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ABSTRACT5

This note examines the influence of covariance inflation on the distance between the6

measured observation and the simulated (or predicted) observation with respect to the state7

estimate. In order for the aforementioned distance to be bounded in a certain interval, some8

sufficient conditions are derived, indicating that the covariance inflation factor should be9

bounded in a certain interval, and that the inflation bounds are related to the maximum10

and minimum eigenvalues of certain matrices. Implications of these analytic results are11

discussed, and a numerical experiment is presented to verify the validity of our analysis.12

1. Data assimilation with residual nudging13

A finite, often small, ensemble size has some well known effects that may substantially14

influence the behaviour of an ensemble Kalman filter (EnKF). These effects include, for in-15

stance, rank deficient sample error covariance matrices, systematically underestimated error16

variances, and in contrast, exceedingly large error cross-covariances of the model state vari-17

ables (Whitaker and Hamill 2002). In the literature, the latter two issues are often tackled18

through covariance localization (Hamill et al. 2001), while the first issue, under-estimation19

of sample variances, is often handled by covariance inflation (Anderson and Anderson 1999),20

in which one artificially increases the sample variances, either multiplicatively (see, for21

example, Anderson and Anderson 1999; Anderson 2007, 2009; Bocquet and Sakov 2012;22

Miyoshi 2011), or additively (see, for example, Hamill and Whitaker 2011), or in a hy-23

brid way by combining both multiplicative and additive inflation methods (see, for ex-24

ample, Whitaker and Hamill 2012), or through other ways such as relaxation to the prior25
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(Zhang et al. 2004), multi-scheme ensembles (Meng and Zhang 2007), modification of the26

eigenvalues of sample error covariance matrices (Altaf et al. 2013; Luo and Hoteit 2011;27

Ott et al. 2004; Triantafyllou et al. 2013), back projection of the residuals to construct new28

ensemble members Song et al. (2010) to name but a few. In general, covariance inflation29

tends to increase the robustness of the EnKF against uncertainties in data assimilation30

(Luo and Hoteit 2011), and often also improves the filter performance in terms of estimation31

accuracy.32

The focus of this note is to study the effect of covariance inflation from the point of33

view of residual nudging (Luo and Hoteit 2012). Here, the “residual” with respect to an34

m-dimensional system state x is a vector in the observation space, defined as Hx − y 1,35

where H : Rm → Rp is a linear observation operator, and y the corresponding p-dimensional36

observation vector. Throughout this note, our discussion is confined to the filtering (or37

analysis) step of the EnKF, so that the time index in the EnKF is dropped. The linearity38

assumption in the observation operator H is taken in order to simplify our discussion. The39

result to be presented later, though, might also provide insights into more complex situations.40

Before introducing the concept of residual nudging, let us define some additional nota-41

tions. We assume that the observation system is given by42

y = Hx+ v , (1)43

where v is the vector of observation error, with zero mean and a non-singular covariance44

matrix R. We further decompose R as R = R1/2 RT/2, where R1/2 is a non-singular square45

root of R and RT/2 denotes the transpose of R1/2.46

1In the literature, the vector with the opposite sign, y −Hx, is often called “innovation”.
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To measure the length of a vector z in the observation space, we adopt the following47

weighted Euclidean norm48

‖z‖R ≡
√
zT R−1 z . (2)49

One may convert the weighted Euclidean norm to the standard Euclidean norm by noticing50

that ‖z‖R = ‖R−1/2 z‖2, where ‖ • ‖2 denotes the standard Euclidean norm. As a result,51

many topological properties with respect to the standard Euclidean norm, e.g., the triangle52

inequality (see (3) below), still hold with respect to the weighted Euclidean norm.53

The idea of data assimilation with residual nudging (DARN) is the following. Let xtr
54

be the true system state (truth), yo = Hxtr + vo the recorded observation for a specific55

realization vo of the observation error, and x̂ the state estimate (e.g., either the prior or56

posterior estimate) obtained from a data assimilation (DA) algorithm. Then the residual57

r̂ = Hx̂ − yo = Hx̂−Hxtr − vo. By the triangle inequality, the weighted Euclidean norm58

of the residual (residual norm hereafter) satisfies59

‖r̂‖R ≤ ‖Hx̂−Hxtr‖R + ‖vo‖R . (3)60

If the DA algorithm performs reasonably well, one may expect that the magnitude of ‖Hx̂−61

