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Abstract

The least squares method allows fitting parameters of a mathematical model from experimental
data. This article proposes a general approach of this method. After introducing the method and
giving a formal definition, the transitivity of the method as well as numerical considerations are dis-
cussed. Then two particular cases are considered: the usual least squares method and the Generalized
Least Squares method. In both cases, the estimator and its variance are characterized in the time
domain and in the Fourier domain. Finally, the equivalence of the Generalized Least Squares method
and the optimal filtering technique using a matched filter is established.

Keywords Least squares; Optimal filtering; Matched filter; Noise; Optimization; Power Spectrum
Density.

1 Introduction

The least squares method aims at deriving from experimental data, often plagued by measurement noise,
the parameters of a mathematical model describing these data. This method was developed independently
by Legendre [13] and Gauss [2]. The mathematical model allows adding information to the data, which
are used to fit unknown parameters. To do so, the data processing minimizes the discrepancy between the
data and the model. Therefore, the least squares method can be broadly understood as a minimization
problem, which depends on the metric used [5, 19].

This article proposes a general approach of the least squares method by considering a general norm
deriving from a scalar product. After introducing some general definitions and results, the definition and
some properties of the least squares method are detailed. Then, two particular norms are considered and
the characterization of the least squares estimator and of its variance are given in the Fourier domain.
Finally, the equivalence of a particular least squares method and the optimal filtering technique [18, 6] is
established. This allows bringing together the temporal approaches and the frequency approaches aiming
at finding a signal in noisy data. In particular, the usual one-dimensional optimal filtering technique used
in signal processing is generalized to any dimension.

2 Framework

2.1 Measurement process and parameterization

Let consider a deterministic time-varying signal s : R → C. The device used to measure this signal makes
absolute measurements, i.e. the device introduces no bias, but noise is added in the measurement process.
As a result the measurement reads m(t) = s(t) + e(t), where e is a Gaussian stochastic process with a
null mean. This process is supposed to be stationary and its Power Spectrum Density, called S, as well
as its correlation function, called R, are supposed to be known1.

1As stated by the Wiener-Khintchine theorem, S is the Fourier transform of R [12].
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It will be assumed in this article that N ∈ N∗ measurements are made with a constant time step
called δt ∈ R∗

+. The signal is filtered before digitization by a low pass filter with a cut-off frequency equal
to 1/(2δt) so as to avoid aliasing. In the rest of this article, the notation y will be a vector of MN,1(C),
whose components are the value of y at the sampling time k× δt. It is assumed that the signal s depends
linearly of p parameters, called xl with l ∈ 〚1; p〛, such that

∀k ∈ 〚1;N〛, sk =

p
∑

l=1

xlfl(k × δt), (1)

where fl are p functions defined on R. This equation can be written in the matrix form s = Jx, with
J ∈ MN,p(C) and Jkl = fl(k × δt). Given that measurements are plagued by noise, this leads to

m = Jx+ e. (2)

The vector e is a random vector whose covariance matrix, Ω, is defined by Ωij = R((i − j)δt). The goal
of the least squares method or any identification procedure is to obtain x∗ which is an unbiased linear
estimator of x, i.e. of the form x∗ = Am with A ∈ Mp,N and E[x∗] = x (E is the expectation operator).
Before going further, the next section gives useful definitions and results concerning discrete time Fourier
analysis [22], generalized to functions defined on a multi-dimensional space.

2.2 Definitions and general results

Consider G : Z× 〚1; p〛 → C which is assumed to verify the following property: ∀l ∈ 〚1; p〛,
∑

k |Gkl| < ∞.
The Discrete Time Fourier Transform (DTFT) of G, called Fδt{G}, is an application defined by

∀f ∈ R, ∀l ∈ 〚1; p〛, Fδt{G}l(f) = δt
∑

k∈Z

Gkle
−i2πkfδt. (3)

The inverse DTFT of an application h : R× 〚1; p〛 → C is an application, called F−1

δt {h}, defined by

∀k ∈ Z, ∀l ∈ 〚1; p〛, F−1

δt {h}kl =

∫

−
1

2δt

−
1

2δt

hl(f)e
2πikfδtdf. (4)

By extension, the DTFT can be defined for a matrix M ∈ MN,p(R). Introducing M̆ : Z × 〚1; p〛 → C

defined by M̆kl = Mkl if k ∈ 〚1;N〛 and M̆kl = 0 otherwise, the DTFT of M is defined by Fδt{M} =
Fδt{M̆}.

