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Abstract

We establish theoretical results concerning all local optima of various regularized M -
estimators, where both loss and penalty functions are allowed to be nonconvex. Our
results show that as long as the loss function satisfies restricted strong convexity and the
penalty function satisfies suitable regularity conditions, any local optimum of the compos-
ite objective function lies within statistical precision of the true parameter vector. Our
theory covers a broad class of nonconvex objective functions, including corrected versions
of the Lasso for error-in-variables linear models; regression in generalized linear models
using nonconvex regularizers such as SCAD and MCP; and graph and inverse covariance
matrix estimation. On the optimization side, we show that a simple adaptation of com-
posite gradient descent may be used to compute a global optimum up to the statistical
precision ǫstat in log(1/ǫstat) iterations, which is the fastest possible rate of any first-order
method. We provide a variety of simulations to illustrate the sharpness of our theoretical
predictions.

1 Introduction

The problem of optimizing a nonconvex function is known to be computationally intractable in
general [18, 24]. Unlike convex functions, nonconvex functions may possess local optima that
are not global optima, and standard iterative methods such as gradient descent and coordinate
descent are only guaranteed to converge to a local optimum. Unfortunately, statistical results
regarding nonconvex M -estimation often provide guarantees about the accuracy of global
optima. Computing such global optima—or even a local optimum that is suitably “close” to
a global optimum—may be extremely difficult in practice, which leaves a significant gap in
the theory.

However, nonconvex functions arising from statistical estimation problems are often not
constructed in an adversarial manner, leading to the natural intuition that the behavior of
such functions might be “better” than predicted by worst-case theory. Recent work [13] has
confirmed this intuition in one very specific case: a modified version of the Lasso designed for
error-in-variables regression. Although the Hessian of this modified Lasso objective always has
a large number of negative eigenvalues in the high-dimensional setting (hence is nonconvex),
it nonetheless resembles a strongly convex function when restricted to a cone set, leading to
provable bounds on statistical and optimization error.

In this paper, we study the question of whether it is possible to certify “good behavior,”
in both a statistical and computational sense, for nonconvex M -estimators. On the statistical
level, we provide an abstract result, applicable to a broad class of (potentially nonconvex)
M -estimators, which bounds the distance between and any local optimum and the unique
minimum of the population risk. Although local optima of nonconvex objectives may not
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coincide with global optima, our theory shows that any local optimum is essentially as good
as a global optimum from a statistical perspective. The class of M -estimators covered by our
theory includes the modified Lasso as a special case, but our results concerning local optima
are based on a much simpler argument than the arguments used to establish similar results
in previous work [13].

In addition to nonconvex loss functions, our theory also applies to nonconvex regularizers,
thereby shedding new light on a long line of recent work involving the nonconvex SCAD and
MCP regularizers [6, 4, 26, 27]. Various methods have been proposed for optimizing convex
loss functions with nonconvex penalties, including local quadratic approximation (LQA) [6],
minorization-maximization (MM) [10], and local linear approximation (LLA) [28]. However,
these methods are only guaranteed to generate local optima of the composite objective, which
have not been proven to be well-behaved. More recently, Zhang and Zhang [27] provided
statistical guarantees concerning global optima of least-squares linear regression with various
nonconvex penalties, and proposed that gradient descent initialized at a Lasso optimum could
be used to obtain specific local minima. In the same spirit, Fan et al. [7] showed that if the
LLA algorithm is initialized at a Lasso optimum that satisfies certain properties, then the
two-stage procedure produces an oracle solution for various nonconvex penalties. For a more
complete overview of existing work, we refer the reader to the survey paper by Zhang and
Zhang [27] and the references cited therein.

In contrast to these previous results, our work provides a set of regularity conditions under
which all local/global optima are guaranteed to lie within a small ball of the population-level
minimum, which ensures that standard methods such as projected and composite gradient
descent [17] are sufficient for obtaining estimators that lie within statistical error of the truth.
This eliminates the need to design specialized optimization algorithms that will locate specific
local optima, as prescribed by previous authors. In fact, we establish that under suitable
conditions, a modified form of composite gradient descent only requires log(1/ǫstat) iterations
to obtain a solution that is accurate up to statistical precision ǫstat. Furthermore, our methods
are not restricted to least-squares or even convex loss functions, and cover various nonconvex
loss functions, as well.

Notation. For functions f(n) and g(n), we write f(n) - g(n) to mean that f(n) ≤ cg(n) for
some universal constant c ∈ (0,∞), and similarly, f(n) % g(n) when f(n) ≥ c′g(n) for some
universal constant c′ ∈ (0,∞). We write f(n) ≍ g(n) when f(n) - g(n) and f(n) % g(n)
hold simultaneously. For a vector v ∈ Rp and a subset S ⊆ {1, . . . , p}, we write vS ∈ RS to
denote the vector v restricted to S. For a matrix M , we write |||M |||2 and |||M |||F to denote
the spectral and Frobenius norms, respectively, and write |||M |||max := maxi,j |mij| to denote
the elementwise ℓ∞-norm of M . Finally, for a function h : Rp → R, we write ∇h to denote a
gradient or subgradient, if it exists.

2 Problem formulation

In this section, we develop the general theory for regularized M -estimators that we will
consider in this paper. We begin by establishing some notation and basic assumptions, before
turning to the class of nonconvex regularizers and nonconvex loss functions covered in this
paper.

2



2.1 Background

Given a collection of n samples Zn1 = {Z1, . . . , Zn}, drawn from a marginal distribution P

over a space Z, consider a loss function Ln : Rp× (Z)n → R. The value Ln(β;Zn1 ) serves as a
measure of the “fit” between a parameter vector β ∈ Rp and the observed data. This empirical
loss function should be viewed as a surrogate to the population risk function L : Rp → R,
given by

L(β) := EZ
[
Ln(β;Zn1 )

]
.

Our goal is to estimate the parameter vector β∗ := arg min
β∈Rp

L(β) that minimizes the popula-

tion risk, assumed to be unique.
To this end, we consider a regularized M -estimator of the form

β̂ ∈ arg min
g(β)≤R, β∈Ω

{Ln(β;Zn1 ) + ρλ(β)} , (1)

where ρλ : Rp → R is a regularizer, depending on a tuning parameter λ > 0, which serves to
enforce a certain type of structure on the solution. In all cases, we consider regularizers that
are separable across coordinates, and with a slight abuse of notation, we write

ρλ(β) =

p∑

j=1

ρλ(βj).

Our theory allows for possible nonconvexity in both the loss function Ln and the regularizer
ρλ. Due to this potential nonconvexity, our M -estimator also includes a side constraint
g : Rp → R+, which we require to be a convex function satisfying the lower bound g(β) ≥ ‖β‖1,
for all β ∈ Rp. Consequently, any feasible point for the optimization problem (1) satisfies the
constraint ‖β‖1 ≤ R, and as long as the empirical loss and regularizer are continuous, the
Weierstrass extreme value theorem guarantees that a global minimum β̂ exists. Finally, we
allow for an additional side constraint β ∈ Ω, where Ω is some convex set containing β∗.
For the graphical Lasso considered in Section 3.4, we take Ω = S+ to be the set of positive
semidefinite matrices; in settings where such an additional condition is extraneous, we simply
set Ω = Rp.

2.2 Nonconvex regularizers

We now state and discuss the conditions imposed on the regularizer, defined in terms of a
univariate function ρλ : R → R:

Assumption 1.

(i) The function ρλ satisfies ρλ(0) = 0 and is symmetric around zero (i.e., ρλ(t) = ρλ(−t)
for all t ∈ R).

(ii) On the positive real line, the function ρλ is nondecreasing and subadditive, meaning
ρλ(s+ t) ≤ ρλ(s) + ρλ(t) for all s, t ≥ 0.

(iii) For t > 0, the function t 7→ ρλ(t)
t is nonincreasing in t.

(iv) The function ρλ is differentiable for all t 6= 0 and subdifferentiable at t = 0, with
subgradients at t = 0 bounded by λL.
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(v) There exists µ > 0 such that the function ρλ,µ(t) := ρλ(t) + µt2 is convex.

Conditions (i)–(iii) were previously proposed in Zhang and Zhang [27] and are satisfied
for a variety of regularizers, including the usual ℓ1-norm and nonconvex regularizers such as
SCAD, MCP, and capped-ℓ1. However, conditions (iv)–(v) exclude the capped-ℓ1 penalty; for
details on how a modified version of our arguments may be used to analyze capped-ℓ1, see
Appendix F. Note that condition (v) is a type of curvature constraint that controls the level
of nonconvexity of ρλ.

Many types of regularizers that are relevant in practice satisfy Assumption 1. For instance,
the usual ℓ1-norm, ρλ(β) = ‖β‖1, satisfies the conditions. More exotic functions have been
studied in a line of past work on nonconvex regularization, and we provide a few examples
here:

SCAD penalty: This penalty, due to Fan and Li [6], takes the form

ρλ(t) :=





λ|t|, for |t| ≤ λ,

−(t2 − 2aλ|t|+ λ2)/(2(a − 1)), for λ < |t| ≤ aλ,

(a+ 1)λ2/2, for |t| > aλ,

(2)

where a > 2 is a fixed parameter. As verified in Lemma 7 of Appendix A.2, the SCAD penalty
satisfies the conditions of Assumption 1 with L = 1 and µ = 1

a−1 .

MCP regularizer: This penalty, due to Zhang [26], takes the form

ρλ(t) := sign(t)λ ·
∫ |t|

0

(
1− z

λb

)
+
dz, (3)

where b > 0 is a fixed parameter. As verified in Lemma 8 in Appendix A.2, the MCP
regularizer satisfies the conditions of Assumption 1 with L = 1 and µ = 1

b .

2.3 Nonconvex loss functions and restricted strong convexity

Throughout this paper, we require the loss function Ln to be differentiable, but we do not
require it to be convex. Instead, we impose a weaker condition known as restricted strong
convexity (RSC). Such conditions have been discussed in previous literature [16, 1], and involve
a lower bound on the remainder in the first-order Taylor expansion of Ln. In particular, our
main statistical result is based on the following RSC condition:

〈∇Ln(β∗ +∆)−∇Ln(β∗), ∆〉 ≥





α1‖∆‖22 − τ1
log p

n
‖∆‖21, for all ‖∆‖2 ≤ 1 (4a)

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1, for all ‖∆‖2 ≥ 1, (4b)

where the αj’s are strictly positive constants and the τj’s are nonnegative constants.

To understand this condition, note that if Ln were actually strongly convex, then both
these RSC inequalities would hold with α1 = α2 = α > 0 and τ1 = τ2 = 0. However, in the
high-dimensional setting (p≫ n), the empirical loss Ln can never be strongly convex, but the
RSC condition may still hold with strictly positive (αj , τj). On the other hand, if Ln is convex
(but not strongly convex), the left-hand expression in inequality (4) is always nonnegative, so
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inequalities (4a) and (4b) hold trivially for ‖∆‖1
‖∆‖2

≥
√

α1n
τ1 log p

and ‖∆‖1
‖∆‖2

≥ α2

τ2

√
n

log p , respectively.

Hence, the RSC inequalities only enforce a type of strong convexity condition over a cone set

of the form
{

‖∆‖1
‖∆‖2

≤ c
√

n
log p

}
.

It is important to note that the class of functions satisfying RSC conditions of this type
is much larger than the class of convex functions; past work [13] exhibits a large family of
nonconvex quadratic functions that satisfy this condition (see Section 3.2 below for further
discussion). Finally, note that we have stated two separate RSC inequalities (4), unlike in
past work [16, 1, 13], which only imposes the first condition (4a) over the entire range of ∆.
As illustrated in the corollaries of Sections 3.3 and 3.4 below, the first inequality (4a) can
only hold locally over ∆ for more complicated types of functions; in contrast, as proven in
Appendix B.1, inequality (4b) is implied by inequality (4a) in cases where Ln is convex.

3 Statistical guarantee and consequences

With this setup, we now turn to the statement and proof of our main statistical guarantee, as
well as some consequences for various statistical models. Our theory applies to any vector β̃ ∈
Rp that satisfies the first-order necessary conditions to be a local minimum of the program (1):

〈∇Ln(β̃) +∇ρλ(β̃), β − β̃〉 ≥ 0, for all feasible β ∈ Rp. (5)

When β̃ lies in the interior of the constraint set, this condition reduces to the usual zero
subgradient condition:

∇Ln(β̃) +∇ρλ(β̃) = 0.

3.1 Main statistical result

Our main theorem is deterministic in nature, specifying conditions on the regularizer, loss
function, and parameters, which guarantee that any local optimum β̃ lies close to the target
vector β∗ = arg min

β∈∈Rp
L(β).

Theorem 1. Suppose the regularizer ρλ satisfies Assumption 1, the empirical loss Ln satisfies
the RSC conditions (4) with α1 > µ, and β∗ is feasible for the objective. Consider any choice
of λ such that

2

L
·max

{
‖∇Ln(β∗)‖∞, α2

√
log p

n

}
≤ λ ≤ α2

6RL
, (6)

and suppose n ≥ 16R2τ22
α2
2

log p. Then any vector β̃ satisfying the first-order necessary condi-

tions (5) satisfies the error bounds

‖β̃ − β∗‖2 ≤
7λ

√
k

4(α1 − µ)
, and ‖β̃ − β∗‖1 ≤

63λk

4(α1 − µ)
, (7)

where k = ‖β∗‖0.

From the bound (7), note that the squared ℓ2-error grows proportionally with k, the
number of non-zeros in the target parameter, and with λ2. As will be clarified momentarily,

choosing λ proportional to
√

log p
n and R proportional to 1

λ will satisfy the requirements of
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Theorem 1 w.h.p. for many statistical models, in which case we have a squared-ℓ2 error that
scales as k log p

n , as expected.

