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EMBEDDING RIEMANNIAN MANIFOLDS BY THE HEAT

KERNEL OF THE CONNECTION LAPLACIAN

HAU-TIENG WU

Abstract. Given a class of closed Riemannian manifolds with prescribed geo-
metric conditions, we introduce an embedding of the manifolds into ℓ

2 based
on the heat kernel of the Connection Laplacian associated with the Levi-Civita
connection on the tangent bundle. As a result, we can construct a distance
in this class which leads to a pre-compactness theorem on the class under
consideration.

1. Introduction

In [2], the following class of closed Riemannian manifoldsMd,k,D with prescribed
geometric constrains are considered:

Md,k,D = {(M, g)| dim(M) = d, Ric(g) ≥ (d− 1)kg, diam(M) ≤ D},
where Ric is the Ricci curvature and diam is the diameter. The authors embed
M ∈ Md,k,D into the space ℓ2 of real-valued, square integrable series by considering
the heat kernel of the Laplace-Beltrami operator of M . A distance on Md,k,D,
referred to as the spectral distance, is then introduced based on the embedding so
that the class under consideration is precompact.

Over the past decades many works in the manifold learning field benefit from
this embedding scheme, for example, the diffusion map [3] and the manifold param-
eterizations [6]. Recently, a new mathematical framework, referred to as the vector

diffusion maps (VDM), for organizing and analyzing massive high dimensional data
sets, images and shapes was introduced in [7]. In brief, VDM is a mathematical
and algorithmic generalization of diffusion maps and other non-linear dimensional-
ity reduction methods. While diffusion maps are based on the heat kernel of the
Laplace-Beltrami operator over the manifold, VDM is based on the heat kernel of
the connection Laplacian associated with the Levi-Civita connection on the tangent
bundle of the manifold. The introduction of VDM was motivated by the problem of
finding an efficient way to organize complex data sets, embed them in a low dimen-
sional space, and interpolate and regress vector fields over the data. In particular,
it equips the data with a metric, which we refer to as the vector diffusion distance.
The application of VDM to the cyro-electron microscopy problem, which is aimed
to reconstruct the three dimensional geometric structure of the macromolecule, pro-
vides a better organization of the given noisy projection images, and hence a better
reconstruction result [5, 9]. Furthermore, the VDM can be slightly modified to
determine the orientability of a manifold and obtain its orientable double covering
if the manifold is non-orientable [8].
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In this paper, we consider the same class of closed Riemannian manifolds Md,k,D

and focus on the connection Laplacian associated with the Levi-Civita connection
on the tangent bundle. We analyze how the VDM embeds the manifold M ∈
Md,k,D into ℓ2 based on the heat kernel of the connection Laplacian of the tangent
bundle. Based on the vector diffusion distance, we introduce a new spectral distance
referred to as vector spectral distance onMd,k,D, which leads to the pre-compactness
result.

The paper is organized in the following way. We start from providing the back-
ground material in Section 2, and then define the vector diffusion maps in Section
3 and discuss its embedding property. In Section 4 we define a new metric in the
manifold set Md,k,D, referred to as the vector spectral distance. The key ingredi-
ents in this section are the generalized Kato’s type inequality comparing the trace
of the heat kernel of the Laplace-Beltrami operator and the trace of the heat ker-
nel of the connection Laplacian and a nice isoperimetric inequality for heat kernel
comparisons. With these key ingredients we show that the vector spectral distance
is a distance between isometry classes of Riemannian manifolds in Md,k,D. With
the vector spectral distance, in Section 5 the pre-compactness of the manifold set
Md,k,D is derived from the Rellich’s Theorem and the following Lemma:

Lemma 1.1. [2, Lemma 15] Let (E, δ) be a metric space. Let F(E) denote the set

of non-empty closed subsets of E, equipped with the Hausdorff distance hδ associated

with δ. If the metric space (E, δ) is precompact, so is the metric space (F(E), hδ).

In fact, we view the vector diffusion maps of a given manifold in Md,k,D as
a point of a set consisting of all embedded manifolds in Md,k,D, and then apply
Lemma 1.1 to show the pre-compactness of Md,k,D.

2. Background material

Let (M, g) be a closed Riemannian manifold and TM the tangent bundle. Denote
C∞(TM) the smooth vector fields and L2(TM) the vector fields satisfying

∫

M

〈X,X〉(x)dV (x) ≤ ∞,

where dV is the volume form associated with g and 〈X,X〉(x) := g(X(x), X(x)).
Denote ∇ the Levi-Civita connection of M and Px,y the parallel transport from y
to x via the geodesic linking them. Denote ∇2 the connection Laplacian associated
∇ on the tangent bundle TM [4]. The connection Laplacian ∇2 is a self-adjoint,
second order elliptic operator [4]. From the classical elliptic theory [4] we know that

the heat semigroup, et∇
2

, t > 0, with the infinitesimal generator ∇2 is a family of
self-adjoint operators with the heat kernel kTM (t, x, y) so that

et∇
2

X(x) =

∫

M

kTM (t, x, y)X(y)dV (y).

The heat kernel kTM (t, x, y) is smooth in x and y and analytic in t [4].
It is well known [4] that the spectrum of ∇2 is discrete inside R

−, the non-
positive real numbers, and the only possible accumulation point is −∞. We will
denote the spectrum of ∇2 as {−λk}∞k=1, where 0 = λ0 < λ1 ≤ λ2 . . ., and its
eigen-vector fields as {Xk}∞k=1. Notice that λ0 may not exist due to the topological
obstruction. For example, we can not find a nowhere non-vanishing vector field on
S2. In other words, ∇2Xk = −λkXk for all k = 1, 2, . . .. It is also well known [4]
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that {Xk}∞k=1 form an orthonormal basis for L2(TM). Denote the heat kernel of
∇2 by kTM (t, x, y), which can be expressed as [4]:

kTM (t, x, y) =

∞
∑

n=1

e−λntXn(x)⊗Xn(y).