Hxtr‖R not be significantly larger than ‖vo‖R. As a result, one may obtain an upper bound62

of ‖r̂‖R in terms of ‖vo‖R, e.g, in the form of β‖vo‖R, where β is a non-negative scalar63

coefficient. In practice, though, ‖vo‖R is often unknown. As a remedy, we replace ‖vo‖R64

by an upper bound of the expectation E(‖v‖R) of the weighted Euclidean norm of the65

observation error v, where E denotes the expectation operator. One such upper bound can66

be obtained by noticing that67

(E(‖v‖R))2 ≤ E(‖v‖2
R
) = trace

(

R−1
E(vvT )

)

= trace(Ip) = p , (4)68
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where the operator “trace” evaluates the trace of a matrix, and Ip the p-dimensional identity69

matrix. From (4), we have the upper bound E(‖v‖R) ≤
√
p. Consequently, we want to find70

a state estimate x̂ whose residual norm ‖r̂‖R satisfies71

‖r̂‖R ≤ β
√
p (5)72

for a pre-chosen β. It is worthy of mentioning that in general it may be difficult to identity73

which β gives the best state estimation accuracy with respect to the truth xtr. Therefore,74

in Luo and Hoteit (2012) we mainly used DARN as a safeguard strategy, that is, if a state75

estimate x̂ is found to have a too large residual norm, then we try to introduce some cor-76

rection to the state estimate in order to reduce its residual norm, which in turn might also77

improve the estimation accuracy.78

In Luo and Hoteit (2012) we introduced DARN to the analysis x̂a in the ensemble ad-79

justment Kalman filter (EAKF, see Anderson 2001). In the EAKF with residual nudging80

(EAKF-RN), if the residual norm of x̂a is less than β
√
p, then we accept x̂a as a reasonable81

estimate and no change is made. Otherwise, a correction is introduced to x̂a in a way such82

that the residual norm of the modified state estimate x̃a is exactly β
√
p, and that among83

all possible state estimates whose residual norms are equal to β
√
p, the simulated (or pre-84

dicted) observation Hx̃a of the modified state estimate x̃a has the shortest distance to the85

one Hx̂a of the original state estimate x̂a. Numerical results in Luo and Hoteit (2012) show86

that the EAKF-RN exhibits (sometimes substantially) improved filter performance, in terms87

of estimation accuracy and/or stability against filter divergence, compared to the EAKF.88

Extension of DARN to other types of filters is also possible, for example, see Luo and Hoteit89

(2013).90
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2. Covariance inflation from the point of view of resid-91

ual nudging92

Here we examine the effect of covariance inflation on the analysis residual norm. To93

this end, we first recall that the mean update formula in the EnKF (without perturbing the94

observation) is given by95

x̂a = x̂b +K
(

yo −Hx̂b
)

,

K = ĈbHT
(

HĈbHT +R
)

−1

,

(6)96

where x̂b and x̂a are the sample means of the background and analysis ensembles, respec-97

tively; K is the Kalman gain; and Ĉb is a certain symmetric, positive semi-definite matrix in98

accordance to the chosen inflation scheme. In general Ĉb may be related, but not necessarily99

proportional, to the sample error covariance matrix P̂b of the background ensemble. For100

instance, in the hybrid EnKF Ĉb can be a mixture of P̂b and a “background covariance” B101

(Hamill and Snyder 2000), or partially time-varying as in Hoteit et al. (2002).102

Our objective is to examine under which conditions the residual norm ‖r̂a‖R of the103

analysis x̂a satisfies βl
√
p ≤ ‖r̂a‖R ≤ βu

√
p, where βl and βu (0 ≤ βl ≤ βu) represents the104

lower and upper values of β that one wants to set for the analysis residual norm in DARN.105

