in time series is defined as movement situation and was 
investigated by Markov process. The nature of Markov process is governed by a set of 
probabilities which is called the transition probabilities and they are explained as; 

• The zero order Markov chain P(0) was also examined here for comparison. It means 
that the current situation does not depend on the previous situation and it depends only 
on the current situation. The probabilities for zero order Markov chain can be 
computed as; 

n
n

P i
i =ˆ            4,3,2,1=i       (7) 

where ni  is number of situation i  and n equal  total number of sampling data. 
• The first order Markov chain is defined as; 

{ } { }ttttt ssprsssspr 1111 ,...,, +−+ =       (3) 
According to this concept, the probability of the next situation depends on the current 

situation, but it does not depend on the particular way that the model system arrived at the 
current situation. With the application of the maximum likelihood estimators, the transition 
probabilities of first order Markov chain can be computed as; 
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Where; ni,j is the number of transition from situation i to situation j. The ni. is the number of 
i’s in the series followed by another situations, so that ni.= ni1+ni2+ni3+ni4.The pi,j is estimated as 
the fraction of points for which St =i is followed by points with St+1=j. 

• The second order Markov chain is also a stochastic process which defines the current 
situation based on the two previous situations. The present situation St+1 can be found 
on the basis of the situations at St and St-1. It means that the situation at (t+1) depends 
on the situation at (t) and (t-1). 

{ } { }11111 ,,...,, −+−+ = tttttt sssprsssspr       (5) 
The above probability shows that a situation at the time step (t) depends on the situation at 

time step (t) and (t-1). The transition probabilities of second order Markov chain were 
obtained from the conditional relative frequencies of transition counts. It can be computed as;   
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in which the value of the time series at time t-1 was St-1=k and the value of time series at 
time t was St=i, the probability that future value of time series St+1=j  is  Pkij. 

5. RESULTS AND DISCUSSION  
The analysis of the experimentally determined data resulted in the characteristics of the 

bursting events close to the bed. In order to investigate the probability of motion between the 
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bursting events, the experimental data were analyzed to find the occurrence of the bursting 
process. As a result, a time series of the bursting events was obtained.  

 As previously mentioned, there are four quadrant zones as outward interaction, ejection, 
inward interaction and sweep which are occurring in zones 1,2,3 and 4 respectively. The 
probability of movement from a quadrant to the next is a focus of this study. This movement 
of the events was investigated with time and in four zones. Therefore, a spatiotemporally 
process can be applied to the bursting events using time series model. The spatial variation of 
the events means how the events are moving and allocating in quadrant zones. Thus a time 
series of the events were consisted a sequential of the events, which occur in time.  The 
events may be classified as discrete or continuos. In this study the data was classified as 
discrete random variable. The common stochastic process which represents time series of 
discrete random variable is Markov chain process.   

The zero order Markov chain model was applied to the movement of the events from a 
zone to the next. Table 1 shows the estimated transition probabilities of the occurrence of the 
bursting process for zero-order Markov chain. 

 
Table 1  Estimation probabilities of zero-order Markov chain 

Probability 
228.01ˆ =p                  272.02ˆ =p                      21.03ˆ =p   

287.04ˆ =p  
  

With the application  of 1st order Markov chain to the time series of the events it was 
found that, the 16 elements of transition probabilities of the first order Markov chain P(I) are; 
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Using the above matrix, the next situations of the events can be found from the current 
situation. It means that at the present time (t), the situation is at a known quadrant, at tn the 
situation of the quadrant can be found using probability analysis.  

With the application of 2nd order Markov chain to the data set, 64 elements of transition 
probabilities for second order Markov chain P(II) were computed and presented in the 
following matrix as; 
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0.550.140.100.21
0.120.440.270.17
0.070.270.440.22
0.290.060.060.59
0.490.170.050.29
0.200.400.300.10
0.050.160.620.17
0.260.080.120.54
0.520.140.140.20
0.200.410.280.11
0.080.200.600.12
0.340.050.170.44
0.640.130.090.14
0.100.560.290.05
0.120.260.590.03
0.270.110.170.45

)( IIP  
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To find the most appropriate model to define the stochastic process of the bursting events, 
two criteria must be applied to find the best order of the Markov chain. They are listed as 
below; 

• The Akaike information criterion (AIC), (Akaike 1974; Tong, 1975) 
• The Bayesian information criterion (BIC), (Schwartz, 1978; Katz, 1971) 
Both are based on the log-likelihood functions for the transition probabilities of fitted 

Markov chains. These log-likelihood depends on the transition counts and the transition 
probabilities. The log-likelihood for the 0th , 1st and 2nd orders of Markov chains are; 
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Both criteria attempt to find the most appropriate order for Markov chains. The AIC and 
BIC statistics are then computed for each trial order m, using  

)1(**2*2)( −+−= ssLmAIC m
m              (11) 

))(ln(**2)( nsLmBIC m
m +−=                (12) 

where s  equal to 4 which are the four quadrant zones. Here, it was examined which order 
was best applied to the data. The order m which produces minimum value in either Equation 
(11) or (12) is the most appropriate order of the Markov chain. The AIC and BIC values for 
the 0th 1st and 2nd orders are computed and presented in the following table. 
 