A calculation of the Hilbert-Schmidt norm of the heat kernel at (t, x, y) gives

‖kTM (t, x, y)‖2HS = Tr
[

kTM (t, x, y)kTM (t, x, y)
]

=
∞
∑

n,m=1

e−(λn+λm)t〈Xn(x), Xm(x)〉〈Xn(y), Xm(y)〉.(1)

On the other hand, the classical elliptic theory [4] allows us to decompose
L2(TM) as L2(TM) = ⊕∞

k=1Ek, where Ek is the eigenspace of ∇2 correspond-
ing to increasing eigenvalues, denoted as νk. Denote by m(νk) the multiplicity of
νk. It is also well known that m(νk) is finite. Denote B(Ek) the set of bases of
Ek, which is identical to the orthogonal group O(m(νk)). Denote the set of the
corresponding orthonormal bases of L2(TM) by

B(M, g) = Π∞
k=1B(Ek).

By Tychonoff’s theorem, we know B(M, g) is compact since O(m(νk)) is compact
for all k ∈ N. Also note that the dot products 〈Xn(x), Xm(x)〉, where n,m ∈ N,
are invariant to the choice of basis for TxM .

3. Vector Diffusion Mappings

Based on these observations, given a ∈ B(M, g) and t > 0, the authors in [7]
define the vector diffusion mappings V a

t which maps x ∈ M to the Hilbert space ℓ2

by1:

(2) V a
t : x 7→ Vol(M)

(

e−(λn+λm)t/2〈Xn(x), Xm(x)〉
)∞

n,m=1
,

where a = {Xn}∞n=1. A direct calculation shows that

(3) ‖kTM (t, x, y)‖2HS =
1

Vol(M)2
〈V a

t (x), V
a
t (y)〉ℓ2 .

Fix a ∈ B(M, g). For all t > 0, the following Theorem states that the vector
diffusion mapping V a

t is an embedding of the compact Riemannian manifold M
into ℓ2. The proof of the theorem is given in [7, Theorem 8.1].

Theorem 3.1. Given a d-dim closed Riemannian manifold (M, g) and an or-

thonormal basis a = {Xk}∞k=1 of L2(TM) composed of the eigenvector-fields of

the connection Laplace ∇2, then for any t > 0, the vector diffusion map V a
t is a

diffeomorphic embedding of M into ℓ2.

It is Theorem 3.1 that allows the authors to define the vector diffusion distance

between x, y ∈ M , denoted as dVDM,t(x, y), in [7]:

(4) dVDM,t(x, y) := ‖V a
t (x) − V a

t (y)‖ℓ2 ,

1Note that the basis a and the volume of M are not taken into consideration in the definition
of the vector diffusion map in [7]. To prove the precompactness theorem, we need to take them
into consideration.
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which is clearly a distance function over M . We mention that by the following
expansion

d2VDM,t(x, y) = ‖V a
t (x) − V a

t (y)‖2ℓ2

= Vol(M)2
∞
∑

n,m=1

e−(λn+λm)t(〈Xn(x), Xm(x)〉 − 〈Xn(y), Xm(y)〉)2

= Vol(M)2
[

Tr(kTM (t, x, x)kTM (t, x, x)∗)+

Tr(kTM (t, y, y)kTM (t, y, y)∗)− 2Tr(kTM (t, x, y)kTM (t, x, y)∗)
]

,

(5)

the defined vector diffusion distance dVDM,t does not depend on the choice of the
basis a. The following theorem shows that in this asymptotic limit the vector
diffusion distance behaves like the geodesic distance. The proof of the theorem is
given in [7, Theorem 8.2].

Theorem 3.2. Let (M, g) be a smooth d-dim closed Riemannian manifold. Suppose

x, y ∈ M so that x = expy v, where v ∈ TyM . For any t > 0, when ‖v‖2 ≪ t ≪ 1
we have the following asymptotic expansion of the vector diffusion distance:

d2VDM,t(x, y) = dVol(M)2(4π)−d ‖v‖2
td+1

+O(t−d‖v‖2)

4. Vector Spectral Distances

In this section and the next, we show that based on the vector diffusion map
V a
t , we can define a family of vector spectral distance dt, t > 0, on the space of the

isometry classes in Md,k,D so that for any t > 0 the space of the isometry classes
in Md,k,D is dt-precompact.

Denote the Laplace-Beltrami operator over (M, g) by ∆M and its eigenvalues
and eigenfunctions by −µk and φk, where k ∈ {0}∪N, that is, ∆Mφk = −µkφk, so
that µ0 = 0 < µ1 ≤ µ2 . . .. Define the following partition functions

ZTM (t) :=

∞
∑

j=1

e−λjt

and

ZM (t) :=
∞
∑

j=0

e−µjt,

which are related by the following generalized Kato’s type inequality [1, p. 135]:

(6) ZTM (t) ≤ dZM (t) for all t > 0.

Then recall the following result:

Theorem 4.1. [1, p.108 C.26] Let (M, g) be an d-dimensional closed Riemannian

manifold. Define

rmin(M) = inf{Ric(v, v) : ‖v‖ = 1}
and the diameter of M by D(M). If (M, g) satisfies rmin(M)D(M)2 ≥ (d− 1)ǫα2

for ǫ ∈ {−1, 0, 1} and α > 0, then

(7) Vol(M)kM (t, x, x) ≤ Vol(Sd(R))kSd(t, y, y) = ZSd(R)(t) = ZSd(1)(t/R
2),
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where y ∈ Sd(R), R = D(M)/a(d, ǫ, α) and

a(d, ǫ, α) =











αω
1/d
d

(

2
∫ α/2

0 cosd−1(t)dt
)−1/d

if ǫ = 1

(1 + dωd)
1/d − 1 if ǫ = 0

αc(α) if ǫ = −1,

where ωd = Vol(Sd)/Vol(Sd−1) and c(α) is the unique positive root z > 0 of the

equation

z

∫ α

0

(cosh(t) + z sinh(t))d−1dt = ωd.

With inequalities (6) and (7), we prove the following lemmas, which is essential
in showing the pre-compactness result. We omit the dependence on M to simplify
the statement of the lemmas and the proof.