Given two applications A and B belonging to Z× 〚1; p〛 → C, the quantity 〈A|B〉 ∈ Mpp(C) is called
the matrix scalar product of A and B and is defined by

∀(k; l) ∈ 〚1; p〛2, 〈A|B〉kl =
∑

j∈Z

AjkBjl. (5)

The Parseval theorem leads to

∀(k; l) ∈ 〚1; p〛
2
, 〈A|B〉kl =

1

δt

∫

−
1

2δt

−
1

2δt

Fδt{A}k(f)Fδt{B}l(f)df. (6)

Finally, let Q be an application Z → C. The application LQ, called generalized convolution, is defined
by

∀X : Z× 〚1; p〛 → C, ∀(k; l) ∈ Z× 〚1; p〛, LQ(X)kl =
∑

i∈Z

Qk−iXil, (7)

and the notation LQ(X) = Q∗X is used. The inverse application of LQ defined by LQ◦L−1

Q = L−1

Q ◦LQ =
Id has the following expression

L−1

Q (Y ) = F−1

δt

{

δt2

Fδt{Q}

}

∗ Y. (8)
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3 General least-squares solution

The least squares estimator is the quantity x∗ such that the norm of m−Jx is minimum for x = x∗. The
result of this computation depends on the choice of the norm on the vector space. In this article, it will
be assumed that the norm derives from a scalar product. Therefore regression methods based on a norm
not derived from a scalar product, such as the lasso method [16] [21], are excluded from the discussion.
The norm is defined for y and z in MN,1(C) by

〈y|z〉P = y′Pz (9)

with y′ the conjugate transpose of y and P a positively defined matrix. The norm is a linear application
defined by |x|P =

√

〈x|x〉P . Since |m− Jx|P
2 is convex in the components of x and the norm is always

positive, the minimum is given by the condition ∇x

(

|m− Jx|P
2
)

= 2(J ′PJx− J ′Pm) = 0. Under the

condition that J ′PJ is invertible, i.e. that J has a rank equal to p, the estimator is equal to

x∗ = (J ′PJ)−1J ′Pm. (10)

Since E [x∗] = (J ′PJ)−1J ′PE [Jx+ e] = x, this estimator is a Gaussian random vector without bias and
its covariance matrix Vx

∗ is equal to

Vx
∗ = (J ′PJ)−1J ′P ′ΩPJ(J ′PJ)−1. (11)

Definition 1 (Formal definition of the least squares method). N ∈ N
∗, p ∈ N

∗ with p ≤ N . PN is the
ensemble of N ×N symmetric and positively defined matrices. RN,p is the ensemble of N × p matrices
of rank p. The least squares method is defined by the following application

Ls : (PN ,RN,p,MN,1) → Mp,1 (12)

(P, J,m) → (J ′PJ)−1J ′Pm (13)

The following result, whose demonstration is straightforward, is of major interest in data processing
when consecutive operations using the least squares method are made, for example re-sampling [20] or
iterative reweighted least squares[11]. Indeed, it gives conditions on the scalar products and the projection
matrices such that the result of the global optimization is independent of the steps.

Proposition 1 (Transitivity). (N0, N1, N2) ∈ (N∗)3 with N2 ≤ N1 ≤ N0. P0, P1 et P̃0 belong respectively
to PN0

, PN1
and PN0

. J0 and J1 belong respectively to RN0,N1
and RN1,N2

.