We stress that the statement Theorem 1 is entirely deterministic. Corresponding proba-
bilistic results will be derived in subsequent sections, where we establish that, with appropriate
choices of (λ,R), the required conditions hold w.h.p. In particular, applying the theorem to
a particular model requires bounding the random quantity ‖Ln(β∗)‖∞ and verifying the RSC
condition (4).

Proof. Introducing the shorthand ν̃ := β̃ − β∗, we begin by proving that ‖ν̃‖2 ≤ 1. If not,
then inequality (4b) gives the lower bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≥ α2‖ν̃‖2 − τ2

√
log p

n
‖ν̃‖1. (8)

Since β∗ is feasible, we may take β = β∗ in inequality (5), and combining with inequality (8)
yields

〈∇ρλ(β̃)−∇Ln(β∗), ν̃〉 ≥ α2‖ν̃‖2 − τ2

√
log p

n
‖ν̃‖1. (9)

By Hölder’s inequality, followed by the triangle inequality, we also have

〈∇ρλ(β̃)−∇Ln(β∗), ν̃〉 ≤
{
‖∇ρλ(β̃)‖∞ + ‖∇Ln(β∗)‖∞

}
‖ν̃‖1

(i)

≤
{
λL+

λL

2

}
‖ν̃‖1,

where inequality (i) follows since ‖∇Ln(β∗)‖∞ ≤ λL
2 by the bound (6), and ‖∇ρλ(β̃)‖∞ ≤ λL

by Lemma 5 in Appendix A.1. Combining this upper bound with inequality (9) and rear-
ranging then yields

‖ν̃‖2 ≤
‖ν̃‖1
α2

(
3λL

2
+ τ2

√
log p

n

)
≤ 2R

α2

(
3λL

2
+ τ2

√
log p

n

)
.

By our choice of λ from inequality (6) and the assumed lower bound on the sample size n,
the right hand side is at most 1, so ‖ν̃‖2 ≤ 1, as claimed.

Consequently, we may apply inequality (4a), yielding the lower bound

〈∇Ln(β̃)−∇Ln(β∗), ν̃〉 ≥ α1‖ν̃‖22 − τ1
log p

n
‖ν̃‖21. (10)

Since the function ρλ,µ(β) := ρλ(β) + µ‖β‖22 is convex by assumption, we have

ρλ,µ(β
∗)− ρλ,µ(β̃) ≥ 〈∇ρλ,µ(β̃), β∗ − β̃〉 = 〈∇ρλ(β̃) + 2µβ̃, β∗ − β̃〉,

implying that

〈∇ρλ(β̃), β∗ − β̃〉 ≤ ρλ(β
∗)− ρλ(β̃) + µ‖β̃ − β∗‖22. (11)
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Combining inequality (10) with inequalities (5) and (11), we obtain

α1‖ν̃‖22 − τ1
log p

n
‖ν̃‖21 ≤ −〈∇Ln(β∗), ν̃〉+ ρλ(β

∗)− ρλ(β̃) + µ‖β̃ − β∗‖22
(i)

≤ ‖∇Ln(β∗)‖∞ · ‖ν̃‖1 + λL (‖ν̃A‖1 − ‖ν̃Ac‖1) + µ‖ν̃‖22
(ii)

≤ 3λL

2
‖ν̃A‖1 −

λL

2
‖ν̃Ac‖1 + µ‖ν̃‖22, (12)

where inequality (i) is obtained by applying Hölder’s inequality to the first term and Lemma 6
in Appendix A.1 to the middle two terms, and inequality (ii) uses the bound

‖ν̃‖1 ≤ ‖ν̃A‖1 + ‖ν̃Ac‖1.

Rearranging inequality (12), we find that

0 ≤ 2(α1 − µ)‖ν̃‖22 ≤ 3λL‖ν̃A‖1 − λL‖ν̃Ac‖1 + 4Rτ1
log p

n
‖ν̃‖1

≤ 3λL‖ν̃A‖1 − λL‖ν̃Ac‖1 + α2

√
log p

n
‖ν̃‖1

≤ 7λL

2
‖ν̃A‖1 −

λL

2
‖ν̃Ac‖1, (13)

implying that ‖ν̃Ac‖1 ≤ 8‖ν̃A‖1. Consequently,

‖ν̃‖1 = ‖ν̃A‖1 + ‖ν̃Ac‖1 ≤ 9‖ν̃A‖1 ≤ 9
√
k‖ν̃A‖2 ≤ 9

√
k‖ν̃‖2. (14)

Furthermore, inequality (13) implies that

2(α1 − µ)‖ν̃‖22 ≤
7λ

2
‖ν̃A‖1 ≤

7λ
√
k

2
‖ν̃‖2.

Rearranging yields the ℓ2-bound, whereas the ℓ1-bound follows from by combining the ℓ2-
bound with the cone inequality (14).

Remark 1. For convex M -estimators, Negahban et al. [16] have shown that arguments ap-
plied to ℓ1-regularizers may be generalized in a straightforward manner to other types of
“decomposable” regularizers, including various types of norms for group sparsity, the nuclear
norm for low-rank matrices, etc. In our present setting, where we allow for nonconvexity in
the loss and regularizer, Theorem 1 has an analogous generalization.

We now turn to various consequences of Theorem 1 for nonconvex loss functions and
regularizers of interest. The main challenge in moving from Theorem 1 to these consequences
is to establish that the RSC conditions (4) hold w.h.p. for appropriate choices of positive
constants {(αj , τj)}2j=1.

3.2 Corrected linear regression

We begin by considering the case of high-dimensional linear regression with systematically
corrupted observations. Recall that in the framework of ordinary linear regression, we have
the linear model

yi = 〈β∗, xi〉︸ ︷︷ ︸∑p
j=1

β∗

j xij

+ ǫi, for i = 1, . . . , n, (15)
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where β∗ ∈ Rp is the unknown parameter vector and {(xi, yi)}ni=1 are observations. Following
Loh and Wainwright [13], assume we instead observe pairs {(zi, yi)}ni=1, where the zi’s are
systematically corrupted versions of the corresponding xi’s. Some examples of corruption
mechanisms include the following:

(a) Additive noise: We observe zi = xi+wi, where wi ∈ Rp is a random vector independent
of xi, say zero-mean with known covariance matrix Σw.

(b) Missing data: For some fraction ϑ ∈ [0, 1), we observe a random vector zi ∈ Rp such
that for each component j, we independently observe zij = xij with probability 1 − ϑ,
and zij = ∗ with probability ϑ.

We use the population and empirical loss functions

L(β) = 1

2
βTΣxβ − β∗TΣxβ, and Ln(β) =

1

2
βT Γ̂β − γ̂Tβ, (16)

where (Γ̂, γ̂) are estimators for (Σx,Σxβ
∗) depending only on {(zi, yi)}ni=1. It is easy to see

that β∗ = argminβ L(β). From the formulation (1), the corrected linear regression estimator
is given by

β̂ ∈ arg min
g(β)≤R

{
1

2
βT Γ̂β − γ̂Tβ + ρλ(β)

}
. (17)

We now state a concrete corollary in the case of the additive noise (model (a) above). In
this case, as discussed in Loh and Wainwright [13], an appropriate choice of the pair (Γ̂, γ̂) is
given by

Γ̂ =
ZTZ

n
− Σw, and γ̂ =

ZTy

n
. (18)

In the high-dimensional setting (p ≫ n), the matrix Γ̂ is always negative-definite: the matrix
ZTZ
n has rank at most n, and then the positive definite matrix Σw is subtracted to obtain

Γ̂. Consequently, the empirical loss function Ln previously defined (16) is nonconvex. Other
choices of Γ̂ are applicable to the missing data (model (b)), and also lead to nonconvex
programs (see the paper [13] for further details).

Corollary 1. Suppose we have i.i.d. observations {(zi, yi)}ni=1 from a corrupted linear model
with additive noise, where the xi’s are sub-Gaussian. Suppose (λ,R) are chosen such that β∗

is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then given a sample size n ≥ C max{R2, k} log p, any local optimum β̃ of the nonconvex
program (17) satisfies the bounds

‖β̃ − β∗‖2 ≤
c0λ

√
k

λmin(Σx)− 2µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

λmin(Σx)− 2µ
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.

Remark 2. When ρλ(β) = λ‖β‖1 and g(β) = ‖β‖1, then taking λ ≍
√

log p
n and R = b0

√
k for

some constant b0 ≥ ‖β∗‖2 yields the required scaling n % k log p. Hence, the bounds of Corol-
lary 1 agree with bounds previously established in Theorem 1 of Loh and Wainwright [13].
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Note, however, that those results are stated only for a global minimum β̂ of the program (17),
whereas Corollary 1 is a much stronger result holding for any local minimum β̃.

Theorem 2 of Loh and Wainwright [13] indirectly implies similar bounds on ‖β̃−β∗‖1 and
‖β̃ − β∗‖2, since the proposed projected gradient descent algorithm may become stuck in a
local minimum. In contrast, our argument here is much more direct and does not rely on an
algorithmic proof. Furthermore, our result is applicable to a more general class of (possibly
nonconvex) penalties beyond the usual ℓ1-norm.

Corollary 1 also has important consequences in the case where pairs {(xi, yi)}ni=1 from the
linear model (15) are observed cleanly without corruption and ρλ is a nonconvex penalty. In
that case, the empirical loss Ln previously defined (16) is equivalent to the least-squares loss,
modulo a constant factor. Much existing work, including that of Fan and Li [6] and Zhang
and Zhang [27], first establishes statistical consistency results concerning global minima of
the program (17), then provides specialized algorithms such as a local linear approximation
(LLA) for obtaining specific local optima that are provably close to global optima. However,
our results show that any optimization algorithm guaranteed to converge to a local optimum
of the program suffices. See Section 4 for a more detailed discussion of optimization procedures
and fast convergence guarantees for obtaining local minima.

Our theory also provides a theoretical justification for why the usual choice of a = 3.7 for
linear regression with the SCAD penalty [6] is reasonable. Indeed, as discussed in Section 2.2,
we have

µ =
1

a− 1
≈ 0.37

in that case. Since xi ∼ N(0, I) in the SCAD simulations, we have λmin(Σx) > 2µ for the
choice a = 3.7. For further comments regarding the parameter a in the SCAD penalty, see
the discussion concerning Figure 2 in Section 5.

3.3 Generalized linear models

Moving beyond linear regression, we now consider the case where observations are drawn from
a generalized linear model (GLM). Recall that a GLM is characterized by the conditional
distribution

P(yi | xi, β, σ) = exp

{
yi〈β, xi〉 − ψ(xTi β)

c(σ)

}
,

where σ > 0 is a scale parameter and ψ is the cumulant function, By standard properties of
exponential families [15, 12], we have

ψ′(xTi β) = E[yi | xi, β.σ],

In our analysis, we assume that there exists αu > 0 such that ψ′′(t) ≤ αu for all t ∈ R.
Note that this boundedness assumption holds in various settings, including linear regression,
logistic regression, and multinomial regression, but does not hold for Poisson regression. The
bound will be necessary to establish both statistical consistency results in the present section
and fast global convergence guarantees for our optimization algorithms in Section 4.

The population loss corresponding to the negative log likelihood is then given by

L(β) = −E[logP(xi, yi)] = −E[log P(xi)]−
1

c(σ)
· E[yi〈β, xi〉 − ψ(xTi β)],

9



giving rise to the population-level and empirical gradients

∇L(β) = 1

c(σ)
· E[(ψ′(xTi β)− yi)xi], and ∇Ln(β) =

1

c(σ)
· 1
n

n∑

i=1

(
ψ′(xTi β)− yi

)
xi.

Since we are optimizing over β, we will rescale the loss functions and assume c(σ) = 1. We
may check that if β∗ is the true parameter of the GLM, then ∇L(β∗) = 0; furthermore,

∇2Ln(β) =
1

n

n∑

i=1

ψ′′(xTi β)xix
T
i � 0,

so Ln is convex.

We will assume that β∗ is sparse and optimize the penalized maximum likelihood program

β̂ ∈ arg min
g(β)≤R

{
1

n

n∑

i=1

(
ψ(xTi β)− yix

T
i β
)
+ ρλ(β)

}
. (19)

We then have the following corollary, proved in Appendix B.3:

Corollary 2. Suppose we have i.i.d. observations {(xi, yi)}ni=1 from a GLM, where the xi’s
are sub-Gaussian. Suppose (λ,R) are chosen such that β∗ is feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then given a sample size n ≥ CR2 log p, any local optimum β̃ of the nonconvex program (19)
satisfies

‖β̃ − β∗‖2 ≤
c0λ

√
k

λmin(Σx)− 2µ
, and ‖β̃ − β∗‖1 ≤

c′0λk

λmin(Σx)− 2µ
,

with probability at least 1− c1 exp(−c2 log p), where ‖β∗‖0 = k.

Remark 3. Although Ln is convex in this case, the overall program may not be convex if
the regularizer ρλ is nonconvex, giving rise to multiple local optima. For instance, see the
simulations of Figure 3 in Section 5 for a demonstration of such local optima. In past work,
Breheny and Huang [4] studied logistic regression with SCAD and MCP regularizers, but
did not provide any theoretical results on the quality of the local optima. In this context,
Corollary 2 shows that their coordinate descent algorithms are guaranteed to converge to a
local optimum β̃ within close proximity of the true parameter β∗.