Lemma 4.2. With the above notations, there exist positive constants A(d, k,D), B(d, k,D)
and E(d, k,D) that depend only on d, k and D such that for any (M, g) ∈ Md,k,D:

(a) λj ≥ A(d, k,D)j2/d;

(b) N(λ) := #{j | j ≥ 0, λj ≤ λ} ≤ ed+B(d, k,D)λd/2;

(c) for all x ∈ M and α ≥ 0, we have

(8)
∑

n,m≥1

(λn + λm)αe−t(λn+λm)〈Xn(x), Xm(x)〉2 ≤ E(d, k,D)

Vol(M)2
F (α, d)t−α−d,

where

(9) F (α, d) =

∫ ∞

0

∫ ∞

0

(x+ y)αxdyde−(x+y)dxdy.

Proof. The proofs for (a) and (b) are almost the same as the proofs of Theorem
3 in [2] except that we apply (6). We provide the proofs here for completion. If
k ≥ 0, rminD

2 ≥ 0 and if k < 0, rminD
2 ≥ (d−1)kD. Thus we can apply Theorem

4.1 with ǫ and α depending only on k and D. Thus,

ZTM (t) ≤ dZM (t) = d

∫

M

kM (t, x, x)dx ≤ dVol(M) sup
x∈M

kM (t, x, x)

≤dVol(Sd(R))kSd(R)(t, y, y) = dZSd(R)(t) = dZSd(1)(t/R
2),

where y ∈ Sd(R). The trace of the heat kernel ZTM is thus uniformly bounded on
the set Md,k,D. Note that there exists a constant b(d), depending on d only, such
that for any t > 0,

ZSd(1)(t)− 1 ≤ b(d)t−d/2.

Also not that j ≤ N(λj), j ∈ N∪{0}, in general, and j = N(λj) when all eigenvalues
are simple. As a consequence, we have

j ≤ N(λj) ≤ e
∑

0≤λi≤λj

e−λi/λj ≤ eZTM (1/λj)

≤ edZSd(1)

(

1

λjR2

)

≤ ed+ edb(d)Rdλ
d/2
j

and hence

λj ≥
(

j − ed

edb(d)Rd

)2/d

≥ (edb(d)Rd)−2/dj2/d.
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Since R = a(d, ǫ, α)D(M) ≤ a(d, ǫ, α)D and a(d, ǫ, α) only depends on d, k and D,
this proves (1) and (2).

Next we prove (c). Define the positive measure µx on R+ × R+ by

dµx =
∑

n,m≥1

〈Xn(x), Xm(x)〉2δλn
× δλm

where δλn
is the Dirac measure at λn ∈ R+. By the Cauchy-Schwartz inequality:

(10) 〈Xn(x), Xm(x)〉2 ≤ 〈Xn(x), Xn(x)〉〈Xm(x), Xm(x)〉,
Thus, the left hand side of (8) can be bounded by:

∑

n,m≥1

(λn + λm)αe−t(λn+λm)〈Xn(x), Xm(x)〉2

=

∫

R

∫

R

(λ + ν)αe−t(λ+ν)〈Xn(x), Xm(x)〉2dµx

≤
∫

R

∫

R

(λ + ν)αe−t(λ+ν)〈Xn(x), Xn(x)〉〈Xn(x), Xn(x)〉dµx(11)

Define a L1
loc(R) function:

µ(λ) :=
∑

n: 0≤λn≤λ

〈Xn(x), Xn(x)〉.

Since t > 0, (λ+ν)e−t(λ+ν) decays fast enough. So by the definition of the derivative
of a given distribution, (11) becomes

∫

R

∫

R

(λ + ν)αe−t(λ+ν)〈Xn(x), Xn(x)〉〈Xn(x), Xn(x)〉dµx

=

∫

R

∫

R

(λ + ν)α−1e−t(λ+ν)((λ+ ν)t− α)µ(λ)dλ
dµ(ν)

dν

=

∫ ∞

0

∫ ∞

0

[

t2(λ+ ν)2 − 2αt(λ+ ν) + α(α− 1)
]

×

(λ+ ν)α−2e−t(λ+ν)µ(λ)µ(ν)dλdν.

To finish the proof, we claim that:

∞
∑

k=1

e−λkt〈Xk(x), Xk(x)〉 ≤ kM (t, x, x).(12)

Indeed, by Cauchy-Schwartz inequality and the positivity of the metric, for t > 0
we have

(

∞
∑

k=1

e−λkt〈Xk(x), Xk(x)〉
)2

=
∞
∑

k,l=1

e−(λk+λl)t〈Xk(x), Xk(x)〉〈Xl(x), Xl(x)〉

= ‖kTM (t, x, x)‖2HS ≤ k2M (t, x, x),

where the last quality holds due to the fact that ‖kTM (t, x, x)‖HS ≤ kM (t, x, x) [2,
p137] for all t > 0 and x ∈ M .
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Now we bound µ(λ) when λ > 0. By (7) and (12) we have

µ(λ) =
∑

n: 0≤λn≤λ

〈Xn(x), Xn(x)〉 ≤ e
∑

n: 0≤λn≤λ

e−λn/λ〈Xn(x), Xn(x)〉

≤ e

∞
∑

n=1

e−λn/λ〈Xn(x), Xn(x)〉 ≤ ekM (1/λ, x, x)

≤ e

Vol(M)
ZSn(1/λR2) ≤ C(d, k,D)

Vol(M)
λd/2,(13)

where R is defined in Theorem 4.1 and C(d, k,D) is an universal constant depending
on d, k and D. Thus we conclude

∑

n,m≥1

(λn + λm)αe−t(λn+λm)〈Xn(x), Xm(x)〉2

≤ C(d, k,D)2

Vol(M)2

∫ ∞

0

∫ ∞

0

[

t2(λ+ ν)2 − 2αt(λ+ ν) + α(α− 1)
]

×

(λ+ ν)α−2e−t(λ+ν)λdνddλdν

≤ E(d, k,D)

Vol(M)2
F (α, d)t−α−d,

where E(d, k,D) is an universal positive constant that depends only on d, k and D,
and F is defined in (9). �

Recall that the vector diffusion map V a
t depends on the choice of an orthonormal

basis a of eigen-vector fields. Given a finite dimensional Euclidean space E, we can
define the distance between R1, R2 ∈ O(dimE) by

dE(R1, R2) = ‖R−1
1 R2 − I‖HS .