Different from the previous works (Luo and Hoteit 2012, 2013), the lower bound βl
√
p is106

introduced here in order to make our discussion below slightly more general. In practice it107

may also be used to prevent too small residual norms in certain circumstances in order to108

avoid, for instance, a state estimate that over-fits the observation, a phenomenon that may109

be caused by “over-inflation”, as will be shown later.110
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Inserting Eq. (6) into r̂a = Hx̂a − yo, one has111

r̂a = R
(

HĈbHT +R
)

−1

r̂b , (7)112

where r̂b = Hx̂b − yo. Multiplying both sides of Eq. (7) by R−1/2, one obtains113

(R−1/2r̂a) =
(

R−1/2HĈbHTR−T/2 + Ip

)

−1

(R−1/2r̂b) . (8)114

To derive the bounded residual norm, we first consider under which conditions the upper115

bound ‖r̂a‖R ≤ βu
√
p is guaranteed to hold. Given that (cf (19) later)116

‖r̂a‖R = ‖R−1/2r̂a‖2 ≤ ‖(R−1/2HĈbHTR−T/2 + Ip)
−1‖2 ‖r̂b‖R , (9)117

a sufficient condition is thus118

‖(R−1/2HĈbHTR−T/2 + Ip)
−1‖2 ≤

βu
√
p

‖r̂b‖R
. (10)119

Let120

A = R−1/2HĈbHTR−T/2 , (11)121

and λmax and λmin be the maximum and minimum eigenvalues of A, respectively. Recalling122

that the induced 2-norm of a symmetric positive semi-definite matrix is exactly the maximum123

eigenvalue of that matrix (Horn and Johnson 1990, §5.6.6), we have124

‖(A+ Ip)
−1‖2 = (λmin + 1)−1 . (12)125

Therefore (10) leads to126

λmin + 1 ≥ ‖r̂b‖R
βu

√
p
. (13)127

If ‖r̂b‖R is relatively small such that ‖r̂b‖R ≤ βu
√
p, then (13) automatically holds. How-128

ever, if ‖r̂b‖R > βu
√
p, and that λmin is very small, then there is no guarantee that (13) will129
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hold. A small λmin may appear, for instance, when the ensemble size n is smaller than the130

dimension p of the observation space. In such circumstances, the matrix A may be singular131

with λmin = 0, and the singularity may not be avoided only through the multiplicative co-132

variance inflation. If one cannot afford to increase the ensemble size n, then a few alternative133

strategies may be adopted to address (or at least mitigate) the problem of singularity. These134

include, for instance, (a) introducing covariance localization (Hamill et al. 2001) to P̂b in or-135

der to increase its rank (Hamill et al. 2009); (b) replacing the sample error covariance P̂b by136

a hybrid of P̂b and some full-rank matrix, similar to that in Hamill and Snyder (2000); and137

(c) reducing the dimension p of the observation in the update formula, for instance, by assim-138

ilating the observation in a serial way (see, for example, Whitaker and Hamill 2002), or by139

assimilating the observation in the framework of local EnKF (see, for example, Bocquet 2011;140

Ott et al. 2004). Once the problem of singularity is solved so that the smallest eigenvalue141

of A becomes positive, a (large enough) multiplicative inflation factor can be introduced to142

make sure that (13) holds.143

Inequality (13) provides insights of what the constraints there may be in choosing the144

inflation factor. In what follows, we study the problem in a slightly more general setting.145

Concretely, we consider a family of mean update formulae in the form of146

x̂a = x̂b +G
(

yo −Hx̂b
)

, (14a)147

G = α ĈbHT
(

δHĈbHT + γR
)

−1

, (14b)148

149

where α, δ and γ are some positive coefficients, and G is the gain matrix which in general150

differs from the Kalman gain K in Eq. (6) with the presence of these three extra coeffi-151

cients. Without loss of generality, though, one may let α = 1 (e.g., by moving α inside the152
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parentheses) so that the gain matrix is simplified to153

G = ĈbHT
(

δHĈbHT + γR
)