∀m ∈ MN0,1 , Ls(P1, J1,Ls(P0, J0,m)) = Ls(P̃0, J0J1,m) (14)

is equivalent to
(J ′

1P1J1)
−1J ′

1P1(J
′

0P0J0)
−1J ′

0P0 = (J ′

1J
′

0P̃0J0J1)
−1J ′

1J
′

0P̃0 (15)

Proposition 2. N ∈ N∗, p ∈ N∗ with p ≤ N . J belongs to RN,p and P belongs to PN . x∗ and Vx
∗ are

defined by equations (10) and (11) respectively. Then :

• There exist J̃ ∈ RN,p and C ∈ Mp,p such that det(C) 6= 0, J̃ = JC and J̃ ′P J̃ = Id.

• x∗ = CJ̃ ′Pm and Vx
∗ = CJ̃ ′PΩP J̃C′.

The first item of this proposition comes from the Gram-Schmidt algorithm. The second item is
interesting since least squares algorithms are to be implemented numerically with the possibility of having
det(J ′PJ) close to 0. This proposition offers the possibility to avoid numerically unstable inversion by
replacing it with the Gram-Schmidt process, which does not generate numerical instability [3, 14]. This
is therefore an alternative to the ridge regression [9, 8, 10].

Out of the multiple possible choices for the matrix P , there are two usual ways to define the scalar
product, which will be detailed in the next two sections. The most straightforward one is P = Id. The
other possibility is P = Ω−1.
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4 Usual least squares method

In this section, P = Id. In this case, x∗ = (J ′J)−1J ′m and Vx
∗ = (J ′J)−1J ′ΩJ(J ′J)−1. It is important

to notice that this least squares algorithm is not transitive, i.e. it does not fulfill the condition given
by equation (15), in general. The variance of the estimator can be expressed using the power spectrum
density of the measurement noise:

Vx
∗ = (J ′J)−1W (J ′J)−1 (16)

with W ∈ Mp,p(C) defined by

Wkl =

∫ 1

2δt

−
1

2δt

S(f)
Fδt{J}k(f)Fδt{J}l(f)

T 2
df (17)

Proof. The goal is to express W using the PSD of the noise:

Wkl = (J ′ΩJ)kl =

N
∑

m=1

Jmk

N
∑

n=1

R((m− n)δt)Jnl (18)

The sum over n is a convolution and the sum over m is a scalar product. Expressing these two sums with
the Fourier transforms of J and R using the Parseval formula (cf. eq. (6)) leads to the result.

5 Generalized Least Squares

The other approach, called “Generalized Least Squares” (GLS) is defined by P = Ω−1. In this case,
x∗ = (J ′Ω−1J)−1J ′Ω−1m and Vx

∗ = (J ′Ω−1J)−1. The Aitken theorem [1] states that it is the best
linear unbiased estimator (BLUE), but it is not always the only one [15]. This estimator gives the
minimum value to Vx

∗ [4], for the order relation ≤ on Mk(C) defined by

A ≤ B ⇔ ∃M ∈ Pk(C) ∪ {0k}, A+M = B. (19)

Contrary to the previous case, this method is transitive (cf. prop. 1), which is another advantage in
addition to the fact that the covariance of the estimator is minimum.

In this context, it is required to compute the inverse of the covariance matrix Ω. By inverting Ω, one
loses information on the correlations between events separated by a time longer than N × δt. However,
this information is available in the correlation function R. To build on this observation, the idea is to
extend artificially the size of the vectors up to infinity by filling them with zeros. To do so, let introduce
J̆ : Z× 〚1; p〛 → C and m̆ : Z → C defined by

∀(i; j) ∈ Z× 〚1; p〛, J̆ij =

{

Jij if i ∈ 〚1;N〛 (20a)

0 otherwise (20b)

∀i ∈ Z, m̆i =

{

mi if i ∈ 〚1;N〛 (21a)

0 otherwise (21b)

The matrix Ω being symmetrical, the matrix product ΩY with Y a matrix with N lines can be replaced by
the generalized convolution product. Computing the inverse of the matrix Ω when N → ∞ is equivalent
to computing the inverse application of LR (cf. section 2.2). The estimator becomes

x∗ =
〈

J̆
∣

∣

∣
LR

−1(J̆)
〉−1 〈

J̆
∣

∣

∣
LR

−1(m̆)
〉

, (22)

and the variance
Vx

∗ =
〈

J̆
∣

∣

∣
LR

−1(J̆)
〉−1

. (23)

This variance is smaller than the one computed with finite size matrices because it is computed optimally
in a larger space. And more knowledge on the noise is added in the data processing.