It is clear that dE(R1, R2) ≤ 2
√
dimE. As we discussed above, B(M, g) is a compact

set with respect to the product topology. This topology can be described by the
distance dB(M,g) between a, b ∈ B(M, g) defined as

(14) dB(M,g)(a, b)
2 =

∞
∑

i=1

ν−N
i dEi

(a|Ei
, b|Ei

)2,

where the series on the right hand side converges when N > d/2 due to Lemma
4.2(a).

Lemma 4.3. Let (M, g) be a smooth d-dim closed Riemannian manifold. The map

V : R+ × B(M, g) × M → ℓ2 defined by V (t, a, x) := V a
t (x) is continuous and

satisfies:

‖V a
t (x) − V b

s (y)‖2ℓ2 ≤ Vol(M)2
{

‖kTM (t, x, x)‖HS + ‖kTM (s, y, y)‖HS

−2

∥

∥

∥

∥

kTM

(

t+ s

2
, x, y

)∥

∥

∥

∥

HS

+ 2dB(M,g)(a, b)k
(N)
TM (t, x, x)1/2k

(N)
TM (s, y, y)1/2

}

(15)

where t > 0, a, b ∈ B(M, g), x, y ∈ M , and

(16) k
(N)
TM (t, x, x) =

∞
∑

n,m=1

(λN/2
n + λN/2

m )e−t(λn+λm)〈Xa
n(x), X

a
m(x)〉2.
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Proof. We denote the basis a ∈ B(M, g) by {Xa
n}∞n=1. First we have

‖V a
t (x)− V b

s (y)‖2ℓ2

=Vol(M)2
∞
∑

n,m=1

(

e−t(λn+λm)/2〈Xa
n(x), X

a
m(x)〉 − e−s(λn+λm)/2〈Xb

n(y), X
b
m(y)〉

)2

=Vol(M)2
{

‖kTM (t, x, x)‖HS + ‖kTM (s, y, y)‖HS

− 2

∞
∑

n,m=1

e−(t+s)(λn+λm)/2〈Xa
n(x), X

a
m(x)〉〈Xb

n(y), X
b
m(y)〉

}

=Vol(M)2
{

‖kTM (t, x, x)‖HS + ‖kTM (s, y, y)‖HS −
∥

∥

∥

∥

kTM

(

t+ s

2
, x, y

)∥

∥

∥

∥

HS

− 2

∞
∑

n,m=1

e−(t+s)(λn+λm)/2〈Xa
n(x), X

a
m(x)〉

(

〈Xb
n(y), X

b
m(y)〉 − 〈Xa

n(y), X
a
m(y)

)}

,

where we denote the last summation on the right hand side as A. Denote the eigen-
vector fields inside the eigenspace En by Xb

n(j)(y), where j = 1, ...,m(νn), when the

basis of L2(TM) is chosen to be b ∈ B(M, g). By definition, we have the following
relationship:

Xb
n(j)(y) =

m(νn)
∑

k=1

αj,k(b, a)X
a
n(k)(y)

where the matrix [αj,k(b, a)]
m(νj)
k,j=1 ∈ O(m(νn)). Thus we can rewrite A as

A =

∞
∑

n,m=1

e−(t+s)(νn+νm)/2

m(νn)
∑

k=1

m(νm)
∑

l=1

〈Xa
n(k)(x), X

a
m(l)(x)〉×



〈Xa
n(k)(y), X

a
m(l)(y)〉 −

m(νn)
∑

i=1

m(νm)
∑

j=1

αk,i(b, a)αl,l(b, a)〈Xa
n(i)(y), X

a
n(j)(y)〉





=

∞
∑

n,m=1

e−(t+s)(νn+νm)/2

m(νn)
∑

i,k=1

m(νm)
∑

j,l=1

〈Xa
n(k)(x), X

a
m(l)(x)〉×

〈Xa
n(i)(y), X

a
m(j)(y)〉

(

δk,iδl,j − αk,i(b, a)αl,j(b, a)
)

,

where [δk,l]
m(νj)
k,l=1 is an m(νj)×m(νj) identity matrix. Note that

(δk,iδl,j − αk,i(b, a)αl,j(b, a)) = δk,i(δl,j − αl,j(b, a)) + αl,j(b, a)(δk,i − αk,i(b, a))
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which is bounded by dEn
(a|En

, b|En
) + dEm

(a|Em
, b|Em

). Hence, by the Cauchy-
Schwartz inequality, A is bounded by

|A| ≤
∞
∑

n,m=1

e−(t+s)(νn+νm)/2





m(νn)
∑

k=1

m(νm)
∑

l=1

〈Xa
n(k)(x), X

a
m(l)(x)〉2





1/2

×





m(νn)
∑

i=1

m(νm)
∑

j=1

〈Xa
n(i)(y), X

a
m(j)(y)〉2





1/2
(

dEn
(a|En

, b|En
) + dEm

(a|Em
, b|Em

)
)

≤ 2dB(M,g)(a, b)

∞
∑

n,m=1

(νN/2
n + νN/2

m )e−(t+s)(νn+νm)/2×





m(νn)
∑

k=1

m(νm)
∑

l=1

〈Xa
n(k)(x), X

a
m(l)(x)〉2





1/2



m(νn)
∑

i=1

m(νm)
∑

j=1

〈Xa
n(i)(y), X

a
m(j)(y)〉2





1/2

≤ 2dB(M,g)(a, b)

(

∞
∑

n,m=1

(λN/2
n + λN/2

m )e−t(λn+λm)〈Xa
n(x), X

a
m(x)〉2

)1/2

×

(

∞
∑

n,m=1

(λN/2
n + λN/2

m )e−s(λn+λm)〈Xa
n(y), X

a
m(y)〉2

)1/2

= 2dB(M,g)(a, b)k
(N)
TM (t, x, x)1/2k

(N)
TM (s, y, y)1/2,

where k
(N)
TM (t, x, x) is defined in (16). Due to Lemma 4.2(c), k

(N)
TM (t, x, x) is bounded,

and thus the proof is finished. �

With the above preparation, we are ready to introduce the vector spectral dis-
tance. Recall the following definitions. Suppose (X, δ) is s metric space, where δ is
the metric, and A,B ⊂ X . The distance between A and B is defined as:

h(A,B) := inf{δ(a, b) : a ∈ A, b ∈ B}.