Order 
Criteria 

0th order 
Markov Chain

1st order 
Markov Chain

2nd order 
Markov Chain 

AIC 3038 2524 2496 
BIC 3041 2537 2548 

 
As it is shown in the above table, the first order Markov chain has minimum value in both 

AIC and BIC. It was found that the first order Markov chain defined the stochastic process of 
the quadrant analysis of the bursting events. Therefore the first order Markov chain is an 
appropriate mathematical model for the definition of the bursting events. As the result it can 
be concluded that the situation of an event at an instant of time (t+1) depends only on the 
situation at time (t) and the situation at (t) depends on the situation at (t-1). 

The n- step transition matrix ( )(IPn ) was obtained by using a first-order Markov chain and 
the values are presented in appendix 1. The n-step probabilities are the elements of the type  

)(IPn where )(IP  is the one step transition matrix. The values of )(IPn  were approximately 
constant after 17 steps and afterward. This constant value in each column of )(IPn  after step 
17 implies an independent probability of occurrence of a state from its initial state (outward 
interaction, ejection, inward interaction and sweep). Using the above steady state probabilities 
(0.25, 0.29, 0.22 and 0.31), the mean recurrence time period was calculated. It was found that 
mean recurrence time period for outward interaction, ejection, inward interaction and sweep 
are approximately 4, 3.4, 4.5 and 3.2 of the time steps, respectively. Therefore, it was found 
that the periodic occurrence of the quadrant 2 and 4 are less than quadrants 3 and 1. It means 
that quadrants 2 and 4 occur  more frequently than quadrants 1 and 3.   
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POISSION PROCESS 
In this study, also the poission distribution was applied to the particle entrainment from the 

bed for the experimental test. The X(t) denotes the number of isolated entrained particle at the 
bed, which entrained with time in a given interval [0,t]. With the following assumption, it can 
be stated that:  

1. The probability of entrained particles depends only on time interval(∆(t)). 
2. The entrained particles at each time interval is independent. 
3. The entrained particles probability is aproximately to zero if  ∆(t)→0. 
With above assumptions, the poission disturbution of  X(t) is defined as:  

Pn(t) = prob[X(t)=n]  
Where, Pn(t)=prob[non-entrained particles at interval[0,t]], λt=E[X(t)]=µ . The constant 

λ reflects the intensity of the piossion process, which is, called the parameter of poission 
distribution. Because λ is assumed to be constant over time and the increments are 
independent, therefore, no concern exists for the location of the interval, thus the model 
XPOI(λ) is applicable for any time interval of t such as [s,s+t] with µ=λt.  

Therefore, with the application of the poission disturbution to entrained particle from the 
bed, the following results were obtained. Table 2 shows the entrainment intensity of particles 
from the bed. 

 
Table 2  Estimation of intensity particle for four experimental tests  

Experimental Test A4-1 A4-2 A4-3 A4-4 
λ% 1.96 10.75 15.85 27.45 

 
Fig. 1,2,3 and 4 show cumulative probability of entrained particles for exprimental testes. In 

this study, the range of X(t) was between zero and sixty events , then the ange of poission 
disturbution is between zero and infinity.  

 
Fig. 1  Cumulative Probability of entrained    Fig. 2  Cumulative Probability of entrained  

         Particles from the bed (Test A4-1)             Particles from the bed (Test A4-2) 

 
Fig. 3  Cumulative Probability of entrained      Fig. 4  Cumulative Probability of entrained  
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       Particles from the bed (Test A4-3)                Particles from the bed (Test A4-4) 

6. CONCLUSION 
In this study the poisson distribution was applied to the number of entrained particles from 

the bed and it was found that the poisson distribution well defined the process. The 
entrainment of sediment particles from the bed is stochastic in nature and it is strongly 
influenced by instantaneous shear stresses of the bursting process.  Also the velocity 
fluctuations of bursting process were analyzed and a time series of the bursting events were 
produced. To find the frequency of the occurrence of the bursting events, the Markov chain 
stochastic model was applied to the data. It was examined which Markov chain best defines 
the occurrence of the bursting events. It was found that the first order Markov chain is the best 
model for the definition of the bursting process.  
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