−1

, with δ > 0 and γ > 0. (15)154

If δ = 1, then G resembles the Kalman gain in the EnKF, with 1/γ being analogous to the155

multiplicative covariance inflation factor as used in Anderson and Anderson (1999). In our156

discussion below, we first derive some inflation constraints in the general case with δ > 0,157

and then examine the more specific situation with δ = 1. It is expected that one can also158

obtain constraints for other types of inflations in a similar way, but the results themselves159

may be case-dependent.160

Using Eqs. (14a) and (15) as the update formulae and with some algebra, the weighted161

residual is given by162

(R−1/2r̂a) =
[

Ip −A (δA+ γIp)
−1
]

(R−1/2r̂b) , (16)163

where r̂a, r̂b and A are defined as previously. Let164

Φ ≡ Ip −A (δA+ γIp)
−1

=
δ − 1

δ
Ip +

γ

δ
(δA+ γIp)

−1 ,

(17)165

then one has166

‖r̂a‖R = ‖R−1/2r̂a‖2 = ‖Φ (R−1/2r̂b)‖2 . (18)167

For our purpose, the following two matrix inequalities are useful. Firstly, given a matrix M168

and a vector z with suitable dimensions, one has169

‖Mz‖2 ≤ ‖M‖2 ‖z‖2 , (19)170

where ‖M‖2, the induced 2-norm of M, is the maximum of the absolute singular values of171

M, or equivalently, ‖M‖2 is equal to the square root of the largest eigenvalue of MMT
172
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(Horn and Johnson 1990, ch. 5). Secondly, if in addition M is non-singular, then (see, e.g.,173

Grcar 2010 and the references therein)174

‖M−1‖−1

2
‖z‖2 ≤ ‖Mz‖2 . (20)175

The first inequality, (19), can be applied to obtain the sufficient conditions under which176

the inequality ‖r̂a‖R ≤ βu
√
p is achieved. Let the maximum and minimum eigenvalues of Φ177

be µmax and µmin, respectively. Then by Eq. (17)178

µmax =
δ − 1

δ
+

γ

δ
(δ λmin + γ)−1 , (21a)179

µmin =
δ − 1

δ
+

γ

δ
(δ λmax + γ)−1 . (21b)180

181

We remark that both µmax and µmin can be negative (e.g., when δ < 1 and γ → 0), therefore182

‖Φ‖2 = max(|µmax|, |µmin|). By (18) and (19), a sufficient condition for ‖r̂a‖R ≤ βu
√
p is183

max(|µmax|, |µmin|) ≤ βu
√
p/‖r̂b‖R. For notational convenience, we define ξu ≡ βu

√
p/‖r̂b‖R184

and ξl ≡ βl
√
p/‖r̂b‖R.185

Depending on the signs and magnitudes of µmax and µmin, there are in general four186

possible scenarios: (a) µmax ≥ 0 and µmin ≥ 0, so that ‖Φ‖2 = µmax; (b) µmax ≤ 0 and187

µmin ≤ 0, so that ‖Φ‖2 = −µmin; (c) µmax ≥ 0, µmin ≤ 0 and µmax + µmin ≥ 0, so that188

‖Φ‖2 = µmax; and (d) µmax ≥ 0, µmin ≤ 0 and µmax + µmin ≤ 0, so that ‖Φ‖2 = −µmin.189

Inserting Eq. (21) into the above conditions one obtains some inequalities with respect to190

the variables δ and γ (subject to δ > 0 and γ > 0), which are omitted in this note for brevity.191

Similarly, the second inequality, (20), can be used to find the sufficient conditions for192

βl
√
p ≤ ‖r̂a‖R. By (18) and (20), one such sufficient condition can be ‖Φ−1‖2 ≤ ‖r̂b‖R/(βl

√
p) =193

1/ξl. By Eq. (17) it can be shown that194

Φ−1 = Ip +
(

(δ − 1) Ip + γA−1
)

−1

. (22)195
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Let the maximum and minimum eigenvalues of Φ−1 be νmax and νmin, respectively, then196