3.4 Graphical Lasso

Finally, we specialize our results to the case of the graphical Lasso. Given p-dimensional
observations {xi}ni=1, the goal is to estimate the structure of the underlying (sparse) graphical
model. Recall that the population and empirical losses for the graphical Lasso are given by

L(Θ) = trace(ΣΘ)− log det(Θ), and Ln(Θ) = trace(Σ̂Θ)− log det(Θ),
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where Σ̂ is an empirical estimate for the covariance matrix Σ = Cov(xi). The objective
function for the graphical Lasso is then given by

Θ̂ ∈ arg min
g(Θ)≤R, Θ�0



trace(Σ̂Θ)− log det(Θ) +

p∑

j,k=1

ρλ(Θjk)



 , (20)

where we apply the (possibly nonconvex) penalty function ρλ to all entries of Θ, and define
Ω :=

{
Θ ∈ Rp×p | Θ = ΘT , Θ � 0

}
.

A host of statistical and algorithmic results have been established for the graphical Lasso
in the case of Gaussian observations with an ℓ1-penalty [3, 8, 21, 25], and more recently
for discrete-valued observations, as well [14]. In addition, a version of the graphical Lasso
incorporating a nonconvex SCAD penalty has been proposed [5]. Our results subsume previous
Frobenius error bounds for the graphical Lasso, and again imply that even in the presence of
a nonconvex regularizer, all local optima of the nonconvex program (20) remain close to the
true inverse covariance matrix Θ∗.

As suggested by Loh and Wainwright [14], the graphical Lasso easily accommodates sys-
tematically corrupted observations, with the only modification being the form of the sample
covariance matrix Σ̂. Furthermore, the program (20) is always useful for obtaining a consis-
tent estimate of a sparse inverse covariance matrix, regardless of whether the xi’s are drawn
from a distribution for which Θ∗ is relevant in estimating the edges of the underlying graph.
Note that other variants of the graphical Lasso exist in which only off-diagonal entries of Θ
are penalized, and similar results for statistical consistency hold in that case. Here, we assume
all entries are penalized equally in order to simplify our arguments. The same framework is
considered by Fan et al. [5].

We have the following result, proved in Appendix B.4. The statement of the corollary
is purely deterministic, but in cases of interest (say, sub-Gaussian observations), the devia-
tion condition (21) holds with probability at least 1 − c1 exp(−c2 log p), translating into the
Frobenius norm bound (22) holding with the same probability.

Corollary 3. Suppose we have an estimate Σ̂ of the covariance matrix Σ based on (possibly
corrupted) observations {xi}ni=1, such that

∣∣∣
∣∣∣
∣∣∣Σ̂− Σ

∣∣∣
∣∣∣
∣∣∣
max

≤ c0

√
log p

n
. (21)

Also suppose Θ∗ has at most s nonzero entries. Suppose (λ,R) are chosen such that Θ∗ is
feasible and

c

√
log p

n
≤ λ ≤ c′

R
.

Then with a sample size n > Cs log p, for sufficiently large constant C > 0, any local optimum
Θ̃ of the nonconvex program (20) satisfies

∣∣∣
∣∣∣
∣∣∣Θ̃−Θ∗

∣∣∣
∣∣∣
∣∣∣
F
≤ c′0λ

√
s

(|||Θ∗|||2 + 1)−2 − µ
. (22)

When ρ is simply the ℓ1-penalty, the bound (22) from Corollary 3 matches the minimax
rates for Frobenius norm estimation of an s-sparse inverse covariance matrix [21, 20].
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4 Optimization algorithms

We now describe how a version of composite gradient descent may be applied to efficiently
optimize the nonconvex program (1), and show that it enjoys a linear rate of convergence
under suitable conditions. In this section, we focus exclusively on a version of the optimization
problem with the side function

gλ,µ(β) :=
1

λ

{
ρλ(β) + µ‖β‖22

}
, (23)

which is convex by Assumption 1. We may then write the program (1) as

β̂ ∈ arg min
gλ,µ(β)≤R, β∈Ω

{(
Ln(β)− µ‖β‖22

)
︸ ︷︷ ︸

L̄n

+λgλ,µ(β)
}
. (24)

In this way, the objective function decomposes nicely into a sum of a differentiable but noncon-
vex function and a possibly nonsmooth but convex penalty. Applied to the representation (24)
of the objective function, the composite gradient descent procedure of Nesterov [17] produces
a sequence of iterates {βt}∞t=0 via the updates

βt+1 ∈ arg min
gλ,µ(β)≤R

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
λ

η
gλ,µ(β)

}
, (25)

where 1
η is the stepsize. As discussed in Section 4.2, these updates may be computed in a

relatively straightforward manner.

4.1 Fast global convergence

The main result of this section is to establish that the algorithm defined by the iterates (25)
converges very quickly to a δ-neighborhood of any global optimum, for all tolerances δ that
are of the same order (or larger) than the statistical error.

We begin by setting up the notation and assumptions underlying our result. The Taylor
error around the vector β2 in the direction β1 − β2 is given by

T (β1, β2) := Ln(β1)− Ln(β2)− 〈∇Ln(β2), β1 − β2〉. (26)

We analogously define the Taylor error T for the modified loss function Ln, and note that

T (β1, β2) = T (β1, β2)− µ‖β1 − β2‖22. (27)

For all vectors β2 ∈ B2(3)∩B1(R), we require the following form of restricted strong convexity:

T (β1, β2) ≥





α1‖β1 − β2‖22 − τ1
log p

n
‖β1 − β2‖21, for all ‖β1 − β2‖2 ≤ 3, (28a)

α2‖β1 − β2‖2 − τ2

√
log p

n
‖β1 − β2‖1, for all ‖β1 − β2‖2 ≥ 3. (28b)

The conditions (28) are similar but not identical to the earlier RSC conditions (4). The main
difference is that we now require the Taylor difference to be bounded below uniformly over

12



β2 ∈ B2(3) ∩ B1(R), as opposed to for a fixed β2 = β∗. In addition, we assume an analogous
upper bound on the Taylor series error:

T (β1, β2) ≤ α3‖β1 − β2‖22 + τ3
log p

n
‖β1 − β2‖21, for all β1, β2 ∈ Ω, (29)

a condition referred to as restricted smoothness in past work [1]. Throughout this section, we
assume αi > µ for all i, where µ is the coefficient ensuring the convexity of the function gλ,µ
from equation (23). Furthermore, we define α = min{α1, α2} and τ = max{τ1, τ2, τ3}.

The following theorem applies to any population loss function L for which the population
minimizer β∗ is k-sparse and ‖β∗‖2 ≤ 1, and under the scaling n > Ck log p, for a constant
C depending on the αi’s and τi’s. Note that this scaling is reasonable, since no estimator of
a k-sparse vector in p dimensions can have low ℓ2-error unless the condition holds (see the
paper [19] for minimax rates). We show that the composite gradient updates (25) exhibit a
type of globally geometric convergence in terms of the quantity

κ :=
1− α−µ

4η + ϕ(n, p, k)

1− ϕ(n, p, k)
, where ϕ(n, p, k) :=

128τk log p
n

α− µ
. (30)

Under the stated scaling on the sample size, we are guaranteed that κ ∈ (0, 1), so it is a
contraction factor. Roughly speaking, we show that the squared optimization error will fall

below δ2 within T ≍ log(1/δ2)
log(1/κ) iterations. More precisely, our theorem guarantees δ-accuracy

for all iterations larger than

T ∗(δ) :=
2 log

(
φ(β0)−φ(β̂)

δ2

)

log(1/κ)
+

(
1 +

log 2

log(1/κ)

)
log log

(
λRL

δ2

)
, (31)

where φ(β) := Ln(β) + ρλ(β) denotes the composite objective function. As clarified in the
theorem statement, the squared tolerance δ2 is not allowed to be arbitrarily small, which
would contradict the fact that the composite gradient method may converge to a local opti-
mum. However, our theory allows δ2 to be of the same order as the squared statistical error
ǫ2
stat

= ‖β̂ − β∗‖22, the distance between a fixed global optimum and the target parameter β∗.
From a statistical perspective, there is no point in optimizing beyond this tolerance.

With this setup, we now turn to a precise statement of our main optimization-theoretic result:

Theorem 2. Suppose the empirical loss Ln satisfies the RSC/RSM conditions (28) and (29),
and suppose the regularizer ρλ satisfies Assumption 1. Suppose β̂ is any global minimum of
the program (24), with regularization parameters chosen such that

R

√
log p

n
≤ c, and λ ≥ 4

L
·max

{
‖∇Ln(β∗)‖∞, τ

√
log p

n

}
.

Then for any stepsize parameter η ≥ 2 ·max{α3 − µ, µ} and tolerance parameter δ2 ≥ cǫ2stat
1−κ ,

we have

‖βt − β̂‖22 ≤ 2

α− µ

(
δ2 +

δ4

τ
+ 128τ

k log p

n
ǫ2
stat

)
, for all iterations t ≥ T ∗(δ). (32)
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Remark 4. As with Theorem 1, the statement of Theorem 2 is entirely deterministic. In
Section 4.4 below, we will establish that the required RSC and RSM conditions hold w.h.p.
for various GLMs.

Also note that for the optimal choice of tolerance parameter δ ≍ ǫstat, the error bound

appearing in inequality (32) takes the form
cǫ2stat
α−µ , meaning that successive iterates of the

composite gradient descent algorithm are guaranteed to converge to a region within statistical
accuracy of the true global optimum β̂. Concretely, if the sample size satisfies n % Ck log p
and the regularization parameters are chosen appropriately, Theorem 1 guarantees that that

ǫstat = O
(√

k log p
n

)
with high probability. Combined with Theorem 2, we then conclude that

max
{
‖βt − β̂‖2, ‖βt − β∗‖2

}
= O

(√
k log p

n

)
,

for all iterations t ≥ T (ǫstat).

As would be expected, the (restricted) curvature α of the loss function and nonconvexity
parameter µ of the penalty function enter into the bound via the denominator α−µ. Indeed,
the bound is tighter when the loss function possesses more curvature or the penalty function
is closer to being convex, agreeing with intuition.

Finally, the parameter η needs to be sufficiently large (or equivalently, the stepsize must be
sufficiently small) in order for the composite gradient descent algorithm to be well-behaved.
See Nesterov [17] for a discussion of how the stepsize may be chosen via an iterative search
when the problem parameters are unknown.

4.2 Form of updates

In this section, we discuss how the updates (25) are readily computable in many cases. We
begin with the case Ω = Rp, so we have no additional constraints apart from gλ,µ(β) ≤ R. In
this case, given iterate β , the next iterate βt+1 may be obtained via the following three-step
procedure:

(1) First optimize the unconstrained program

β̂ ∈ arg min
β∈Rp

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
λ

η
· gλ,µ(β)

}
. (33)

(2) If gλ,µ(β̂) ≤ R, define βt+1 = β̂.

(3) Otherwise, if gλ,µ(β̂) > R, optimize the constrained program

βt+1 ∈ arg min
gλ,µ(β)≤R

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

}
. (34)

We derive the correctness of this procedure in Appendix C.1. For many nonconvex regu-
larizers ρλ of interest, the unconstrained program (33) has a convenient closed-form solution:
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For the SCAD penalty (2), the program (33) has simple closed-form solution given by

x̂SCAD =





0 if 0 ≤ |z| ≤ νλ,

z − sign(z) · νλ if νλ ≤ |z| ≤ (ν + 1)λ,
z−sign(z)· aνλ

a−1

1− ν
a−1

if (ν + 1)λ ≤ |z| ≤ aλ,

z if |z| ≥ aλ.

(35)

For the MCP penalty (3), the optimum of the program (33) takes the form

x̂MCP =





0 if 0 ≤ |z| ≤ νλ,
z−sign(z)·νλ

1−ν/b if νλ ≤ |z| ≤ bλ,

z if |z| ≥ bλ.

(36)

In both equations (35) and (36), we have

z :=
1

1 + 2µ/η

(
βt − ∇Ln(βt)

η

)
, and ν :=

1/η

1 + 2µ/η
.

See Appendix C.2 for the derivation of these closed-form updates.
More generally, when Ω ( Rp (such as in the case of the graphical Lasso), the minimum

in the program (25) must be taken over Ω, as well. Although the updates are not as simply
stated, they still involve solving a convex optimization problem. Despite this more compli-
cated form, however, our results from Section 4.1 on fast global convergence under restricted
strong convexity and restricted smoothness assumptions carry over without modification, since
they only require RSC/RSM conditions holding over a sufficiently small radius together with
feasibility of β∗.

4.3 Proof of Theorem 2

We provide the outline of the proof here, with more technical results deferred to Appendix C.
In broad terms, our proof is inspired by a result of Agarwal et al. [1], but requires various
modifications in order to be applied to the much larger family of nonconvex regularizers
considered here.

Our first lemma shows that the optimization error βt− β̂ lies in an approximate cone set:

Lemma 1. Under the conditions of Theorem 2, suppose that there exists a pair (η̄, T ) such
that

φ(βt)− φ(β̂) ≤ η̄, ∀t ≥ T. (37)

Then for any iteration t ≥ T , we have

‖βt − β̂‖1 ≤ 4
√
k‖βt − β̂‖2 + 8

√
k‖β̂ − β∗‖2 + 2 ·min

( η̄

λL
,R
)
.