Denote the generalized ball of radius ǫ > 0 around A:

N (A, ǫ) := {x ∈ X : h(x,A) < ǫ}.

Given two subsets A,B ⊂ X , we can define the Hausdorff distance, denoted as HD,
associated with δ by

HD(A,B) = inf{ǫ : A ⊂ N (B, ǫ), B ⊂ N (A, ǫ)},

or equivalently

(17) HD(A,B) = max
{

sup
x∈A

inf
y∈B

δ(x, y), sup
y∈B

inf
x∈A

δ(x, y)
}

.

In the following, we focus on the metric space (ℓ2, ‖ · ‖ℓ2). Let HD denote the
Hausdorff distance between compact subsets of ℓ2 associated with ‖ · ‖ℓ2 . Given
two Riemannian manifolds M and M ′ and t > 0, we define a family of functions
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dt : Md,k,D ×Md,k,D 7→ R by

dt(M,M ′) := max

{

sup
a∈B(M,g)

inf
a′∈B(M ′,g′)

HD(V a
t (M), V a′

t (M ′)),

sup
a′∈B(M ′,g′)

inf
a∈B(M,g)

HD(V a′

t (M ′), V a
t (M

′))

}

.

(18)

We justify that dt, t > 0, is a distance of the space of the isometry classes in
Md,k,D, and call it vector spectral distance. The following lemmas are needed for
the justification.

Lemma 4.4. Let (M, g) be a smooth d-dim closed Riemannian manifold and {Xn}n∈N

is an orthonormal basis of L2(TM) constituted of the eigen-vector fields of the con-

nection Laplacian. Then

span{〈Xn, Xm〉 : n,m ∈ N, n 6= m} = L2(M)\{R},
that is, all L2 functions over M without the constant functions.

Proof. Fix f ∈ L2(M). If
∫

M 〈Xn, Xm〉(x)f(x)dx =
∫

M 〈fXn, Xm〉(x)dx = 0 for
all n 6= m, we show that f is constant. Since {Xn}n∈N is an orthonormal basis of
L2(TM), we can rewrite fXn =

∑

k∈N
αn,kXk, and hence we have

0 =

∫

M

〈Xn, Xm〉fdx =
∑

k∈N

αn,k

∫

M

〈Xk, Xm〉dx = αn,m.

As a result, we know fXn = αn,nXn, which implies that f is constant. �

Lemma 4.5. Let (M, g) be a smooth d-dim closed Riemannian manifold and {Xn}n∈N

is an orthonormal basis of L2(TM) constituted of the eigen-vector fields of the con-

nection Laplacian. For any x0 ∈ M , there exist d pairs of {(ni,mi)}di=1, where

ni,mi ∈ N, so that the gradient vectors ∇〈Xni
, Xmi

〉(x0) span Tx0
M .

Proof. If not, there is a vector v ∈ Tx0
M perpendicular to span{∇〈Xn, Xm〉(x0)}n,m∈N.

It is well known that any function u ∈ C∞(M) can be expanded by the eigen-

functions of the Laplace Beltrami operator, {φi}∞i=0, that is, u =
∑K−1

j=0 φj +
∑∞

i=K uiφi, where K is the number of connected components, ∆Mφj = 0 for all
j = 0, 1, . . . ,K − 1, and ui =

∫

M
uφidx for all i = K,K + 1, . . .. It follows that

∇u(x0) =
∑∞

i=K ui∇φi(x0). Since any vector v ∈ Tx0
M can be written as ∇u(x0)

for some smooth function u, we know

v =

∞
∑

i=K

vi∇φi(x0)

for some constants vi. On the other hand, by Lemma 4.4, φi, i = K,K+1, . . ., can
be expanded by {〈Xn, Xm〉}n,m∈N,n6=m, which leads to

v =

∞
∑

i=K

vi

∞
∑

n,m=1

wi,n,m∇〈Xn, Xm〉(x0) =

∞
∑

n,m=1

(

∞
∑

i=K

viwi,n,m

)

∇〈Xn, Xm〉(x0)

for some constants wi,n,m, which is absurd. Since dimTx0
M is finite, we finish the

proof. �
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Theorem 4.6. For any fixed t > 0, dt is a distance between isometry classes

of Riemannian manifolds in Md,k,D. In particular, two Riemannian manifolds

(M, g), (M ′, g′) ∈ Md,k,D satisfy dt(M,M ′) = 0 if and only if M and M ′ are

isometric.

Proof. By definition, it is clear that dt(M,M ′) ≥ 0, dt(M,M ′) = dt(M
′,M) and

the triangular inequality holds. To finish the proof that dt is a distance we need
to show that dt(M,M ′) = 0 if and only if M is isometric to M ′. If M and M ′

are isometric, then it is trivial to see that dt(M,M ′) = 0. Now we consider the
opposite direction. Fix t > 0. If dt(M,M ′) = 0, we claim that M is isometric to
M ′. By the definition of dt, we know

inf
a∈B(M,g)

HD(V a
t (M), V a′

t (M ′)) = 0

for a given a′ ∈ B(M ′, g′). Thus there exists a sequence an ∈ B(M, g), n = 1, 2, . . .,
so that

lim
n→∞

HD(V an

t (M), V a′

t (M ′)) = 0.

By the compactness of B(M, g), a subsequence {anj
}∞j=1 converges to a0 ∈ B(M, g),

that is,

lim
j→∞

dB(M,g)(anj
, a0) = 0,

and it follows that HD(V a0

t (M), V a′

t (M ′)) = 0.
Let a0 = {Xn}n∈N and a′ = {X ′

n}n∈N. From the definition of Hausdorff distance

and the compactness of V a0

t (M) and V a′

t (M ′), we have

for all x ∈ M, there exists y′t ∈ M ′ s.t. for all n,m ≥ 1(19)