νmax = 1 + λmax ((δ − 1) λmax + γ)−1 , (23a)197

νmin = 1 + λmin ((δ − 1) λmin + γ)−1 . (23b)198

199

Similar to the previous discussion, we require that ‖Φ−1‖2 = max(|νmax|, |νmin|) ≤ 1/ξl,200

which also leads to four possible scenarios: (a) νmax ≥ 0 and νmin ≥ 0, so that ‖Φ−1‖2 =201

νmax; (b) νmax ≤ 0 and νmin ≤ 0, so that ‖Φ−1‖2 = −νmin; (c) νmax ≥ 0, νmin ≤ 0 and202

νmax + νmin ≥ 0, so that ‖Φ−1‖2 = νmax; and (d) νmax ≥ 0, νmin ≤ 0 and νmax + νmin ≤ 0, so203

that ‖Φ−1‖2 = −νmin. Again, inserting Eq. (23) into the above conditions one obtains some204

inequalities with respect to the variables δ and γ.205

Despite the complexity in the general situation, the analysis in the case of δ = 1 (corre-206

sponding to the update formula in the EnKF) is significantly simplified. Indeed, when δ = 1,207

the maximum and minimum eigenvalues in Eqs. (21) and (23) are all positive. Therefore208

the following conditions209

µmax = γ (λmin + γ)−1 ≤ ξu , (24a)210

νmax = 1 + λmax/γ ≤ 1/ξl . (24b)211

212

are sufficient for the objective βl
√
p ≤ ‖r̂a‖R ≤ βu

√
p. Note that if ξu ≥ 1, i.e., ‖r̂b‖R ≤213

βu
√
p, then any γ > 0 would guarantee that ‖r̂a‖R ≤ βu

√
p (indeed by Eqs. (16) and (19)214

the analysis residual norm ‖r̂a‖R is guaranteed to be no larger than ‖r̂b‖R since ‖Φ‖2 ≤ 1215

with δ = 1), and that inequality (24a) holds. On the other hand, if ξl ≥ 1 such that216

‖r̂b‖R ≤ βl
√
p, then in most cases2 it is impossible for the EnKF to have ‖r̂a‖R no less217

2An exception is in the case that γ = +∞ and ξl = 1. This implies that ‖r̂a‖R = ‖r̂b‖R = βl

√
p, and

that no mean update is conducted (i.e., x̂a = x̂b).
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than ‖r̂b‖R (hence βl
√
p), for the same aforementioned reason. Therefore the inequality218

(24b) becomes infeasible. With these said, in what follows we focus on the cases in which219

ξu, ξl ∈ [0, 1). With some algebra, it can be shown that γ should be bounded by220

ξl
1− ξl

λmax ≤ γ ≤ ξu
1− ξu

λmin . (25)221

Let κ = λmax/λmin be the condition number of the (normalized) matrixA = R−1/2HĈbHTR−T/2.222

From (25) we have
ξl

1− ξl
λmax ≤ ξu

1− ξu
λmin, which leads to a constraint in choosing βl and223

βu, in terms of224

βl ≤
βu

κ+ (1− κ) ξu
. (26)225

Inequality (25) suggests that the upper and lower bounds of γ are related to the min-226

imum and maximum eigenvalues of A, respectively. In particular, to avoid a too small227

residual norm, i.e., observation over-fitting, γ should be lower bounded, hence its inverse228

1/γ, resembling the multiplicative inflation factor, should be upper bounded, as mentioned229

previously.230

In practice, if the dimension p of the observation space is large, then it may be expensive231

to evaluate λmax and λmin. In certain circumstances, though, there may be cheaper ways to232

compute an interval for γ. For instance, if Ĉb in the mean update formula is in the form233

of c1 P̂
b + c2B with c1 and c2 being some positive scalars and B a constant, symmetric and234

positive-definite matrix, then235

A = c1R
−1/2HP̂bHTR−T/2 + c2R

−1/2HBHTR−T/2 .236

The additive Weyl inequality (Horn and Johnson 1991, ch. 3) suggests that the following237
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bounds hold for λmax and λmin.238