In the case p = 1, i.e. the data depend on one parameter only, the previous equations can be simplified:

x∗ =

(

∫

−
1

2δt

−
1

2δt

|Fδt{J}(f)|
2

S(f)
df

)−1
∫

−
1

2δt

−
1

2δt

Fδt{J}(f)Fδt{m(f)}

S(f)
df, (24)
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and

Vx
∗ =

(

∫

−
1

2δt

−
1

2δt

|Fδt{J}(f)|
2

S(f)
df

)−1

. (25)

5.1 Influence of the knowledge of the noise Power Spectrum Density

The approach presented above relies heavily on the knowledge of the noise Power Spectrum Density
(PSD), as already underlined [7]. It is therefore necessary to quantify the error made by using a wrong
PSD to process the data. Let call S̊ the PSD used to process the data and S the true PSD. It is assumed
that there exists w : R → C such that

S̊(f) = S(f) + ǫw(f) (26)

with ǫ ≪ 1 and ∀f ∈ R, |w(f)| ≤ |S(f)|. For simplicity purpose, p is supposed to be equal to 1, i.e. J
is a column matrix. We call x̊∗ and V̊x

∗ respectively the estimator and the variance of the GLS method
used with S̊. The estimator x̊∗ is still unbiased. Concerning the variance, it is equal to

V̊x
∗ − Vx

∗

Vx
∗

= ǫ2













Vx
∗

∫

−
1

2δt

−
1

2δt

w2(f)

S3(f)
|Fδt{J}(f)|

2df

−Vx
∗

2

(

∫

−
1

2δt

−
1

2δt

w(f)

S2(f)
|Fδt{J}(f)|

2df

)2













+ o(ǫ2), (27)

which shows that the error is of the order of ǫ2.

5.2 Optimal filtering

Finally, this section shows that the Generalized Least Squares method is equivalent to the optimal filtering
technique in the limit of “infinite” matrices presented above. The goal is to identify a signal g : R → C in
noise. The optimal filtering technique aims at maximizing the following signal-to-noise ratio at time t0
with respect to h : R → C

S

N
=

ys(t0)
√

E[|ye(t0)|2]
(28)

where ys and ye are the convolution of h with s and e respectively. The filter h which maximizes the
signal-to-noise ratio, is defined by its Fourier Transform [17, §10.1]:

Fδt{h}(f) = K
Fδt{g}

S(f)
e−i2πft0 (29)

where K is a coefficient. h is called a matched filter. By setting

K =

(

∫

−
1

2δt

−
1

2δt

|Fδt{g}|
2

S(f)

)−1

, (30)

one finds the same expression than equation (24), except for t0 which is an offset. This demonstrate the
equivalence between the optimal filtering technique and the GLS method when taking “infinite” vectors.
The GLS method has the advantage to fit several parameters from the data, i.e. to identify several pattern
from the data. It also assesses the independence of the fitted parameters by computing their covariance
matrix. On the contrary, the usual optimal filtering method can only look for one pattern.

6 Conclusion

This article presented a general approach of least squares estimation. A general definition of this mini-
mization method was introduced and general results were discussed: the conditions required to have the
transitivity of the method and a way to avoid numerical instability. Then two particular cases were con-
sidered. In both cases, the estimator and its variance were characterized in the Fourier domain. Finally,
the equivalence between the Generalized Least Squares method and the optimal filtering technique was
established, bridging the gap between signal analysis and optimization.
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