Vol(M)e−(λn+λm)t/2〈Xn(x), Xm(x)〉 = Vol(M ′)e−(λ′

n+λ′

m)t/2〈X ′
n(y

′
t), X

′
m(y′t)〉

for all y′ ∈ M ′, there exists xt ∈ M s.t. for all n,m ≥ 1

Vol(M)e−(λn+λm)t/2〈Xn(xt), Xm(xt)〉 = Vol(M ′)e−(λ′

n+λ′

m)t/2〈X ′
n(y

′), X ′
m(y′)〉

Because {〈Xn(x), Xm(x)〉}∞n,m=1 (resp. {〈Xn(y
′), Xm(y′)〉}∞n,m=1) separate the points

in the manifold by Theorem 3.1, the point y′t (resp. xt) is uniquely defined and
hence the corresponding map ft : x → y′t (resp. ht : y

′ → xt) is well-defined, and
it is clear that ft and ht are inverse to each other. It is also clear that ft and ht

are continuous. Indeed, by Lemma 3.2, the geodesic distances between x, x̄ and
y′t = ft(x), ȳ

′
t = ft(x̄) are related by:

dg(x, x̄) =
(4π)d/2

d1/2Vol(M)
t
d+1

2 dVDM,t(x, x̄)(1 +O(t))

=
(4π)d/2

d1/2Vol(M ′)
t
d+1

2 dVDM,t(y
′
t, ȳ

′
t)(1 +O(t)) = dg′(y′t, ȳ

′
t)(1 +O(t)),

which implies the continuity of ft. Similarly we get the continuity of ht. Then, we
show that ft and ht are C∞ diffeomorphism. Define a map F : M ×M ′ → R

d by

F (x, y′) = (〈Xni
(x), Xmi

(x)〉 − cni,mi
(t)〈X ′

ni
(y′), X ′

mi
(y′)〉)di=1,

where

cni,mi
(t) =

Vol(M ′)

Vol(M)
e(λni

+λmi
−λ′

ni
−λ′

mi
)t/2.
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Note that F (ht(y
′), y′) = 0. Let y′0 = ft(x0). From Lemma 4.5, it follows that

the partial differentiation of F with related to the first variable at (x0, y0) is an
isomorphism and hence ht is locally smooth at y′0 by the implicit function theorem.
It follows that ht is smooth. The same proof shows that ft is smooth, too.

Next, we show that Vol(M) = Vol(M ′). Denote the induced volume form
(ft)∗dVM by atdVM ′ , where at is smooth. Integrating the relation (19), we ob-
tain for n 6= m, n,m ∈ N:

0 = Vol(M)e−(λn+λm)t/2

∫

M

〈Xn(x), Xm(x)〉dVM (x)

= Vol(M ′)e−(λ′

n+λ′

m)t/2

∫

M

〈X ′
n(ft(x)), X

′
m(ft(x))〉dVM (x)

= Vol(M ′)e−(λ′

n+λ′

m)t/2

∫

M ′

〈X ′
n(y), X

′
m(y)〉at(y)dVM ′ (y),

and similarly for n = m, n ∈ N:

1 = Vol(M)e−λnt

∫

M

〈Xn(x), Xn(x)〉dVM (x)

= Vol(M ′)e−λ′

nt

∫

M

〈X ′
n(ft(x)), X

′
n(ft(x))〉dVM (x)

= Vol(M ′)e−λ′

nt

∫

M ′

〈X ′
n(y), X

′
n(y)〉at(y)dVM ′ (y).

In other words, we have when n 6= m,

(20)

∫

M ′

〈X ′
n(y), X

′
m(y)〉at(y)dVM ′(y) = 0,

and when n = m,

(21)

∫

M ′

〈X ′
n(y), X

′
n(y)〉at(y)dVM ′(y) = 1.

We claim that from (20) and (21), at = 1. Indeed, since at is smooth and {Xk}∞k=1

form an orthonormal basis of L2(TM), by Lemma 4.4 and (20) we conclude that
at(y) is constant from (20). From (21), we know at(y) = 1. Hence,

Vol(M) =

∫

M

dVM (x) =

∫

M ′

(ft)∗dVM ′ (y) = Vol(M ′).(22)

Plug Vol(M) = Vol(M ′) into (19). Integrating (19) gives e−(λn+λm)t/2 = e−(λ′

n+λ′

m)t/2,

which implies e−λnt = e−λ′

nt for all n ≥ 1 and hence λn = λ′
n for all n ≥ 1.

So far, (19) becomes: for all n,m = 1, 2, . . ., λn = λ′
n and

(23) 〈Xn(x), Xm(x)〉 = 〈X ′
n(ft(x)), X

′
m(ft(x))〉.

We now show that ft is an isometry. Fix p ∈ M . Note that since ft is a diffeomor-
phism, we can find an orthonormal frame {Ei}di=1 around p and {E′

i}di=1 around
ft(p) so that dft|pEi = ai(p)E

′
i(ft(p)), where ai(p) > 0. To finish the proof, we

have to show that ai(p) = 1 for all i = 1, . . . , d. Choose a vector field Z ∈ C∞(TM)
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so that

(24)























Z =
∑∞

n=1 αnXn,
Z(p) = 0, ∇Z(p) = 0, ∇2Z(p) = 0,
∇2

E1,E1
Z(p) 6= 0,

∇2
E1,E1

Z(p) +∇2
E2,E2

Z(p) = 0,

∇2
El,El

Z(p) = 0 for all l = 3, . . . , d

Construct Z ′ ∈ C∞(TM ′) by Z ′ =
∑∞

n=1 αnX
′
n. Denote the Levi-Civita connection

of M ′ as ∇′. We claim that

(25)



























Z ′ =
∑∞

n=1 αnX
′
n,

Z ′(ft(p)) = 0, ∇′Z ′(ft(p)) = 0, ∇′2Z ′(ft(p)) = 0,

∇′2
E′

1
,E′

1
Z ′(ft(p)) 6= 0,

∇′2
E′

1
,E′

1
Z ′(ft(p)) +∇′2

E′

2
,E′

2
Z ′(ft(p)) = 0,

∇′2
E′

l
,E′

l
Z ′(ft(p)) = 0 for all l = 3, . . . , d

By (23), we know

〈Z ′(ft(p)), Z
′(ft(p))〉 =

∞
∑

k,l=1

αkαl〈X ′
k(ft(p)), X

′
l(ft(p))〉

=

∞
∑

k,l=1

αkαl〈Xk(p), Xl(p)〉 = 〈Z(p), Z(p)〉 = 0

and

〈∇′2Z ′(ft(p)),∇′2Z ′(ft(p))〉 =
∞
∑

k,l=1

αkλ
′
kαlλ

′
l〈X ′

k(ft(p)), X
′
l(ft(p))〉

=
∞
∑

k,l=1

αkλkαlλl〈Xk(p), Xl(p)〉 = 〈∇2Z(p),∇2Z(p)〉 = 0,

which implies Z ′(ft(p)) = 0 and ∇′2Z ′(ft(p)) = 0. Take v ∈ TpM and a curve
γ : [0, ǫ) → M so that γ(0) = p and γ′(0) = v. By extending v to V ∈ Γ(TM) so
that V (γ(t)) = γ′(t), we have

d2

dt2
|t=0〈Z,Z〉(γ(t)) = 2

d

dt
|t=0〈∇V Z,Z〉(γ(t))