Our second lemma shows that as long as the composite gradient descent algorithm is
initialized with a solution β0 within a constant radius of a global optimum β̂, all successive
iterates also lie within the same ball:

Lemma 2. Under the conditions of Theorem 2, and with an initial vector β0 such that
‖β0 − β̂‖2 ≤ 3, we have

‖βt − β̂‖2 ≤ 3, for all t ≥ 0. (38)
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In particular, suppose we initialize the composite gradient procedure with a vector β0 such
that ‖β0‖2 ≤ 3

2 . Then by the triangle inequality,

‖β0 − β̂‖2 ≤ ‖β0‖2 + ‖β̂ − β∗‖2 + ‖β∗‖2 ≤ 3,

where we have assumed that our scaling of n guarantees that ‖β̂ − β∗‖2 ≤ 1/2.
Finally, recalling our earlier definition (30) of κ, the third lemma combines the results

of Lemmas 1 and 2 to establish a bound on the value of the objective function that decays
exponentially with t:

Lemma 3. Under the same conditions of Lemma 2, suppose in addition that inequality (37)
holds and 32kτ log p

n ≤ α−µ
2 . Then for any t ≥ T , we have

φ(βt)− φ(β̂) ≤ κt−T (φ(βT )− φ(β̂)) +
ξ

1− κ
(ǫ2 + ǫ2

stat
),

where ǫ := 8
√
kǫstat, ǫ := 2 · min

( η̄
λL , R

)
, the quantities κ and ϕ are defined according to

equations (30), and

ξ :=
1

1− ϕ(n, p, k)
· 2τ log p

n
·
(
α− µ

4η
+ 2ϕ(n, p, k) + 5

)
. (39)

The remainder of the proof follows an argument used in Agarwal et al. [1], so we only
provide a high-level sketch. We first prove the following inequality:

φ(βt)− φ(β̂) ≤ δ2, for all t ≥ T ∗(δ), (40)

as follows. We divide the iterations t ≥ 0 into a series of epochs [Tℓ, Tℓ+1) and define tolerances
η̄0 > η̄1 > · · · such that

φ(βt)− φ(β̂) ≤ η̄ℓ, ∀t ≥ Tℓ.

In the first iteration, we apply Lemma 3 with η̄0 = φ(β0)− φ(β̂) to obtain

φ(βt)− φ(β̂) ≤ κt
(
φ(β0)− φ(β̂)

)
+

ξ

1− κ
(4R2 + ǫ2), ∀t ≥ 0.

Let η̄1 :=
2ξ
1−κ(4R

2 + ǫ2), and note that for T1 :=

⌈
log(2η̄0/η̄1)
log(1/κ)

⌉
, we have

φ(βt)− φ(β̂) ≤ η̄1 ≤
4ξ

1− κ
max{4R2, ǫ2}, for all t ≥ T1.

For ℓ ≥ 1, we now define

η̄ℓ+1 :=
2ξ

1− κ
(ǫ2ℓ + ǫ2), and Tℓ+1 :=

⌈
log(2η̄ℓ/η̄ℓ+1)

log(1/κ)

⌉
+ Tℓ,

where ǫℓ := 2min
{ η̄ℓ
λL , R

}
. From Lemma 3, we have

φ(βt)− φ(β̂) ≤ κt−Tℓ
(
φ(βTℓ)− φ(β̂)

)
+

ξ

1− κ
(ǫ2ℓ + ǫ2), for all t ≥ Tℓ,
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implying by our choice of {(ηℓ, Tℓ)}ℓ≥1 that

φ(βt)− φ(β̂) ≤ η̄ℓ+1 ≤
4ξ

1− κ
max{ǫ2ℓ , ǫ2}, ∀t ≥ Tℓ+1.

Finally, we use the recursion

η̄ℓ+1 ≤
4ξ

1− κ
max{ǫ2ℓ , ǫ2}, Tℓ ≤ ℓ+

log(2ℓη̄0/η̄ℓ)

log(1/κ)
, (41)

to establish the recursion

η̄ℓ+1 ≤
η̄ℓ

42ℓ−1
,

η̄ℓ+1

λL
≤ R

42ℓ
. (42)

Inequality (40) then follows from computing the number of epochs and timesteps necessary
to obtain λRL

42ℓ−1 ≤ δ2. For the remaining steps used to obtain inequalities (42) from inequali-

ties (41), we refer the reader to Agarwal et al. [1].
Finally, by inequality (79b) in the proof of Lemma 3 in Appendix C.5 and the relative

scaling of (n, p, k), we have

α− µ

2
‖βt − β̂‖22 ≤ φ(βt)− φ(β̂) + 2τ

log p

n

(
2δ2

λL
+ ǫ

)2

≤ δ2 + 2τ
log p

n

(
2δ2

λL
+ ǫ

)2

,

where we have set ǫ = 2δ2

λL . Rearranging and performing some algebra with our choice of λ
gives the ℓ2-bound.

4.4 Verifying RSC/RSM conditions

We now address how to establish versions of the RSC conditions (28) and RSM condition (29).
In the case of corrected linear regression (Corollary 1), Lemma 13 of Loh and Wainwright [13]
establish these conditions w.h.p. for various statistical models. Here, we focus on establishing
the conditions for GLMs when the covariates xi are drawn i.i.d. from a zero-mean sub-Gaussian
distribution with parameter σx and covariance matrix Σ = cov(xi). As usual, we assume a
sample size n ≥ c k log p, for a sufficiently large constant c > 0. Recall the definition of the
Taylor error T (β1, β2) from equation (26).

Proposition 1 (RSC/RSM conditions for generalized linear models). There exists a constant
αℓ > 0, depending only on the GLM and (σx,Σ), such that for all vectors β2 ∈ B2(3)∩B1(R),
we have

T (β1, β2) ≥





αℓ
2
‖∆‖22 −

c2σ2x
2αℓ

log p

n
‖∆‖21, for all ‖β1 − β2‖2 ≤ 3, (43a)

3αℓ
2

‖∆‖2 − 3cσx

√
log p

n
‖∆‖1 for all ‖β1 − β2‖2 ≥ 3, (43b)

with probability at least 1− c1 exp(−c2n). With the bound ‖ψ′′‖∞ ≤ αu, we also have

T (β1, β2) ≤ αuλmax(Σ)

(
3

2
‖∆‖22 +

log p

n
‖∆‖21

)
, for all β1, β2 ∈ Rp, (44)

with probability at least 1− c1 exp(−c2n).
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Proof. Using the notation for GLMs in Section 3.3, we introduce the shorthand ∆ := β1 − β2
and observe that, by the mean value theorem, we have

T (β1, β2) =
1

n

n∑

i=1

ψ′′
(
〈β1, xi〉) + ti〈∆, xi〉

)
(〈∆, xi〉)2, (45)

for some ti ∈ [0, 1]. The ti’s are i.i.d. random variables, with each ti depending only on the
random vector xi.

Proof of bound (44): The proof of this upper bound is relatively straightforward given
earlier results [14]. From the Taylor series expansion (45) and the boundedness assumption
‖ψ′′‖∞ ≤ αu, we have

T (β1, β2) ≤ αu ·
1

n

n∑

i=1

(
〈∆, xi〉

)2
.

By known results on restricted eigenvalues for ordinary linear regression (cf. Lemma 13 in
Loh and Wainwright [13]), we also have

1

n

n∑

i=1

(〈∆, xi〉)2 ≤ λmax(Σ)

(
3

2
‖∆‖22 +

log p

n
‖∆‖21

)
,

with probability at least 1− c1 exp(−c2n). Combining the two inequalities yields the desired
result.

Proof of bounds (43): The proof of the RSC bound is much more involved, and we provide
only high-level details here, deferring the bulk of the technical analysis to the appendix. We
define

αℓ :=

(
inf

|t|≤2T
ψ′′(t)

)
λmin(Σ)

8
,

where T is a suitably chosen constant depending only on λmin(Σ) and the sub-Gaussian
parameter σx. (In particular, see equation (89) below, and take T = 3τ). The core of the
proof is based on the following lemma, proved in Appendix D:

Lemma 4. With probability at least 1− c1 exp(−c2n), we have

T (β1, β2) ≥ αℓ‖∆‖22 − cσx‖∆‖1‖∆‖2
√

log p

n
,

uniformly over all pairs (β1, β2) such that β2 ∈ B2(3) ∩ B1(R), ‖β1 − β2‖2 ≤ 3, and

‖∆‖1
‖∆‖2

≤ αℓ
cσx

√
n

log p
. (46)

Taking Lemma 4 as given, we now complete the proof of the RSC condition (43). By the
arithmetic mean-geometric mean inequality, we have

cσx‖∆‖1‖∆‖2
√

log p

n
≤ αℓ

2
‖∆‖22 +

c2σ2x
2αℓ

log p

n
‖∆‖21,
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so Lemma 4 implies that inequality (43a) holds uniformly over all pairs (β1, β2) such that
β2 ∈ B2(3) ∩ B1(R) and ‖β1 − β2‖2 ≤ 3, whenever the bound (46) holds. On the other hand,
if the bound (46) does not hold, then the lower bound in inequality (43a) is negative. By
convexity of Ln, we have T (β1, β2) ≥ 0, so inequality (43a) holds trivially in that case.

We now show that inequality (43b) holds: in particular, consider a pair (β1, β2) with
β2 ∈ B2(3) and ‖β1 − β2‖2 ≥ 3. For any t ∈ [0, 1], the convexity of Ln implies that

Ln(β2 + t∆) ≤ tLn(β2 +∆) + (1− t)Ln(β2),

where ∆ := β1 − β2. Rearranging yields

Ln(β2 +∆)− Ln(β2) ≥
Ln(β2 + t∆)− Ln(β2)

t
,

so

T (β2 +∆, β2) ≥
T (β2 + t∆, β2)

t
. (47)

Now choose t = 3
‖∆‖2

∈ [0, 1] so that ‖t∆‖2 = 1. Introducing the shorthand α1 := αℓ

2 and

τ1 :=
c2σ2x
2αℓ

, we may apply inequality (43a) to obtain

T (β2 + t∆, β2)

t
≥ ‖∆‖2

3

(
α1

(
3‖∆‖2
‖∆‖2

)2

− τ1
log p

n

(
3‖∆‖1
‖∆‖2

)2
)

= 3α1‖∆‖2 − 9τ1
log p

n

‖∆‖21
‖∆‖2

.

(48)

Note that inequality (43b) holds trivially unless ‖∆‖1
‖∆‖2

≤ αℓ

2cσx

√
n

log p , due to the convexity of

Ln. In that case, inequalities (47) and (48) together imply

T (β2 +∆, β2) ≥ 3α1‖∆‖2 −
9τ1 αℓ
2cσx

√
log p

n
‖∆‖1,

which is exactly the bound (43b).

5 Simulations

In this section, we report the results of simulations we performed to validate our theoretical
results. In particular, we present results for two version of the loss function Ln, corresponding
to linear and logistic regression, and three penalty functions, namely the ℓ1-norm (Lasso), the
SCAD penalty, and the MCP, as detailed in Section 2.2.

Linear regression: In the case of linear regression, we simulated covariates corrupted by
additive noise according to the mechanism described in Section 3.2, giving the estimator

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

2
βT
(
XTX

n
− Σw

)
β − yTZ

n
β + ρλ(β)

}
. (49)

We generated i.i.d. samples xi ∼ N(0, I) and set Σw = (0.2)2I, and generated additive noise
ǫi ∼ N(0, (0.1)2).

19



Logistic regression: In the case of logistic regression, we also generated i.i.d. samples
xi ∼ N(0, I). Since ψ(t) = log(1 + exp(t)), the program (19) becomes

β̂ ∈ arg min
gλ,µ(β)≤R

{
1

n

n∑

i=1

{log(1 + exp(〈β, xi〉)− yi〈β, xi〉}+ ρλ(β)

}
. (50)

We optimized the programs (49) and (50) using the composite gradient updates (25). In
order to compute the updates, we used the three-step procedure described in Section 4.2,
together with the updates for SCAD and MCP given by equations (35) and (36). Note that
the updates for the Lasso penalty may be generated more simply and efficiently as discussed
in Agarwal et al. [1].

Figure 1 shows the results of corrected linear regression with Lasso, SCAD, and MCP
regularizers for three different problem sizes p. In each case, β∗ is a k-sparse vector with
k = ⌊√p⌋, where the nonzero entries were generated from a normal distribution and the vector
was then rescaled so ‖β∗‖2 = 1. As predicted by Theorem 1, the three curves corresponding to
the same penalty function stack up nicely when the estimation error ‖β̂−β∗‖2 is plotted against
the rescaled sample size n

k log p , and the ℓ2-error decreases to zero as the number of samples
increases, showing that the estimators (49) and (50) are statistically consistent. The Lasso,
SCAD, and MCP regularizers are depicted by solid, dotted, and dashed lines, respectively. In
the case of linear regression, we set the parameter a = 3.7 for the SCAD penalty, suggested by
Fan and Li [6] to be “optimal” based on cross-validated empirical studies. We chose b = 1.5

for the MCP. The remaining parameters were set as λ =
√

log p
n and R = 1.1

λ · ρλ(β∗). Each

point represents an average over 100 trials. In the case of logistic regression, we set a = 3.7 for

SCAD and b = 3 for MCP, and took λ = 0.5
√

log p
n and R = 2

λ ·ρλ(β∗). Each point represents

an average over 50 trials.
In Figure 2, we provide the results of simulations to illustrate the optimization-theoretic

conclusions of Theorem 2. Each panel shows two different families of curves, corresponding
to statistical error (red) and optimization error (blue). Here, the vertical axis measures the
ℓ2-error on a logarithmic scale, while the horizontal axis tracks the iteration number. Within
each block, the curves were obtained by running the composite gradient descent algorithm
from 10 different initial starting points chosen at random. In all cases, we used the parameter

settings p = 128, k = ⌊√p⌋, and n = ⌊20k log p⌋, and took λ =
√

log p
n and R = 1.1

λ ρλ(β
∗). As

predicted by our theory, the optimization error decreases at a linear rate (on the log scale)
until it falls to the level of statistical error. Furthermore, it is interesting to compare the
plots in panels (c) and (d), which provide simulation results for two different values of the
SCAD parameter a. We see that the choice a = 3.7 leads to a tighter cluster of local optima,
providing further evidence that this setting suggested by Fan and Li [6] is in some sense
optimal.