λmax ≤ c1 τmax + c2 ρmax ,

λmin ≥ c1 τmin + c2 ρmin ≥ c2 ρmin ,

(27)239

where τ and ρ are the eigenvalues of R−1/2HP̂bHTR−T/2 and R−1/2HBHTR−T/2, respec-240

tively. In many situations, P̂b may be rank deficient, therefore a singular value decomposition241

(SVD) analysis shows that τmax is equal to the largest eigenvalue of (HŜb)TR−1(HŜb), where242

Ŝb is a square root of P̂b that can be directly constructed based on the background ensemble243

(Bishop et al. 2001; Luo and Moroz 2009; Wang et al. 2004). Note that (HŜb)TR−1(HŜb) is244

a matrix with its dimension determined by the ensemble size n, and is in fact the same as the245

one used in the ensemble transform Kalman filter (ETKF) (Bishop et al. 2001; Wang et al.246

2004) in order to obtain the transform matrix. Therefore τmax can be taken as a by-product247

in the framework of ETKF. On the other hand, if both H and R are time-invariant, then248

the eigenvalues ρmax and ρmin of R−1/2HBHTR−T/2 can be calculated off-line once and for249

all. Taking these considerations into account, (25) can be modified as follows250

ξl
1− ξl

(c1 τmax + c2 ρmax) ≤ γ ≤ ξu
1− ξu

(c2 ρmin) . (28)251

Accordingly, (26) is changed to252

βl ≤
βu

κ̃+ (1− κ̃) ξu
, (29)253

with κ̃ = (c1 τmax + c2 ρmax)/(c2 ρmin) being a modified “condition number”.254

Remark: Inequalities (25) and (26), or alternatively, (28) and (29), are sufficient, but not255

necessary, conditions. Therefore, even though γ does not lie in the interval in (25) or (28),256

it may be still possible for the analysis residual norm to satisfy βl
√
p ≤ ‖r̂a‖R ≤ βu

√
p.257
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3. Numerical verification258

Here we focus on using the 40-dimensional Lorenz 96 (L96) model (Lorenz and Emanuel259

1998) to verify the above analytic results, while more intensive filter (with residual nudging)260

performance investigations are reported in Luo and Hoteit (2012). The experiment settings261

are the following. A reference trajectory (truth) is generated by numerically integrating the262

L96 model (with the driving force term F = 8) forward through the fourth-order Runge-263

Kutta method, with the integration step being 0.05 and the total number of integration264

steps being 1500. The first 500 steps are discarded to avoid the transition effect, and the265

rest 1000 steps are used for data assimilation. To obtain a long-term “background covari-266

ance” Blt (“background mean” xB, respectively), we also conduct a separate long model run267

with 100, 000 integration steps, and take Blt (xB) as the temporal covariance (mean) of the268

generated model trajectory. The synthetic observations are generated by adding the Gaus-269

sian white noise N(0, 1) to each odd number elements (x1, x3, · · · , x39) of the state vector270

x = [x1, x2, · · · , x40]
T every 4 integration steps. This corresponds to the 1/2 observation271

scenario used in Luo and Hoteit (2012). An initial ensemble with 20 ensemble members is272

generated by drawing samples from the Gaussian distribution N(xB,Blt), and the ETKF is273

adopted for data assimilation.274

For distinction later, we call the ETKF without residual nudging the normal ETKF, and275

the ETKF with residual nudging the ETKF-RN. In the normal ETKF, Eq. (6) is used for276

mean update with Ĉb equal to the sample error covariance P̂b of the background ensem-277

ble3. Neither covariance inflation nor covariance localization is introduced to the normal278

3One may also let Ĉb be the hybrid of P̂b and Blt. In this case, both residual norms and root mean

square errors (RMSEs) of the normal ETKF may become smaller (results not shown), while the validity of
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ETKF, since for our purpose we wish to use this plain filter setting as the baseline for com-279

parison. One may adopt various inflation and localization techniques to enhance the filter280

performance, but such an investigation is beyond the scope of this note.281

In the ETKF-RN, we adopt the hybrid scheme Ĉb = 0.5P̂b + 0.5Blt to address the issue282

of possible singularity in the matrix A (cf. Eq. 11). Eq. (14) is adopted for mean update,283

with α = δ = 1, and γ constrained by (28) and (29). For convenience, we denote the lower284

and upper bounds of γ in (28) by γmin and γmax, respectively, and re-write γ in terms of285