= 2
(

〈∇V ∇V Z,Z〉(p) + 〈∇V Z,∇V Z〉(p)
)

= 2〈∇V Z,∇V Z〉(p),
where the last equality holds since Z(p) = 0. On the other hand, by (23) we have

d2

dt2
|t=0〈Z,Z〉(γ(t))

=
d2

dt2
|t=0〈Z ′, Z ′〉(ft ◦ γ(t))

= 2
d

dt
|t=0〈∇′

ft∗V
Z ′, Z ′〉(ft ◦ γ(t))

= 2
(

〈∇′
ft∗V

∇′
ft∗V

Z ′, Z ′〉(ft(p)) + 〈∇′
ft∗V

Z ′,∇′
ft∗V

Z ′〉(ft(p))
)

= 2〈∇′
ft∗V

Z ′,∇′
ft∗V

Z ′〉(ft(p)),
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where the last equality comes from the fact that Z ′(ft(p)) = 0. Thus, we have

〈∇′
ft∗V

Z ′,∇′
ft∗V

Z ′〉(ft(p)) = 〈∇V Z,∇V Z〉(p) = 0,

which implies ∇′
ft∗v

Z ′(ft(p)) = 0. Since ft is diffeomorphic and v is arbitrary, we

conclude that ∇′Z ′(ft(p)) = 0.
Next choose the same curve γ and take the fourth order derivative:

d4

dt4
|t=0〈Z,Z〉(γ(t))

= 2〈∇V ∇V ∇V ∇V Z, Z〉(p)
+8〈∇V ∇V ∇V Z, ∇V Z〉(p)
+6〈∇V ∇V Z, ∇V ∇V Z〉(p)

= 6〈∇V ∇V Z, ∇V ∇V Z〉(p)
= 6〈∇2

V,V Z +∇∇V V Z, ∇2
V,V Z +∇∇V V Z〉(p)

= 6〈∇2
V,V Z, ∇2

V,V Z〉(p)

where the second and the fourth equalities come from the fact that Z(p) = 0 and
∇Z(p) = 0. Similarly, by the fact that Z ′(ft(p)) = 0 and ∇′Z ′(ft(p)) = 0 we have

d4

dt4
|t=0〈Z,Z〉(γ(t))

=
d4

dt4
|t=0〈Z ′, Z ′〉(ft ◦ γ(t))

= 2〈∇′
ft∗V ∇′

ft∗V ∇′
ft∗V ∇′

ft∗V Z
′, Z ′〉(ft(p))

+8〈∇′
ft∗V ∇′

ft∗V ∇′
ft∗V Z

′, ∇′
ft∗V Z

′〉(ft(p))
+6〈∇′

ft∗V ∇′
ft∗V Z

′, ∇′
ft∗V ∇′

ft∗V Z
′〉(ft(p))

= 6〈∇′
ft∗V ∇′

ft∗V Z
′, ∇′

ft∗V ∇′
ft∗V Z

′〉(ft(p))
= 6〈∇′2

ft∗V, ft∗V
Z ′ +∇′

∇′

ft∗V
ft∗V

Z ′, ∇′2
ft∗V,ft∗V

Z ′ +∇′
∇ft∗V ft∗V Z

′〉(ft(p))

= 6〈∇′2
ft∗V,ft∗V

Z ′, ∇′2
ft∗V,ft∗V

Z ′〉(ft(p)).

Since v is arbitrary, we have

〈∇2
Ei,Ei

Z, ∇2
Ei,Ei

Z〉(p) = 〈∇′2
ft∗Ei,ft∗Ei

Z ′, ∇′2
ft∗Ei,ft∗Ei

Z ′〉(ft(p)).

Thus, we have shown the claim (25).
Next we claim that a1(p) = a2(p). Take another smooth vector field Y ∈

C∞(TM) so that Y =
∑∞

n=1 γnXn and Y (p) 6= 0 and construct Y ′ ∈ C∞(TM)
so that Y ′ =

∑∞
n=1 γnX

′
n. Then by taking the curve γ so that γ′(0) = Ei, where

i = 1, . . . , d, we have

d2

dt2
|t=0〈Z, Y 〉(γ(t))

= 〈∇Ei
∇Ei

Z, Y 〉(p) + 2〈∇Ei
Z,∇Ei

Y 〉(p) + 〈Z,∇Ei
∇Ei

Y 〉(p)
= 〈∇2

Ei,Ei
Z +∇∇Ei

Ei
Z, Y 〉(p)

= 〈∇2
Ei,Ei

Z, Y 〉(p)(26)
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since Z(p) = 0 and ∇Z(p) = 0. On the other hand, by the same arguments as
those for (26), the construction of Z ′ and E′

i, we have

d2

dt2
|t=0〈Z, Y 〉(γ(t))

=
d2

dt2
|t=0〈Z ′, Y ′〉(f ◦ γ(t))

= 〈∇′2
ft∗Ei,ft∗Ei

Z ′, Y ′〉(ft(p))
= ai(p)

2〈∇′2
E′

i,E
′

i
Z ′, Y ′〉(ft(p))(27)

From (26) and (27), we have

〈∇2
Ei,Ei

Z, Y 〉(p) = ai(p)
2〈∇′2

E′

i
,E′

i
Z ′, Y ′〉(ft(p)).

