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Abstract  A log-index weighted cepstral distance measure is proposed and tested in
speaker-independent and speaker-dependent isolated word recognition systems using statistic
techniques. The weights for the cepstral coefficients of this measure equal to the logarithm of
the corresponding indices. The experimental results show that this kind of measure works
better than any other weighted Euclidean cepstral distance measures across three speech
databases. The error rate obtained using this measure is about 1.8 percent for three databases
on an average, which is a 25% reduction of that obtained using other measures, and a 40%
reduction of that obtained using Log Likelihood Ratio (LLR) measure. The experimental
results also show that this kind of distance measure works better in both speaker-dependent
and speaker-independent speech recognition systems.
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I. INTRODUCTION

The cepstral distance measure is one of the most important issue in speech recognition
based on template matching, and many distance measures have been proposed. Among them,
the LPC-based log likelihood ratio (LLR) distance measure proposed by Itakura [1] has been
one of the most successful measures. Another important distance measure is the Euclidean
distance measure, which is widely used with LPC-derived cepstral coefficients.

The Euclidean cepstral distance measure has a large number of variants, for it is an
approximation to the distance between the two log spectra represented by the cepstral
coefficients[2].

One widely used variant of the cepstral distance measure is a weighted cepstral distance
measure. Furui [3] used such a weighted cepstral distance measure for automatic speaker
verification, where the weight for the cepstral coefficients was the inverse of its intratalker
variance. Paliwal [4] applied a weighted cepstral distance measure to vowel recognition and
got a 1.3 percent recognition rate average improvement from 91.4 to 92.7, where the measure
used in his experiments was the statistically weighted Euclidean distance measure with vowel
class specific weights. Tohkura [5] studied the weighted cepstral distance measure on three
isolated digit databases, reducing the error rate to one-fourth of that obtained using the simple
Euclidean cepstral distance measure and about one-third of that using the log likelihood ratio
(LLR) distance measure. Juang et al [6] used the liftering process to achieve an average error
of 1 percent in a speaker-independent isolated digit test, the error rate was about one-half that
obtained without the liftering process.

Based on the previous studies on weighted distance measure, it appears that weighting
works well, but we have not clear explanation on the reasons why and how it works and how
to choose an optimal set of weights yet. The purpose of this paper is to show that well-chosen
weighted distance measure can lead to substantial performance improvement in speech
recognition.

This paper is organized as follows. In Section II, we introduce the speech recognition
model used in our experiments. In Section III, we discuss several weighted Euclidean
distance measures for cepstral coefficient sets to be compared in our experiments. In Section



IV, three databases are described and in Section V the experimental results are listed. Finally,
we draw conclusions in Section VI.

II. THE SPEECH RECOGNITION SCHEME USED

The speech recognition model we used in the experiments is a kind of statistic model,
named Center-distance Continuous Probabilistic Model (CDCPM) [9].

Say a random variable ξ with a normal distribution N ( , )µ σ . The probabilistic density

function (p.d.f.) of ξ is:
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Denote the distance between ξ and µ by another random variable η, then its p.d.f. can be
written as:
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we name this kind of distribution the center-distance normal (CDN) distribution - CDN(σ).

The mean of η can be calculated as ηµ σ
π

= 2

2
.

Our model is based on this distribution. Each utterance for the word in the vocabulary will
be segmented into several segments corresponding to several states, using Non-Linear
Segmentation (NLS) technique [7]. For the specified word, each state (segment) can be
represented by several CDN distributions. This is something like the mixed Gussian Hidden
Markov Model. In our experiments, we use 2 distributions to stand for the feature space of
each state. Therefore, we name this kind of model as Center-Distance Continuos Probabilistic
Model (CDCPM) [8,9].

When evaluating the distance between one feature vector and the center vector, we use
weighted Euclidean distance measure.