γ = γmin + c (γmax − γmin) with c being a corresponding scalar coefficient that is involved286

in our discussion later. Note that in general the background residual norm ‖r̂b‖R changes287

with time, so are the values of ξu and ξl in Eq. (25). This implies that in general γmin and288

γmax (hence γ) also change with time, therefore they need to be calculated at each data289

assimilation cycle.290

An additional remark is that the normal ETKF and the ETKF-RN share the same square291

root update formula as in Wang et al. (2004), where it is the sample error covariance P̂b,292

rather than its hybrid with Blt, which is used to generate the background square root.293

Such a choice is based on the following considerations. On the one hand, if one uses the294

hybrid covariance for square root update, then it would require a matrix factorization (e.g.,295

singular value decomposition) in order to compute a square root of the hybrid covariance296

at each data assimilation cycle, which can be very expensive in large-scale applications. On297

the other hand, for the L96 model used here, numerical investigations show that using the298

hybrid covariance for square root update does not necessarily improve the filter performance299

(results not shown).300

the analytic results in the previous section is not affected.

14



The procedures in the ETKF-RN are summarized as follows. Because the matrixR−1/2HBHTR−T/2
301

is time invariant, its maximum and minimum eigenvalues, ρmax and ρmin (cf. (28)), respec-302

tively, are calculated and saved for later use. Then, with the background ensemble at each303

data assimilation cycle, calculate the sample mean x̂b, the corresponding background residual304

norm ‖r̂b‖R, and a square root Ŝb of the sample error covariance P̂b following Bishop et al.305

(2001); Luo and Moroz (2009); Wang et al. (2004). Update Ŝb to its analysis counterpart306

Ŝa ≡ ŜbTU by calculating a transform matrix T, together with a “centering” matrix U307

following Wang et al. (2004). During the square root update process, the maximum eigen-308

value τmax of R−1/2HP̂bHTR−T/2 is obtained as a by-product following our discussion in the309

previous section. With these information, one is ready to calculate the interval bounds γmin310

and γmax in (28), hence obtain γ = γmin + c (γmax − γmin) for a given value of c (c can be311

constant or variable during the whole data assimilation time window). This γ value is then312

inserted into Eq. (14) (with α = δ = 1 there) to obtain the analysis mean x̂a. With x̂a
313

and Ŝa, an analysis ensemble can be generated in the same way as in Bishop et al. (2001);314

Wang et al. (2004). Propagating this ensemble forward in time, one starts a new data as-315

similation cycle, and so on. Comparing the above procedures to those in Luo and Hoteit316

(2012), the observation inversion used in Luo and Hoteit (2012) is avoided.317

The experiment below aims to show that, at each data assimilation cycle, if a γ value318

lies in the interval Cγ = [γmin, γmax] given by (28), then the corresponding analysis residual319

norm ‖r̂a‖R is bounded by the interval Crn = [βl
√
p, βu

√
p], with βl and βu satisfying the320

constraint (29). In the experiment we fix βu = 2, and let βl = 0.1 × (βu/(κ̃ + (1 − κ̃) ξu)),321

where the small fraction 0.1 is introduced for convenience of visualization4.322

4In some cases βu/(κ̃+ (1− κ̃) ξu) in (29) may be very close to βu. Therefore if βl is close to this value,
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Fig. 1 shows the time series of the background (dash-dotted) and analysis (thick solid)323

residual norms in different filter settings (for convenience of visualization, the residual norm324

values are plotted in the logarithmic scale). For reference we also plot the targeted lower and325

upper bounds (dash and thin solid lines, respectively), βl
√
p and βu

√
p (p = 20), respectively.326

In the normal ETKF (Fig. 1(a)), in most of the time the analysis residual norms are larger327

than the targeted upper bound (no targeted lower bound is calculated and plotted in this328

case). With residual nudging, the analysis residual norms of the ETKF-RN migrate into329

the targeted interval, as long as the coefficient c lies in [0, 1] (Figs. 1(b) – 1(d). Also see330

the caption of Fig. 1 to find out how the corresponding c values are chosen). When c is331

outside the interval [0, 1], the corresponding γ is not bounded by [γmin, γmax], hence there is332

no guarantee that the corresponding analysis residual norms are bounded by [βl
√
p, βu