Finally, Figure 3 provides analogous results to Figure 2 in the case of logistic regression,

using p = 64, k = ⌊√p⌋, n = ⌊20k log p⌋, and regularization parameters λ = 0.5
√

log p
n and R =

1.1
λ · ρλ(β∗). The plot shows solution trajectories for 20 different initializations of composite
gradient descent. Again, we see that the log optimization error decreases at a linear rate up
to the level of statistical error, as predicted by Theorem 2. Furthermore, the Lasso penalty
yields a unique local/optimum β̂, since the program (50) is convex, as we observe in panel
(a). In contrast, the nonconvex program based on the SCAD penalty produces multiple local
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Figure 1. Plots showing statistical consistency of linear and logistic regression with Lasso,
SCAD, and MCP regularizers, at sparsity level k = ⌊√p⌋. Panel (a) shows results for corrected
linear regression, where covariates are subject to additive noise with SNR = 5. Each point
represents an average over 100 trials. Panel (b) shows similar results for logistic regression,
where each point represents an average over 50 trials. In both cases, the estimation error

‖β̂ − β∗‖2 is plotted against the rescaled sample size n
k log p

. Lasso, SCAD, and MCP results

are represented by solid, dotted, and dashed lines, respectively. As predicted by Theorem 1
and Corollaries 1 and 2, the curves for each of the three types stack up for different problem
sizes p, and the error decreases to zero as the number of samples increases, showing that our
methods are statistically consistent.

optima, whereas the MCP penalty yields a relatively large number of local optima, albeit all
guaranteed to lie within a small ball of β∗ by Theorem 1.

6 Discussion

We have analyzed theoretical properties of local optima of regularized M -estimators, where
both the loss and penalty function are allowed to be nonconvex. Our results are the first to
establish that all local optima of such nonconvex problems are close to the truth, implying that
any optimization method guaranteed to converge to a local optimum will provide statistically
consistent solutions. We show concretely that a variant of composite gradient descent may
be used to obtain near-global optima in linear time, and verify our theoretical results with
simulations.

Future directions of research include further generalizing our statistical consistency results
to other nonconvex regularizers not covered by our present theory, such as bridge penalties or
regularizers that do not decompose across coordinates. In addition, it would be interesting to
expand our theory to nonsmooth loss functions such as the hinge loss. For both nonsmooth
losses and nonsmooth penalties (including capped-ℓ1), it remains an open question whether a
modified version of composite gradient descent may be used to obtain near-global optima in
polynomial time. Finally, it would be interesting to develop a general method for establishing
RSC and RSM conditions, beyond the specialized methods used for studying GLMs in this
paper.
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Figure 2. Plots illustrating linear rates of convergence on a log scale for corrected linear
regression with Lasso, MCP, and SCAD regularizers, with p = 128, k = ⌊√p⌋, and n =
⌊20k log p⌋, where covariates are corrupted by additive noise with SNR = 5. Red lines depict

statistical error log
(
‖β̂ − β∗‖2

)
and blue lines depict optimization error log

(
‖βt − β̂‖2

)
. As

predicted by Theorem 2, the optimization error decreases linearly when plotted against the
iteration number on a log scale, up to statistical accuracy. Each plot shows the solution
trajectory for 10 different initializations of the composite gradient descent algorithm. Panels
(a) and (b) show the results for Lasso and MCP regularizers, respectively; panels (c) and
(d) show results for the SCAD penalty with two different parameter values. Note that the
empirically optimal choice a = 3.7 proposed by Fan and Li [6] generates local optima that
exhibit a smaller spread than the local optima generated for a smaller setting of the parameter
a.
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Figure 3. Plots that demonstrate linear rates of convergence on a log scale for logistic regres-

sion with p = 64, k =
√
p, and n = ⌊20k log p⌋. Red lines depict statistical error log

(
‖β̂−β∗‖2

)

and blue lines depict optimization error log
(
‖βt − β̂‖2

)
. (a) Lasso penalty. (b) SCAD penalty.

(c) MCP. As predicted by Theorem 2, the optimization error decreases linearly when plotted
against the iteration number on a log scale, up to statistical accuracy. Each plot shows the
solution trajectory for 20 different initializations of the composite gradient descent algorithm.

A Properties of regularizers

In this section, we establish properties of some nonconvex regularizers covered by our theory
(Section A.1) and verify that specific regularizers satisfy Assumption 1 (Section A.2). The
properties given in Section A.1 are used in the proof of Theorem 1.

A.1 General properties

We begin with some general properties of regularizers that satisfy Assumption 1.

Lemma 5. Under conditions (i)–(ii) of Assumption 1, conditions (iii) and (iv) together imply
that ρλ is λL-Lipschitz as a function of t. In particular, all subgradients and derivatives of
ρλ are bounded in magnitude by λL.
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Proof. Suppose 0 ≤ t1 ≤ t2. Then

ρλ(t2)− ρλ(t1)

t2 − t1
≤ ρλ(t1)

t1
,

by condition (iii). Applying (iii) once more, we have

ρλ(t1)

t1
≤ lim

t→0+

ρλ(t)

t
≤ λL,

where the last inequality comes from condition (iv). Hence,

0 ≤ ρλ(t2)− ρλ(t1) ≤ λL(t2 − t1).

A similar argument applies to the cases when one (or both) of t1 and t2 are negative.

Lemma 6. For any vector v ∈ Rp, let A denote the index set of its k largest elements in
magnitude. Under Assumption 1, we have

ρλ(vA)− ρλ(vAc) ≤ λL(‖vA‖1 − ‖vAc‖1). (51)

Moreover, for an arbitrary vector β ∈ Rp, we have

ρλ(β
∗)− ρλ(β) ≤ λL(‖νA‖1 − ‖νAc‖1), (52)

where ν := β − β∗ and β∗ is k-sparse.

Proof. We first establish inequality (51). Define the function f(t) := t
ρλ(t)

for t > 0. By our

assumptions on ρλ, the function f is nondecreasing in |t|, so

‖vAc‖1 =
∑

j∈Ac

ρλ(vj) · f(|vj |) ≤
∑

j∈Ac

ρλ(vj) · f(‖vAc‖∞) = ρλ(vAc) · f (‖vAc‖∞) . (53)

Again using the nondecreasing property of f , we have

ρλ(vA) · f(‖vAc‖∞) =
∑

j∈A

ρλ(vj) · f(‖vAc‖∞) ≤
∑

j∈A

ρλ(vj) · f(|vj|) = ‖vA‖1. (54)

Note that for t > 0, we have

f(t) ≥ lim
s→0+

f(s) = lim
s→0+

s− 0

ρλ(s)− ρλ(0)
≥ 1

λL
,

where the last inequality follows from the bounds on the subgradients of ρλ from Lemma 5.
Combining this result with inequalities (53) and (54) yields

ρλ(vA)− ρλ(vAc) ≤ 1

f(‖vAc‖∞)
· (‖vA‖1 − ‖vAc‖1) ≤ λL(‖vA‖1 − ‖vAc‖1),

as claimed.
We now turn to the proof of the bound (52). Letting S := supp(β∗) denote the support

of β∗, the triangle inequality and subadditivity of ρ imply that

ρλ(β
∗)− ρλ(β) = ρλ(β

∗
S)− ρλ(βS)− ρλ(βSc)

≤ ρλ(νS)− ρλ(βSc)

= ρλ(νS)− ρλ(νSc)

≤ ρλ(νA)− ρλ(νAc)

≤ λL(‖νA‖1 − ‖νAc‖1),
thereby completing the proof.
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A.2 Verification for specific regularizers

We now verify that Assumption 1 is satisfied by the SCAD and MCP regularizers. (The
properties are trivial to verify for the Lasso penalty.)

Lemma 7. The SCAD regularizer (2) with parameter a satisfies the conditions of Assump-
tion 1 with L = 1 and µ = 1

a−1 .

Proof. Conditions (i)–(iii) were already verified in Zhang and Zhang [27]. Furthermore, we
may easily compute the derivative of the SCAD regularizer to be

∂

∂t
ρλ(t) = sign(t) ·

(
λ · I {|t| ≤ λ}+ (aλ− |t|)+

a− 1
· I {|t| > λ}

)
, t 6= 0, (55)

and any point in the interval [−λ, λ] is a valid subgradient at t = 0, so condition (iv) is

satisfied for any L ≥ 1. Furthermore, we have ∂2

∂t2
ρλ(t) ≥ −1

a−1 , so ρλ,µ is convex whenever

µ ≥ 1
a−1 , giving condition (v).

Lemma 8. The MCP regularizer (3) with parameter b satisfies the conditions of Assumption 1
with1 L = 1 and µ = 1

b .

Proof. Again, the conditions (i)–(iii) are already verified in Zhang and Zhang [27]. We may
compute the derivative of the MCP regularizer to be

∂

∂t
ρλ(t) = λ · sign(t) ·

(
1− |t|

λb

)

+

, t 6= 0, (56)

with subgradient λ[−1,+1] at t = 0, so condition (iv) is again satisfied for any L ≥ 1. Taking

another derivative, we have ∂2

∂t2
ρλ(t) ≥ −1

b , so condition (v) of Assumption 1 holds with
µ = 1

b .

B Proofs of corollaries in Section 3

In this section, we provide proofs of the corollaries to Theorem 1 stated in Section 3. Through-
out this section, we use the convenient shorthand notation

En(∆) := 〈∇Ln(β∗ +∆)−∇Ln(β∗), ∆〉. (57)

B.1 General results for verifying RSC

We begin with two lemmas that will be useful for establishing the RSC conditions (4) in the
special case where Ln is convex. We assume throughout that ‖∆‖1 ≤ 2R, since β∗ and β∗+∆
lie in the feasible set.

Lemma 9. Suppose Ln is convex. If condition (4a) holds and n ≥ 4R2τ21 log p, then

En(∆) ≥ α1‖∆‖2 −
√

log p

n
‖∆‖1, for all |∆‖2 ≥ 1. (58)
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Proof. Fix an arbitrary ∆ ∈ Rp with ‖∆‖2 ≥ 1. Since Ln is convex, the function f : [0, 1] → R

given by f(t) := Ln(β∗ + t∆) is also convex, so f ′(1) − f ′(0) ≥ f ′(t)− f ′(0) for all t ∈ [0, 1].
Computing the derivatives of f yields the inequality

En(∆) = 〈∇Ln(β∗ +∆)−∇Ln(β∗), ∆〉 ≥ 1

t
〈∇Ln(β∗ + t∆)−∇Ln(β∗), t∆〉.

Taking t = 1
‖∆‖2

∈ (0, 1] and applying condition (4a) to the rescaled vector ∆
‖∆‖2

then yields

En(∆) ≥ ‖∆‖2
(
α1 − τ1

log p

n

‖∆‖21
‖∆‖22

)

≥ ‖∆‖2
(
α1 −

2Rτ1 log p

n

‖∆‖1
‖∆‖22

)

≥ ‖∆‖2
(
α1 −

√
log p

n

‖∆‖1
‖∆‖2

)

= α1‖∆‖2 −
√

log p

n
‖∆‖1,

where the third inequality uses the assumption on the relative scaling of (n, p) and the fact
that ‖∆‖2 ≥ 1.

On the other hand, if inequality (4a) holds globally over ∆ ∈ Rp, we obtain inequality (4b)
for free:

Lemma 10. If inequality (4a) holds for all ∆ ∈ Rp and n ≥ 4R2τ21 log p, then inequality (4b)
holds, as well.

Proof. Suppose ‖∆‖2 ≥ 1. Then

α1‖∆‖22 − τ1
log p

n
‖∆‖21 ≥ α1‖∆‖2 − 2Rτ1

log p

n
‖∆‖1 ≥ α1‖∆‖2 −

√
log p

n
‖∆‖1,

again using the assumption on the scaling of (n, p).

B.2 Proof of Corollary 1

Note that En(∆) = ∆T Γ̂∆, so in particular,

En(∆) ≥ ∆TΣx∆− |∆T (Σx − Γ̂)∆|.
Applying Lemma 12 in Loh and Wainwright [13] with s = n

log p to bound the second term, we
have

En(∆) ≥ λmin(Σx)‖∆‖22 −
(
λmin(Σx)

2
‖∆‖22 +

c log p

n
‖∆‖21

)

=
λmin(Σx)

2
‖∆‖22 −

c log p

n
‖∆‖21,

a bound which holds for all ∆ ∈ Rp with probability at least 1 − c1 exp(−c2n) whenever
n % k log p. Then Lemma 10 in Appendix B.1 implies that the RSC condition (4a) holds. It
remains to verify the validity of the specified choice of λ. We have

‖∇Ln(β∗)‖∞ = ‖Γ̂β∗ − γ̂‖∞ = ‖(γ̂ − Σxβ
∗) + (Σx − Γ̂)β∗‖∞

≤ ‖(γ̂ − Σxβ
∗)‖∞ + ‖(Σx − Γ̂)β∗‖∞.
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As shown in previous work [13], both of these terms are upper-bounded by c′
√

log p
n with high

probability. Consequently, the claim in the corollary follows by applying Theorem 1.

B.3 Proof of Corollary 2

In the case of GLMs, we have

En(∆) =
1

n

n∑

i=1

(ψ′(〈xi, β∗ +∆〉)− ψ′(〈xi, β∗〉))xTi ∆.

Applying the mean value theorem, we find that

En(∆) =
1

n

n∑

i=1

ψ′′(〈xi, β∗〉+ ti 〈xi, ∆〉)
(
〈xi, ∆〉

)2
,

where ti ∈ [0, 1]. From (the proof of) Proposition 2 of Negahban et al. [16], we then have

En(∆) ≥ α1‖∆‖22 − τ1

√
log p

n
‖∆‖1‖∆‖2, ∀‖∆‖2 ≤ 1, (59)

with probability at least 1− c1 exp(−c2n), where α1 ≍ λmin(Σx). Note that by the arithmetic
mean-geometric mean inequality,

τ1

√
log p

n
‖∆‖1‖∆‖2 ≤ α1

2
‖∆‖22 +

τ21
2α1

log p

n
‖∆‖21,

and consequently,

En(∆) ≥ α1

2
‖∆‖22 −

τ21
2α1

log p

n
‖∆‖21,

which establishes inequality (4a). Inequality (4b) then follows via Lemma 9 in Appendix B.1.