III. THE WEIGHTED EUCLIDEAN DISTANCE MEASURES

The famous Itakura distance measure Log Likelihood Ratio (LLR) is defined as follows:
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where T T Tpa aa = ( , , , )1 1 ! and R R Rpa aa = ( , , , )1 1 ! are feature row vectors composed of

the linear predictive coefficients obtained from a test utterance and a reference one,
respectively, and R is the autocorrelation matrix (obtained from the test sample)
corresponding to Ta . LLR measure is tested in our experiment only for comparison purpose.

In our experiments, we mainly use the weighted Euclidean distance to measure the distance
between two feature vectors. The general form of weighted Euclidean distance measures can
be written as:
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where Tc and Rc are p-dimensional feature row vectors which are composed of the cepstral
coefficients obtained from a test utterance and a reference one, respectively, and iw is the
weight of the ith component, different sets make different measures.

The most commonly used measure is the quefrency weighted cepstral distance measure,
which is one form of weighted cepstral measure and has previously been applied to vowel
recognition experiments [4].This kind of measure has the following form:
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where iw i= 2 . This kind of measure is also referred to as the index-weighted cepstral
distance measure or triangular-weighted cepstral distance one.

Another form of weighted cepstral weighted measure is the widely used Mahalanobis
distance, which is define as follows:
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T

T Rd c c V c c2 1= − −−( ) ( ) (6)

where V = ( )ijv is the covariance matrix of the feature vectors. This measure can be used to

clustering and recognition purposes.
There are some difficulties in calculating the inverse of the covariance matrix. Our solution

is to use the diagonal part of the covariance matrix V. In this sense, the covariance weighted
distance measure is described by the following equation:
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where i iiw v= −1 .
The third kind of measure is to use the raised sine lifter. The weight function can be

defined as[10]:
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In our experiments, we test another form of weight function, which is defined as:

[ ]iw ci i p= + ≤ ≤2
1 1ln( ) , (9)

where c is a constant number.

IV. DATABASES

4.1 Cepstral Analysis

We adopt the following steps for cepstral analysis in our experiments: (1) Speech is first
filtered typically to a bandwidth of 3400Hz and then digitized typically at 8KHz sampling
rate, or first filtered typically to a bandwidth of 6800Hz and then digitized typically at
16KHz sampling rate. (2) The digitized speech is then emphasized using a simple first-order

digital filter with transfer function H z z( ) = − −1 10.95 . The preemphasized speech is then
blocked into frames of 32 msec in length spaced every 16msec. (3) Each frame of speech is
weighted by the Hamming Window. (4) The linear predictive coding (LPC)analysis is then
performed on each frame using Levinson-Durbin recursive algorithm[11]. (5) LPC cepstral
coefficients c[i] are computed from the pth-order Linear Predictor Coefficients a[i] by the
following equations[12]:
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4.2 Database Description



In order to evaluate the performance of the weighted cepstral distance measure, three word
vocabularies are used. The first one is a small size vocabulary consisting of the ten Chinese
digits (0-9), and the second is a medium size vocabulary consisting of 35 Chinese finals,
while the third is another medium size vocabulary consisting of 128 Chinese phrases (3 to 4
Chinese characters per phrase). These databases have the following descriptions:
Database I (DB-I): 2800 isolated digit utterances spoken by 14 male speakers. Each

speaker uttered 0-9 twice. The sampling frequency is 16KHz and the cutoff is 8KHz. The
feature vectors calculated from these utterances were 16th-order cepstral coefficients derived
from 12th-order LPC coefficients.
Database II (DB-II): 840 isolated Chinese finals uttered by 1 male speaker. The sampling

frequency is 8KHz and the cutoff is 3.4KHz. The feature vectors calculated from these
utterances were 16th-order cepstral coefficients derived from 12th-order LPC coefficients.
Database III (DB-III): 2560 Chinese phrase utterances spoken by 20 male speakers. Each

speaker uttered the vocabulary once. The sampling frequency is 8KHz and the cutoff is
3.4KHz. The 20 speakers were from almost different provinces around China, and the
utterances were spoken in Mandarin with different accents. The feature vectors calculated
from these utterances were 10th-order cepstral coefficients derived from 10th-order LPC
coefficients.