√
p].333

Two such examples are presented in Fig. 1(e) and 1(f), with c being 2.5 and −0.005,334

respectively (e.g., for c = −0.005 in Fig. 1(f), breakthroughs of the lower bound are found335

around time step 220 and a few other places). As side results, we also report in Table 1 the336

time mean root mean square errors (RMSEs) (see Eq. (13) of Luo and Hoteit 2012) that337

correspond to different filter settings in Fig. 1. In these tested cases, the filter performance338

of the ETKF-RN appears improved, in terms of the time mean RMSE, when compared to339

that of the normal ETKF.340

the difference (βu − βl), hence the interval Crn, may be very small.
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4. Discussion and conclusion341

We derived some sufficient inflation constraints in order for the analysis residual norm342

to be bounded in a certain interval. The analytic results showed that these constraints343

are related to the maximum and minimum eigenvalues of certain matrices (cf. Eq. (11)).344

In certain circumstances, the constraint with respect to the minimum eigenvalue (e.g., Eq.345

(13)) may impose a non-singularity requirement on relevant matrices. A few strategies in346

the literature that can be adopted to address or mitigate this issue are highlighted.347

Some remaining issues are manifest in our deduction. These include, for instance, the348

nonlinearity in the observation operator and the choice of βu and βl. For the former prob-349

lem, under a suitable smoothness assumption on the observation operator, one may also350

obtain inflation constraints similar to those in Section 2. On the other hand, though, more351

investigations may be needed to make the results more practical in terms of computational352

complexity. For the latter problem, numerical results in Luo and Hoteit (2012) show that353

the β values influence the overall performance of the EnKF in terms of filter stability and354

accuracy. Intuitively, smaller (larger) β values tend to make residual nudging happen more355

(less) often. Therefore, if the normal EnKF performs well (poorly), then a larger (smaller)356

β value may be suitable. In this aspect, it is expected that an objective criterion is needed.357

This will be investigated in the future.358
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List of Tables434

1 Time mean RMSEs in the normal ETKF and the ETKF-RN with the same c435

values as in Fig. 1. 23436
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Table 1. Time mean RMSEs in the normal ETKF and the ETKF-RN with the same c
values as in Fig. 1.

Normal ETKF
ETKF-RN with

c = 0 c = 1 c ∈ [0, 1] c = 2.5 c = −0.005
Background RMSE 4.3148 1.8252 2.4095 2.2182 2.6857 2.0394
Analysis RMSE 4.2645 1.6953 2.2764 2.0894 2.5679 1.9054
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List of Figures437

1 Time series of the analysis residual norms in: (a): the normal ETKF without438

residual nudging; (b) – (f) the ETKF-RN with different c values. For the439

normal ETKF there are no targeted lower and upper residual norm bounds.440

For reference, though, we still plot the targeted upper bound (= 2
√
20) in (a).441

We also note that the c value in Fig. 1(d) is randomly drawn from the uniform442

distribution on the interval [0, 1] at each data assimilation cycle, while in the443

rest of the sub-figures the c values are constant during the assimilation time444

window. 25445
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Fig. 1. Time series of the analysis residual norms in: (a): the normal ETKF without
residual nudging; (b) – (f) the ETKF-RN with different c values. For the normal ETKF
there are no targeted lower and upper residual norm bounds. For reference, though, we still
plot the targeted upper bound (= 2

√
20) in (a). We also note that the c value in Fig. 1(d) is

randomly drawn from the uniform distribution on the interval [0, 1] at each data assimilation
cycle, while in the rest of the sub-figures the c values are constant during the assimilation
time window.
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