It remains to show that there are universal constants (c, c1, c2) such that

P

(
‖∇Ln(β∗)‖∞ ≥ c

√
log p

n

)
≤ c1 exp(−c2 log p). (60)

For each 1 ≤ i ≤ n and 1 ≤ j ≤ p, define the random variable Vij := (ψ′(xTi β
∗)− yi)xij . With

this notation, our goal is to bound maxj=1,...,p | 1n
∑n

i=1 Vij |. Note that

P

[
max
j=1,...,p

∣∣ 1
n

n∑

i=1

Vij
∣∣ ≥ δ

]
≤ P[Ac] + P

[
max
j=1,...,p

∣∣ 1
n

n∑

i=1

Vij
∣∣ ≥ δ | A

]
, (61)

where A :=

{
max
j=1,...,p

{
1
n

∑n
i=1 x

2
ij

}
≤ 2E[x2ij]

}
. Since the xij’s are sub-Gaussian and n % log p,

there are universal constants (c1, c2) such that P[Ac] ≤ c1 exp(−c2n). The last step is to bound
the second term on the right side of inequality (61). For any t ∈ R, we have

logE[exp(tVij) | xi] = log
[
exp(txijψ

′(xTi β
∗)
]
· E[exp(−txijyi)]

= txijψ
′(xTi β

∗) +
(
ψ(−txij + xTi β

∗)− ψ(xTi β
∗)
)
,
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using the fact that ψ is the cumulant generating function for the underlying exponential
family. Thus, by a Taylor series expansion, there is some vi ∈ [0, 1] such that

logE[exp(tVij) | xi] =
t2x2ij
2

ψ′′(xTi β
∗ − vi txij) ≤

αut
2x2ij
2

, (62)

where the inequality uses the boundedness of ψ′′. Consequently, conditioned on the event A,
the variable 1

n

∑n
i=1 Vij is sub-Gaussian with parameter at most κ = αu · maxj=1,...,p E[x

2
ij],

for each j = 1, . . . , p. By a union bound, we then have

P

[
max
j=1,...,p

∣∣ 1
n

n∑

i=1

Vij
∣∣ ≥ δ | A

]
≤ p exp

(
−nδ

2

2κ2

)
.

The claimed ℓ1- and ℓ2-bounds then follow directly from Theorem 1.

B.4 Proof of Corollary 3

We first verify condition (4a) in the case where |||∆|||F ≤ 1. A straightforward calculation
yields

∇2Ln(Θ) = Θ−1 ⊗Θ−1 = (Θ⊗Θ)−1 .

Moreover, letting vec(∆) ∈ Rp
2

denote the vectorized form of the matrix ∆, applying the
mean value theorem yields

En(∆) = vec(∆)T
(
∇2Ln(Θ∗ + t∆)

)
vec(∆) ≥ λmin(∇2Ln(Θ∗ + t∆)) |||Θ|||2F , (63)

for some t ∈ [0, 1]. By standard properties of the Kronecker product [9], we have

λmin(∇2Ln(Θ∗ + t∆)) = |||Θ∗ + t∆|||−2
2 ≥ (|||Θ∗|||2 + t |||∆|||2)

−2 ≥ (|||Θ∗|||2 + 1)−2 ,

using the fact that |||∆|||2 ≤ |||∆|||F ≤ 1. Plugging back into inequality (63) yields

En(∆) ≥ (|||Θ∗|||2 + 1)−2 |||Θ|||2F ,

which shows that inequality (4a) holds with α1 = (|||Θ∗|||2 + 1)−2 and τ1 = 0. Lemma 10
then implies inequality (4b) with α2 = (|||Θ∗|||2 + 1)−2. Finally, we need to establish that
the given choice of λ satisfies the requirement (6) of Theorem 1. By the assumed deviation
condition (21), we have

|||∇Ln(Θ∗)|||max =
∣∣∣
∣∣∣
∣∣∣Σ̂− (Θ∗)−1

∣∣∣
∣∣∣
∣∣∣
max

=
∣∣∣
∣∣∣
∣∣∣Σ̂− Σx

∣∣∣
∣∣∣
∣∣∣
max

≤ c0

√
log p

n
.

Applying Theorem 1 then implies the desired result.

C Auxiliary optimization-theoretic results

In this section, we provide proofs of the supporting lemmas used in Section 4.
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C.1 Derivation of three-step procedure

We begin by deriving the correctness of the three-step procedure given in Section 4.2. Let
β̂ be the unconstrained optimum of the program (33). If gλ,µ(β̂) ≤ R, we clearly have the

update given in step (2). Suppose instead that gλ,µ(β̂) > R. Then since the program (25) is
convex, the iterate βt+1 must lie on the boundary of the feasible set; i.e.,

gλ,µ(β
t+1) = R. (64)

By Lagrangian duality, the program (25) is also equivalent to

βt+1 ∈ arg min
gλ,µ(β)≤R′

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

}
,

for some choice of constraint parameter R′. Note that this is projection of βt − ∇Ln(βt)
η onto

the set {β ∈ Rp | gλ,µ(β) ≤ R′}. Since projection decreases the value of gλ,µ, equation (64)
implies that

gλ,µ

(
βt − ∇Ln(βt)

η

)
≥ R.

In fact, since the projection will shrink the vector to the boundary of the constraint set,
equation (64) forces R′ = R. This yields the update (34) appearing in step (3).

C.2 Derivation of updates for SCAD and MCP

We now derive the explicit form of the updates (35) and (36) for the SCAD and MCP regu-
larizers, respectively. We may rewrite the unconstrained program (33) as

βt+1 ∈ arg min
β∈Rp

{
1

2

∥∥∥∥β −
(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
1

η
· ρλ(β) +

µ

η
‖β‖22

}

= arg min
β∈Rp

{(
1

2
+
µ

η

)
‖β‖22 − βT

(
βt − ∇Ln(βt)

η

)
+

1

η
· ρλ(β)

}

= arg min
β∈Rp

{
1

2

∥∥∥∥β − 1

1 + 2µ/η

(
βt − ∇Ln(βt)

η

)∥∥∥∥
2

2

+
1/η

1 + 2µ/η
· ρλ(β)

}
. (65)

Since the program in the last line of equation (65) decomposes by coordinate, it suffices to
solve the scalar optimization problem

x̂ ∈ argmin
x

{
1

2
(x− z)2 + νρ(x;λ)

}
, (66)

for general z ∈ R and ν > 0.

We first consider the case when ρ is the SCAD penalty. The solution x̂ of the program (66)
in the case when ν = 1 is given in Fan and Li [6]; the expression (35) for the more general
case comes from writing out the subgradient of the objective as

(x− z) + νρ′(x;λ) =





(x− z) + νλ[−1,+1] if x = 0,

(x− z) + νλ if 0 < x ≤ λ,

(x− z) + ν(aλ−x)
a−1 if λ ≤ x ≤ aλ,

x− z if x ≥ aλ,
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using the equation for the SCAD derivative (55), and setting the subgradient equal to zero.

Similarly, when ρ is the MCP parametrized by (b, λ), the subgradient of the objective
takes the form

(x− z) + νρ′(x;λ) =





(x− z) + νλ[−1,+1] if x = 0,

(x− z) + νλ
(
1− x

bλ

)
if 0 < x ≤ bλ,

x− z if x ≥ bλ,

using the expression for the MCP derivative (56), leading to the closed-form solution given
in equation (36). This agrees with the expression provided in Breheny and Huang [4] for the
special case when ν = 1.

C.3 Proof of Lemma 1

We first show that if λ ≥ 4
L · ‖∇Ln(β∗)‖∞, then for any feasible β such that

φ(β) ≤ φ(β∗) + η̄, (67)

we have

‖β − β∗‖1 ≤ 4
√
k‖β − β∗‖2 + 2 ·min

( η̄

λL
,R
)
. (68)

Defining the error vector ∆ := β − β∗, inequality (67) implies

Ln(β∗ +∆) + ρλ(β
∗ +∆) ≤ Ln(β∗) + ρλ(β

∗) + η̄,

so subtracting 〈∇Ln(β∗), ∆〉 from both sides gives

T (β∗ +∆, β∗) + ρλ(β
∗ +∆)− ρλ(β

∗) ≤ −〈∇Ln(β∗), ∆〉+ η̄. (69)

We claim that

ρλ(β
∗ +∆)− ρλ(β

∗) ≤ λL

2
‖∆‖1 + η̄. (70)

We divide the argument into two cases. First suppose ‖∆‖2 ≤ 3. Since Ln satisfies the
RSC condition (28a), we may lower-bound the left side of inequality (69) and apply Hölder’s
inequality to obtain

α1‖∆‖22 − τ1
log p

n
‖∆‖21 + ρ(β∗ +∆)− ρ(β∗) ≤ ‖∇Ln(β∗)‖∞ · ‖∆‖1 + η̄ ≤ λL

4
‖∆‖1 + η̄. (71)

Since ‖∆‖1 ≤ 2R by the feasibility of β∗ and β∗ + ∆, we see that inequality (71) together
with the condition λL ≥ 4Rτ1 log p

n gives inequality (70). On the other hand, when ‖∆‖2 ≥ 3,
the RSC condition (28b) gives

α2‖∆‖2 − τ2

√
log p

n
‖∆‖1 + ρλ(β

∗ +∆)− ρλ(β
∗) ≤ λL

4
‖∆‖1 + η̄,

so for λL ≥ 4τ2

√
log p
n , we also arrive at inequality (70).

By Lemma 6 in Appendix A.1, we have

ρλ(β
∗)− ρλ(β) ≤ λL(‖∆A‖1 − ‖∆Ac‖1),
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where A indexes the top k components of ∆ in magnitude. Combining this bound with
inequality (70) then implies that

‖∆Ac‖1 − ‖∆A‖1 ≤
1

2
‖∆‖1 +

η̄

λL
=

1

2
‖∆Ac‖1 +

1

2
‖∆A‖1 +

η̄

λL
,

and consequently,

‖∆Ac‖1 ≤ 3‖∆A‖1 +
2η̄

λL
.

Putting together the pieces, we have

‖∆‖1 ≤ 4‖∆A‖1 +
2η̄

λL
≤ 4

√
k‖∆‖2 +

2η̄

λL
.

Using the bound ‖∆‖1 ≤ 2R once more, we obtain inequality (68).

We now apply the implication (67) to the vectors β̂ and βt. Note that by optimality of β̂,
we have

φ(β̂) ≤ φ(β∗),

and by the assumption (37), we also have

φ(βt) ≤ φ(β̂) + η̄ ≤ φ(β∗) + η̄.

Hence,

‖β̂ − β∗‖1 ≤ 4
√
k‖β̂ − β∗‖2, and ‖βt − β∗‖1 ≤ 4

√
k‖βt − β∗‖2 + 2 ·min

( η̄

λL
,R
)
.

By the triangle inequality, we then have

‖βt − β̂‖1 ≤ ‖β̂ − β∗‖1 + ‖βt − β∗‖1
≤ 4

√
k ·
(
‖β̂ − β∗‖2 + ‖βt − β∗‖2

)
+ 2 ·min

( η̄

λL
,R
)

≤ 4
√
k ·
(
2‖β̂ − β∗‖2 + ‖βt − β̂‖2

)
+ 2 ·min

( η̄

λL
,R
)
,

as claimed.

C.4 Proof of Lemma 2

Our proof proceeds via induction on the iteration number t. Note that the base case t = 0
holds by assumption. Hence, it remains to show that if ‖βt − β̂‖2 ≤ 3 for some integer t ≥ 1,
then ‖βt+1 − β̂‖2 ≤ 3, as well.

We assume for the sake of a contradiction that ‖βt+1 − β̂‖2 > 3. By the RSC condi-
tion (28b) and the relation (27), we have

T (βt+1, β̂) ≥ α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 − µ‖β̂ − βt+1‖22. (72)

Furthermore, by convexity of g := gλ,µ, we have

g(βt+1)− g(β̂)− 〈∇g(β̂), βt+1 − β̂〉 ≥ 0. (73)
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Multiplying by λ and summing with inequality (72) then yields

φ(βt+1)− φ(β̂)− 〈∇φ(β̂), βt+1 − β̂〉 ≥ α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 − µ‖β̂ − βt+1‖22.

Combining with the first-order optimality condition 〈∇φ(β̂), βt+1 − β̂〉 ≥ 0, we then have

φ(βt+1)− φ(β̂) ≥ α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 − µ‖β̂ − βt+1‖22. (74)

Since ‖β̂−βt‖2 ≤ 3 by the induction hypothesis, applying the RSC condition (28a) to the
pair (β̂, βt) also gives

Ln(β̂) ≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ (α− µ) · ‖βt − β̂‖22 − τ
log p

n
‖βt − β̂‖21.

Combining with the inequality

g(β̂) ≥ g(βt+1) + 〈∇g(βt+1), β̂ − βt+1〉,

we then have

φ(β̂) ≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ λg(βt+1) + λ〈∇g(βt), β̂ − βt+1〉

+ (α − µ) · ‖βt − β̂‖22 − τ
log p

n
‖βt − β̂‖21

≥ Ln(βt) + 〈∇Ln(βt), β̂ − βt〉+ λg(βt+1) + λ〈∇g(βt+1), β̂ − βt+1〉 − τ
log p

n
‖βt − β̂‖21.