Hence, by the assumption of Z we have

0 = 〈∇2Z, Y 〉(p) = 〈∇2
E1,E1

Z +∇2
E2,E2

Z, Y 〉(p)
= a1(p)

2〈∇′2
E′

1
,E′

1
Z ′, Y ′〉(ft(p)) + a2(p)

2〈∇′2
E′

2
,E′

2
Z ′, Y ′〉(ft(p))

Since Y ′(ft(p)) is arbitrary, we know

(28) a1(p)
2∇′2

E′

1
,E′

1
Z ′(ft(p)) + a2(p)

2∇′2
E′

2
,E′

2
Z ′(ft(p)) = 0.

Combining with the fact that

∇′2
E′

1
,E′

1
Z ′(ft(p)) +∇′2

E′

2
,E′

2
Z ′(ft(p)) = 0

in (25), we know a1(p) = a2(p).
By repeating the arguments from (24) to (28), we conclude that a1(p) = a2(p) =

. . . = ad(p). Denote the a(p) = a1(p). To finish the proof, we chooseW ∈ C∞(TM)
so that W =

∑∞
l=1 βlXl, W (p) = 0, ∇W (p) = 0 and ∇2W (p) 6= 0. Construct W ′ =

∑∞
l=1 βlX

′
l . By the same argument, we know W ′(ft(p)) = 0 and ∇′W ′(ft(p)) = 0.

The same arguments for (26) and (27) hold for W , that is, when γ(t) is a curve on
M so that γ(0) = p and γ′(0) = Ei(p) we have

d2

dt2
|t=0〈W,Y 〉(γ(t)) = 〈∇2

Ei,Ei
W,Y 〉(p)

and

d2

dt2
|t=0〈W,Y 〉(γ(t)) = d2

dt2
|t=0〈W ′, Y ′〉(f ◦ γ(t))

= 〈∇′2
ft∗Ei,ft∗Ei

W ′, Y ′〉(ft(p)) = a(p)2〈∇′2
E′

i
,E′

i
W ′, Y ′〉(ft(p)).

Thus we have

a(p)2〈∇′2W ′, Y ′〉 = a(p)2〈
d
∑

i=1

∇′2
E′

i,E
′

i
W ′, Y ′〉 = 〈

d
∑

i=1

∇2
Ei,Ei

W,Y 〉 = 〈∇2W,Y 〉.

On the other hand, the following equality holds due to the definition of W ′ and Y ′:

〈∇′2W ′, Y ′〉 = 〈
∞
∑

l=1

βlλ
′
lX

′
l ,

∞
∑

k=1

γkX
′
k〉 =

∞
∑

l,k=1

βlλ
′
lγk〈X ′

l , X
′
k〉

=

∞
∑

l,k=1

βlλlγk〈Xl, Xk〉 = 〈∇2W,Y 〉,



16 HAU-TIENG WU

which gives us a(p) = 1 and hence ft is isometric. We have thus finished the
proof. �

5. Precompactness of Md,k,D

By Theorem 4.6, we have a distance, referred to as the vector spectral distance,
in the space of the isometry classes in Md,k,D. We finally can state the pre-
compactness theorem. We need Lemma 1.1 to finish the proof.

Theorem 5.1. For any t > 0, the space of the isometry classes in Md,k,D is

dt-precompact.

Proof. Fix t > 0. For any M ∈ Md,k,D, a ∈ B(M, g) and x ∈ M , we have

‖V a
t (x)‖2h1 := Vol(M)2

∑

i,j≥1

(1 + i2/d + j2/d)e−(λi+λj)t〈Xi(x), Xj(x)〉2

≤ A(d, k,D)Vol(M)2
∑

i,j≥1

(1 + λi + λj)e
−(λi+λj)t〈Xi(x), Xj(x)〉2

≤ A(d, k,D)E(d, k,D)t−d(F (0, d) + t−1F (1, d)),

where the first inequality follows from Lemma 4.2(1) and the second inequality
follows from Lemma 4.2(3). Since A(d, k,D), E(d, k,D), F (0, d) and F (1, d) are
universal constants, we know that the set

K0 := {V a
t (x)}x∈M,M∈Md,k,D,a∈B(M,g) ⊂ h1/d

is bounded in h1 ⊂ ℓ2, which is hence relative compact inside ℓ2 by Rellich’s The-
orem. Denote the closure of K0 in ℓ2 by K. Denote the set of all non-empty
closed subsets of K by F(K), equipped with the Hausdorff distance HD associated
with the canonical metric on ℓ2. By Lemma 1.1, the metric space (F(K),HD) is
precompact.

By Theorem 3.1, since M is compact, V a
t (M) is compact inside ℓ2 for any a ∈

B(M, g) and M ∈ Md,k,D, and hence V a
t (M) ∈ F(K). Consider a subset E of

F(K) consisting of V a
t (M), where M ∈ Md,k,D, a ∈ B(M, g), that is,

E = {V a
t (M)}M∈Md,k,D ,a∈B(M,g) ⊂ F(K).

Note that E is precompact with related to the distance HD since closed subsets
of a compact set are compact. Given M ∈ Md,k,D, define a subset Vt(M) of E
consisting of V a

t (M) for all a ∈ B(M, g), that is,

(29) Vt(M) := {V a
t (M)}a∈B(M,g) ⊂ E.

Here we view V a
t (M) as a point in the set E. By Lemma 4.3, Vt(M) is a closed

subset of E with related to the Hausdorff distance HD. Indeed, by the closeness of
B(M, g) and Lemma 4.3 we have

HD(V a
t (M), V b

t (M)) ≤ 2Vol(M)2dB(M,g)(a, b) sup
x∈M

|K(N)
TM (t, x, x)|,

which implies the closeness of Vt(M). Then, consider F(E) the set of non-empty
closed subsets of E, equipped with the Hausdorff distance hHD associated with the
distance HD. By Lemma 1.1 again, we conclude that F(E) is precompact with
related to the distance hHD. Finally, the set {Vt(M)}M∈Md,k,D

, which is a subset
of F(E), is precompact with related to the Hausdorff distance hHD.
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Notice that by the definition of the Hausdorff distance in (17) and Theorem 4.6,
(18) is nothing but the Hausdorff distance hHD, that is,

dt(M,M ′) = dHD(Vt(M), Vt(M
′)),

and we conclude the proof.
�
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