DB-I and DB-III were used for speaker-independent testing, and DB-II for speaker-
dependent testing. The first half of each database is used as training set while the second half
the testing set.

V. EXPERIMENTS

5.1 Statistical Characteristic of the Cepstral Coefficients

The following three figures show the statistical variances as a function of the cepstral
coefficient indices for the three databases. The variance values in the figures are relative
value. From Fig.1 we can find that the variance trends to decrease with the cepstral
coefficient index.

5.2 Test on Reverse-index Weights

In order to compare the importance for lower and higher cepstral coefficients, we did three
experiments using the following three different weight functions, respectively:

(1) Index weights

iw i i p= ≤ ≤2 1,
(2) Equal weights

iw i p= ≤ ≤11,
(3) Reverse-index weights

iw p i i p= + − ≤ ≤21 1( ) ,
The results were that, the error rates obtained through the three experiments identically

increased in the following order for any databases:
Error (1) < Error (2) << Error (3)

Therefore an obvious conclusion can be drawn as 揾igher cepstral coefficients should be
emphasized more strongly than lower ones to get higher recognition rate.”

5.3 The Way to Emphasize Higher Cepstral Coefficients

It is true that the higher cepstral coefficients should be emphasized more than the lower
ones, but how ? To find the truth, we designed another three sets of weights:

(1) Exp-weights:



iw i i p= − ≤ ≤21 1(exp( ) ) ,
(2) Index-weights:

iw i i p= ≤ ≤2 1,
(3) Log-weights:

iw i i p= + ≤ ≤21 1(ln( )) ,
The results were that the error rates decreased in the following order for any database:

Error (1) >> Error (2) > Error (3)
Obviously, the higher coefficients should be deweighted, the curve of weight function should
just bend to the index-axis. (See appendix.)

To find the relationship between the error rate and the bending extent of the weight curve,
we define:

ciw ci i p= + ≤ ≤21 1(ln( )) ,
where c is a bending constant. Experiments showed that the error rate increased when c
varied from 1 upwards or downwards.

5.4 Performance Comparison for Several Weight Types

The Tab. 1 gives the experimental results for several weighted Euclidean cepstral distance
measures as well as LLR-based distance measure for the three databases described above, the
shown results are based on the testing sets. From Tab. 1, we find that the log-index weighted
Euclidean cepstral distance measure as well as the inverse-variance weighted one is better
than others.

VI. SUMMARY

In this paper the log-index weighted cepstral distance measure with weighting coefficients
set equal to the logarithm of the coefficient indices has been studied, with comparison to
several other measures.

Through several experiments, we summarize our experimental results and findings as
follows:
1. The log-index weighted cepstral distance measure works substantially better than both

the Euclidean cepstral distance and any other measure across three different databases.
2. The most important feature of the weighting is that it weights the higher order cepstral

coefficients more strongly than the lower order ones.
3. The weighting need not weight the higher order cepstral coefficients so strong as the

index weighted distance measure does.
4. With respect to the relationship between the recognition rate and the bending extent of

the weight function, the recognition performance is better when the bending constant
c=2,1,or 1/2.

APPENDIX

The CDCPM is sensitive to the ratio between each weight coefficient instead of the
absolute value of each weight. We will prove this truth as follows:

Assume that two sets of weights, namely w1 and w2, satisfy w2[i] = k w1[i], 1<=i<=p,
where k is a constant. The weighted Euclidean distances for any two sets of cepstral
coefficient row vectors c1 and c2 will satisfy w wd c c k d c c2
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Variance Curve for DB-II
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Variance Curve for DB-III
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Fig. 1 The variance curve of the cepstral coefficients

Tab. 1 Error rates of 7 different weight types
weight type LLR-based index equal inv-var raised sine ln(2i+1) ln(i+1) ln(i/2+1)
DB-I 3.00 2.75 4.25 1.75 3.00 2.50 2.75 2.50
DB-II 1.55 0.95 1.19 1.43 0.83 0.83 0.60 0.60
DB-III 4.49 2.85 3.95 2.85 3.36 2.07 1.95 2.27
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