(75)

Finally, the RSM condition (29) on the pair (βt+1, βt) gives

φ(βt+1) ≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ λg(βt+1) (76)

+ (α3 − µ)‖βt+1 − βt‖22 + τ
log p

n
‖βt+1 − βt‖21

≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ λg(βt+1) +
η

2
‖βt+1 − βt‖22 +

4R2τ log p

n
, (77)

since η
2 ≥ α3 − µ by assumption, and ‖βt+1 − βt‖1 ≤ 2R. It is easy to check that the

update (25) may be written equivalently as

βt+1 ∈ arg min
g(β)≤R, β∈Ω

{
Ln(βt) + 〈∇Ln(βt), β − βt〉+ η

2
‖β − βt‖22 + λg(β)

}
,

and the optimality of βt+1 then yields

〈∇Ln(βt) + η(βt+1 − βt) + λ∇g(βt+1), βt+1 − β̂〉 ≤ 0. (78)

Summing up inequalities (75), (76), and (78), we then have

φ(βt+1)− φ(β̂) ≤ η

2
‖βt+1 − βt‖22 + η〈βt − βt+1, βt+1 − β̂〉+ τ

log p

n
‖βt − β̂‖21 +

4R2τ log p

n

=
η

2
‖βt − β̂‖22 −

η

2
‖βt+1 − β̂‖22 + τ

log p

n
‖βt − β̂‖21 +

4R2τ log p

n
.
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Combining this last inequality with inequality (74), we have

α‖β̂ − βt+1‖2 − τ

√
log p

n
‖β̂ − βt+1‖1 ≤

η

2
‖βt − β̂‖22 −

(η
2
− µ

)
‖βt+1 − β̂‖22 +

8R2τ log p

n

≤ 9η

2
− 3

(η
2
− µ

)
‖βt+1 − β̂‖2 +

8R2τ log p

n
,

since ‖βt − β̂‖2 ≤ 3 by the induction hypothesis and ‖βt+1 − β̂‖2 > 3 by assumption, and
using the fact that η ≥ 2µ. It follows that

(
α− 3µ+

3η

2

)
· ‖β̂ − βt+1‖2 ≤ 9η

2
+ τ

√
log p

n
‖β̂ − βt+1‖1 +

8R2τ log p

n

≤ 9η

2
+ 2Rτ

√
log p

n
+

8R2τ log p

n

≤ 3

(
α− 3µ+

3η

2

)
,

where the final inequality holds whenever 2Rτ
√

log p
n + 8R2τ log p

n ≤ 3 (α− 3µ). Rearranging

gives ‖βt+1 − β̂‖2 ≤ 3, providing the desired contradiction.

C.5 Proof of Lemma 3

We begin with an auxiliary lemma:

Lemma 11. Under the conditions of Lemma 3, we have

T (βt, β̂) ≥ −2τ
log p

n
(ǫ+ ǫ)2, and (79a)

φ(βt)− φ(β̂) ≥ α− µ

2
‖β̂ − βt‖22 −

2τ log p

n
(ǫ+ ǫ)2. (79b)

We prove this result later, taking it as given for the moment.

Define

φt(β) := Ln(βt) + 〈∇Ln(βt), β − βt〉+ η

2
‖β − βt‖22 + λg(β),

the objective function minimized over the constraint set {g(β) ≤ R} at iteration t. For any
γ ∈ [0, 1], the vector βγ := γβ̂+(1−γ)βt belongs to the constraint set, as well. Consequently,
by the optimality of βt+1 and feasibility of βγ , we have

φt(β
t+1) ≤ φt(βγ) = Ln(βt) + 〈∇Ln(βt), γβ̂ − γβt〉+ ηγ2

2
‖β̂ − βt‖22 + λg(βγ).

Appealing to inequality (79a), we then have

φt(β
t+1) ≤ (1− γ)Ln(βt) + γLn(β̂) + 2γτ

log p

n
(ǫ+ ǫstat)

2 +
ηγ2

2
‖β̂ − βt‖22 + λg(βγ)

(i)

≤ φ(βt)− γ(φ(βt)− φ(β̂)) + 2γτ
log p

n
(ǫ+ ǫstat)

2 +
ηγ2

2
‖β̂ − βt‖22

≤ φ(βt)− γ(φ(βt)− φ(β̂)) + 2τ
log p

n
(ǫ+ ǫstat)

2 +
ηγ2

2
‖β̂ − βt‖22, (80)
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where inequality (i) incorporates the fact that

g(βγ) ≤ γg(β̂) + (1− γ)g(βt),

by the convexity of g.
By the RSM condition (29), we also have

T (βt+1, βt) ≤ η

2
‖βt+1 − βt‖22 + τ

log p

n
‖βt+1 − βt‖21,

since α3 − µ ≤ η
2 by assumption, and adding λg(βt+1) to both sides gives

φ(βt+1) ≤ Ln(βt) + 〈∇Ln(βt), βt+1 − βt〉+ η

2
‖βt+1 − βt‖22 + τ

log p

n
‖βt+1 − βt‖21 + λg(βt+1)

= φt(β
t+1) + τ

log p

n
‖βt+1 − βt‖21.

Combining with inequality (80) then yields

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖β̂ − βt‖22 + τ

log p

n
‖βt+1 − βt‖21 + 2τ

log p

n
(ǫ+ ǫ)2.

(81)

By the triangle inequality, we have

‖βt+1 − βt‖21 ≤
(
‖∆t+1‖1 + ‖∆t‖1

)2 ≤ 2‖∆t+1‖21 + 2‖∆t‖21,

where we have defined ∆t := βt − β̂. Combined with inequality (81), we therefore have

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖∆t‖22 + 2τ

log p

n
(‖∆t+1‖21 + ‖∆t‖21) + 2ψ(n, p, ǫ),

where ψ(n, p, ǫ) := τ log p
n (ǫ+ ǫ)2. Then applying Lemma 1 to bound the ℓ1-norms, we have

φ(βt+1) ≤ φ(βt)− γ(φ(βt)− φ(β̂)) +
ηγ2

2
‖∆t‖22 + 64kτ

log p

n
(‖∆t+1‖22 + ‖∆t‖22) + 10ψ(n, p, ǫ)

= φ(βt)− γ(φ(βt)− φ(β̂)) +

(
ηγ2

2
+ 64kτ

log p

n

)
‖∆t‖22 + 64kτ

log p

n
‖∆t+1‖22

+ 10ψ(n, p, ǫ). (82)

Now introduce the shorthand δt := φ(βt) − φ(β̂) and υ(k, p, n) = kτ log p
n . By applying

inequality (79b) and subtracting φ(β̂) from both sides of inequality (82), we have

δt+1 ≤
(
1− γ

)
δt +

ηγ2 + 128υ(k, p, n)

α− µ
(δt + 2ψ(n, p, ǫ)) +

128υ(k, p, n)

α− µ
(δt+1 + 2ψ(n, p, ǫ))

+ 10ψ(n, p, ǫ).

Choosing γ = α−µ
2η ∈ (0, 1) yields

(
1− 128υ(k, p, n)

α− µ

)
δt+1 ≤

(
1− α− µ

4η
+

128υ(k, p, n)

α− µ

)
δt

+ 2

(
α− µ

4η
+

256υ(k, p, n)

α− µ
+ 5

)
ψ(n, p, ǫ),
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or δt+1 ≤ κδt + ξ(ǫ+ ǫ)2, where κ and ξ were previously defined in equations (30) and (39),
respectively. Finally, iterating the procedure yields

δt ≤ κt−T δT + ξ(ǫ+ ǫ)2(1 + κ+ κ2 + · · ·+ κt−T−1) ≤ κt−T δT +
ξ(ǫ+ ǫ)2

1− κ
, (83)

as claimed.

The only remaining step is to prove the auxiliary lemma.

Proof of Lemma 11: By the RSC condition (28a) and the assumption (38), we have

T (βt, β̂) ≥ (α− µ) ‖β̂ − βt‖22 − τ
log p

n
‖β̂ − βt‖21. (84)

Furthermore, by convexity of g, we have

λ
(
g(βt)− g(β̂)− 〈∇g(β̂), βt − β̂〉

)
≥ 0, (85)

and the first-order optimality condition for β̂ gives

〈∇φ(β̂), βt − β̂〉 ≥ 0. (86)

Summing inequalities (84), (85), and (86) then yields

φ(βt)− φ(β̂) ≥ (α− µ) ‖β̂ − βt‖22 − τ
log p

n
‖β̂ − βt‖21.

Applying Lemma 1 to bound the term ‖β̂ − βt‖21 and using the assumption 32kτ log p
n ≤ α−µ

2
yields the bound (79b). On the other hand, applying Lemma 1 directly to inequality (84)
with βt and β̂ switched gives

T (β̂, βt) ≥ (α− µ)‖β̂ − βt‖22 − τ
log p

n

(
32k‖β̂ − βt‖22 + 2(ǫ+ ǫ)2

)

≥ −2τ
log p

n
(ǫ+ ǫ)2.

This establishes inequality (79a).

D Proof of Lemma 4

For a truncation level τ > 0 to be chosen, define the functions

ϕτ (u) =





u2, if |u| ≤ τ
2 ,

(τ − u)2, if τ2 ≤ |u| ≤ τ,

0, if |u| ≥ τ,

and ατ (u) =

{
u, if |u| ≤ τ,

0, if |u| ≥ τ.

By construction, ϕτ is τ -Lipschitz and

ϕτ (u) ≤ u2 · I {|u| ≤ τ}, for all u ∈ R. (87)
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In addition, we define the trapezoidal function

γτ (u) =





1, if |u| ≤ τ
2 ,

2− 2
τ |u|, if τ

2 ≤ |u| ≤ τ,

0, if |u| ≥ τ,

and note that γτ is 2
τ -Lipschitz and γτ (u) ≤ I {|u| ≤ τ}.

Taking T ≥ 3τ so that T ≥ τ‖∆‖2 (since ‖∆‖2 ≤ 3 by assumption), and defining

Lψ(T ) := inf
|u|≤2T

ψ′′(u),

we have the following inequality:

T (β +∆, β) =
1

n

n∑

i=1

ψ′′(xTi β + ti · xTi ∆) · (xTi ∆)2

≥ Lψ(T ) ·
n∑

i=1

(xTi ∆)2 · I {|xTi ∆| ≤ τ‖∆‖2} · I {|xTi β| ≤ T}

≥ Lψ(T ) ·
1

n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β), (88)

where the first equality is the expansion (45) and the second inequality uses the bound (87).

Now define the subset of Rp × Rp via

Aδ :=

{
(β,∆) : β ∈ B2(3) ∩ B1(R), ∆ ∈ B2(3),

‖∆‖1
‖∆‖2

≤ δ

}
,

as well as the random variable

Z(δ) := sup
(β,∆)∈Aδ

1

‖∆‖22

∣∣∣∣∣
1

n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β)− E

[
ϕτ‖∆‖2(x

T
i ∆) γT (x

T
i β)

]
∣∣∣∣∣ .

For any pair (β,∆) ∈ Aδ, we have

E
[
(xTi ∆)2 − ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

]

≤ E

[
(xTi ∆)2I

{
|xTi ∆| ≥ τ‖∆‖2

2

}]
+ E

[
(xTi ∆)2I

{
|xTi β| ≥

T

2

}]

≤
√
E
[
(xTi ∆)4

]
·
(√

P

(
|xTi ∆| ≥ τ‖∆‖2

2

)
+

√
P

(
|xTi β| ≥

T

2

))

≤ σ2x‖∆‖22 · c exp
(
−c

′τ2

σ2x

)
,

where we have used Cauchy-Schwarz and a tail bound for sub-Gaussians, assuming β ∈ B2(3).
It follows that for τ chosen such that

cσ2x exp

(
−c

′τ2

σ2x

)
=
λmin

(
E[xix

T
i ]
)

2
, (89)
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we have the lower bound

E
[
ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

]
≥ λmin

(
E[xix

T
i ]
)

2
· ‖∆‖22. (90)

By construction of ϕ, each summand in the expression for Z(δ) is sandwiched as

0 ≤ 1

‖∆‖2
· ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β) ≤

τ2

4
.

Consequently, applying the bounded differences inequality yields

P

(
Z(δ) ≥ E[Z(δ)] +

λmin

(
E[xix

T
i ]
)

4

)
≤ c1 exp(−c2n). (91)

Furthermore, by Lemmas 12 and 13 in Appendix E, we have

E[Z(δ)] ≤ 2

√
π

2
· E
[

sup
(β,∆)∈Aδ

1

‖∆‖22

∣∣∣∣∣
1

n

n∑

i=1

gi

(
ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

)∣∣∣∣∣

]
, (92)

where the gi’s are i.i.d. standard Gaussians. Conditioned on {xi}ni=1, define the Gaussian
processes

Zβ,∆ :=
1

‖∆‖22
· 1
n

n∑

i=1

gi

(
ϕτ‖∆‖2(x

T
i ∆) · γT (xTi β)

)
,

and note that for pairs (β,∆) and (β̃, ∆̃), we have

var
(
Zβ,∆ − Z

β̃,∆̃

)
≤ 2 var

(
Zβ,∆ − Z

β̃,∆

)
+ 2var

(
Z
β̃,∆

− Z
β̃,∆̃

)
,

with

var
(
Zβ,∆ − Z

β̃,∆

)
=

1

‖∆‖42
· 1

n2

n∑

i=1

ϕ2
τ‖∆‖2

(xTi ∆) ·
(
γT (x

T
i β)− γT (x

T
i β̃)

)2

≤ 1

n2

n∑

i=1

τ4

16
· 4

T 2

(
xTi (β − β̃)

)2
,

since ϕτ‖∆‖2 ≤ τ2‖∆‖22
4 and γT is 2

T -Lipschitz. Similarly,

var
(
Z
β̃,∆

− Z
β̃,∆̃

)
≤ 1

‖∆‖42
· 1

n2

n∑

i=1

γ2T (x
T
i β̃) ·

(
ϕτ‖∆‖2(x

T
i ∆)− ϕτ‖∆‖2(x

T
i ∆̃)

)2

≤ 1

‖∆‖22
· 1

n2

n∑

i=1

τ2
(
xTi (∆− ∆̃)

)2
.

Defining the centered Gaussian process

Yβ,∆ :=
τ2

2T
· 1
n

n∑

i=1

ĝi · xTi β +
τ

‖∆‖2
· 1
n

n∑

i=1

g̃i · xTi ∆,
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where the ĝi’s and g̃i’s are independent standard Gaussians, it follows that

var
(
Zβ,∆ − Z

β̃,∆̃

)
≤ var

(
Yβ,∆ − Y

β̃,∆̃

)
.

Applying Lemma 14 in Appendix E, we then have

E

[
sup

(β,∆)∈Aδ

Zβ,∆

]
≤ 2 · E

[
sup

(β,∆)∈Aδ

Yβ,∆

]
. (93)

Note further (cf. p.77 of Ledoux and Talagrand [11]) that

E

[
sup

(β,∆)∈Aδ

|Zβ,∆|
]
≤ E [|Zβ0,∆0

|] + 2E

[
sup

(β,∆)∈Aδ

Zβ,∆

]
, (94)

for any (β0,∆0) ∈ Aδ, and furthermore,

E [|Zβ0,∆0
|] ≤

√
2

π
·
√
var (Zβ0,∆0

) ≤ 1

‖∆‖2
·
√

2

π
·
√
τ2

4n
. (95)

Finally,

E

[
sup

(β,∆)∈Aδ

Yβ,∆

]
≤ τ2R

2T
· E
[∥∥∥∥∥

1

n

n∑

i=1

ĝixi

∥∥∥∥∥
∞

]
+ τδ · E

[∥∥∥∥∥
1

n

n∑

i=1

g̃ixi

∥∥∥∥∥
∞

]

≤ cτ2Rσx
2T

√
log p

n
+ cτδσx ·

√
log p

n
, (96)

by Lemma 16 in Appendix E. Combining inequalities (92), (93), (94), (95), and (96), we then
obtain

E[Z(δ)] ≤ c′τ2Rσx
2T

√
log p

n
+ c′τδσx ·

√
log p

n
. (97)

Finally, combining inequalities (90), (91), and (97), we see that under the scaling R
√

log p
n - 1,

we have

1

‖∆‖22
· 1
n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β) ≥

λmin

(
E[xix

T
i ]
)

4
−
(
c′τ2Rσx

2T

√
log p

n
+ c′τδσx

√
log p

n

)

≥ λmin

(
E[xix

T
i ]
)

8
− c′τδσx

√
log p

n
, (98)

uniformly over all (β,∆) ∈ Aδ, with probability at least 1− c1 exp(−c2n).
It remains to extend this bound to one that is uniform in the ratio ‖∆‖1

‖∆‖2
, which we do via

a peeling argument [2, 22]. Consider the inequality

1

‖∆‖22
· 1
n

n∑

i=1

ϕτ‖∆‖2(x
T
i ∆) · γT (xTi β) ≥

λmin

(
E[xix

T
i ]
)

8
− 2c′τσx

‖∆‖1
‖∆‖2

√
log p

n
, (99)

as well as the event

E :=

{
inequality (99) holds for all ‖β‖2 ≤ 3 and ‖∆‖1

‖∆‖2
≤ λmin(E[xixTi ])

16c′τσx

√
n

log p

}
.
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Define the function

f(β,∆;X) :=
λmin

(
E[xix

T
i ]
)

8
− 1

‖∆‖22
· 1
n

n∑

i=1

ϕτ (x
T
i ∆) · γT (xTi β), (100)

along with

g(δ) := c′τσxδ

√
log p

n
, and h(β,∆) :=

‖∆‖1
‖∆‖2

.

Note that inequality (98) implies

P

(
sup

h(β,∆)≤δ
f(β,∆;X) ≥ g(δ)

)
≤ c1 exp(−c2n), for any δ > 0, (101)

where the sup is also restricted to the set {(β,∆) : β ∈ B2(3) ∩ B1(R), ∆ ∈ B2(3)}.
Since ‖∆‖1

‖∆‖2
≥ 1, we have

1 ≤ h(β,∆) ≤ λmin

(
E[xix

T
i ]
)

16c′τσx

√
n

log p
, (102)

over the region of interest. For each integer m ≥ 1, define the set

Vm :=
{
(β,∆) | 2m−1µ ≤ g(h(β,∆)) ≤ 2mµ

}
,

where µ = c′τσx

√
log p
n . By a union bound, we then have

P(Ec) ≤
M∑

m=1

P (∃(β,∆) ∈ Vm s.t. f(β,∆;X) ≥ 2g(h(β,∆))) ,

where the index m ranges up to M :=
⌈
log
(
c
√

n
log p

) ⌉
over the relevant region (102). By the

definition (100) of f , we have

P(Ec) ≤
M∑

m=1

P

(
sup

h(β,∆)≤g−1(2mµ)

f(β,∆;X) ≥ 2mµ

)
(i)

≤ M · 2 exp(−c2n),

where inequality (i) applies the tail bound (101). It follows that

P(Ec) ≤ c1 exp

(
−c2n+ log log

(
n

log p

))
≤ c′1 exp

(
−c′2n

)
.

Multiplying through by ‖∆‖22 then yields the desired result.

E Auxiliary results

In this section, we provide some auxiliary results that are useful for our proofs. The first
lemma concerns symmetrization and desymmetrization of empirical processes via Rademacher
random variables:
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Lemma 12 (Lemma 2.3.6 in van der Vaart and Wellner [23]). Let Z1, . . . , Zn be independent
zero-mean stochastic processes. Then

1

2
E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

ǫiZi(ti)

∣∣∣∣∣

]
≤ E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

Zi(ti)

∣∣∣∣∣

]
≤ 2E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

ǫi(Zi(ti)− µi)

∣∣∣∣∣

]
,

where the ǫi’s are independent Rademacher variables and the functions µi : F → R are
arbitrary.

We also have a useful lemma that bounds the Gaussian complexity in terms of the
Rademacher complexity:

Lemma 13 (Lemma 4.5 in Ledoux and Talagrand [11]). Let Z1, . . . , Zn be independent
stochastic processes. Then

E

[
sup
t∈T

∣∣∣∣∣

n∑

i=1

ǫiZi(ti)

∣∣∣∣∣

]
≤
√
π

2
· E
[
sup
t∈T

∣∣∣∣∣

n∑

i=1

giZi(ti)

∣∣∣∣∣

]
,

where the ǫi’s are Rademacher variables and the gi’s are standard normal.

We next state a version of the Sudakov-Fernique comparison inequality:

Lemma 14 (Corollary 3.14 in Ledoux and Talagrand [11]). Given a countable index set T ,
let X(t) and Y (t) be centered Gaussian processes such that

var (Y (s)− Y (t)) ≤ var (X(s)−X(t)) , ∀(s, t) ∈ T × T.

Then

E

[
sup
t∈T

Y (t)

]
≤ 2 · E

[
sup
∈T

X(t)

]
.

A zero-mean random variable Z is sub-Gaussian with parameter σ if P(Z > t) ≤ exp(− t2

2σ2 )
for all t ≥ 0. The next lemma provides a standard bound on the expected maximum of N
such variables (cf. equation (3.6) in Ledoux and Talagrand [11]):

Lemma 15. Suppose X1, . . . ,XN are zero-mean sub-Gaussian random variables such that

max
j=1,...,N

‖Xj‖ψ2
≤ σ. Then E

[
max
j=1,...,p

|Xj |
]
≤ c0 σ

√
logN , where c0 > 0 is a universal constant.

We also have a lemma about maxima of products of sub-Gaussian variables:

Lemma 16. Suppose {gi}ni=1 are i.i.d. standard Gaussians and {Xi}ni=1 ⊆ Rp are i.i.d. sub-
Gaussian vectors with parameter bounded by σx. Then as long as n ≥ c

√
log p for some

constant c > 0, we have

E

[∥∥∥∥∥
1

n

n∑

i=1

giXi

∥∥∥∥∥
∞

]
≤ c′σx

√
log p

n
.

Proof. Conditioned on {Xi}ni=1, for each j = 1, . . . , p, the variable
∣∣ 1
n

∑n
i=1 giXij

∣∣ is zero-mean

and sub-Gaussian with parameter bounded by σx
n

√∑n
i=1X

2
ij . Hence, by Lemma 15, we have

E

[∥∥∥∥∥
1

n

n∑

i=1

giXi

∥∥∥∥∥
∞

∣∣∣∣∣X
]
≤ c0σx

n
· max
j=1,...,p

√√√√
n∑

i=1

X2
ij ·
√

log p,
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implying that

E

[∥∥∥∥∥
1

n

n∑

i=1

giXi

∥∥∥∥∥
∞

]
≤ c0σx

√
log p

n
· E


max

j

√∑n
i=1X

2
ij

n


 . (103)

Furthermore, Zj :=
∑n

i=1X
2
ij

n is an i.i.d. average of subexponential variables, each with param-
eter bounded by cσx. Since E[Zj] ≤ 2σ2x, we have

P
(
Zj − E[Zj] ≥ u+ 2σ2x

)
≤ c1 exp

(
−c2nu

σx

)
, for all u ≥ 0 and 1 ≤ j ≤ p. (104)

Now fix some t ≥
√

2σ2x. Since the {Zj}pj=1 are all nonnegative, we have

E

[
max
j=1,...,p

√
Zj

]
≤ t+

∫ ∞

t
P

(
max
j=1,...,p

√
Zj > s

)
ds

≤ t+

p∑

j=1

∫ ∞

t
P
(√

Zj > s
)
ds

≤ t+ c1p

∫ ∞

t
exp

(
−c2n(s

2 − 2σ2x)

σx

)
ds

where the final inequality follows from the bound (104) with u = s2 − 2σ2x, valid as long as
s2 ≥ t2 ≥ 2σ2x. Integrating, we have the bound

E

[
max
j=1,...,p

√
Zj

]
≤ t+ c′1pσx exp

(
−c

′
2n(t

2 − 2σ2x)

σ2x

)
.

Since n %
√
log p by assumption, taking t to be a constant implies E

[
maxj

√
Zj
]
= O(1),

which combined with inequality (103) gives the desired result.

F Capped-ℓ1 penalty

In this section, we show how our results on nonconvex but subdifferentiable regularizers may
be extended to include certain types of more complicated regularizers that do not possess
(sub)gradients everywhere, such as the capped-ℓ1 penalty.

In order to handle the case when ρλ has points where neither a gradient nor subderivative
exists, we assume the existence of a function ρ̃λ (possibly defined according to the particular
local optimum β̃ of interest), such that the following conditions hold:

Assumption 2.

(i) The function ρ̃λ is differentiable/subdifferentiable everywhere, and ‖∇ρ̃λ(β̃)‖∞ ≤ λL.

(ii) For all β ∈ Rp, we have ρ̃λ(β) ≥ ρλ(β).

(iii) The equality ρ̃λ(β̃) = ρλ(β̃) holds.

(iv) There exists µ1 ≥ 0 such that ρ̃λ(β) + µ1‖β‖22 is convex.
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(v) For some index set A with |A| ≤ k and some parameter µ2 ≥ 0, we have

ρ̃λ(β
∗)− ρ̃λ(β̃) ≤ λL‖β̃A − β∗A‖1 − λL‖β̃Ac − β∗Ac‖1 + µ2‖β̃ − β∗‖22.

In addition, we assume conditions (i)–(iii) of Assumption 1 in Section 2.2 above.

Remark 5. When ρλ(β) + µ1‖β‖22 is convex for some µ1 ≥ 0 (as in the case of SCAD or
MCP), we may take ρ̃λ = ρλ and µ2 = 0. (See Lemma 6 in Appendix A.1.) When no such
convexification of ρλ exists (as in the case of the capped-ℓ1 penalty), we instead construct a
separate convex function ρ̃λ to upper-bound ρλ and take µ1 = 0.

Under the conditions of Assumption 2, we have the following variation of Theorem 1:

Theorem 3. Suppose Ln satisfies the RSC conditions (4), and the functions ρλ and ρ̃λ satisfy
Assumption 1 and Assumption 2, respectively. With λ is chosen according to the bound (6)

and n ≥ 16R2τ22
α2
2

log p, then

‖β̃ − β∗‖2 ≤
7λ

√
k

4(α1 − µ1 − µ2)
, and ‖β̃ − β∗‖1 ≤

63λk

4(α1 − µ1 − µ2)
.

Proof. The proof is essentially the same as the proof of Theorem 1, so we only mention a few
key modifications here. First note that any local minimum β̃ of the program (1) is a local
minimum of Ln + ρ̃λ, since

Ln(β̃) + ρ̃λ(β̃) = Ln(β̃) + ρλ(β̃) ≤ Ln(β) + ρλ(β) ≤ Ln(β) + ρ̃λ(β),

locally for all β in the constraint set, where the first inequality comes from the fact that β̃
is a local minimum of Ln + ρλ, and the second inequality holds because ρ̃λ upper-bounds
ρλ. Hence, the first-order condition (5) still holds with ρλ replaced by ρ̃λ. Consequently,
inequality (9) holds, as well.

Next, note that inequality (11) holds as before, with ρλ replaced by ρ̃λ and µ replaced by
µ1. By condition (v) on ρ̃λ, we then have inequality (12) with µ replaced by µ1 + µ2. The
remainder of the proof is exactly as before.

Specializing now to the case of the capped-ℓ1 penalty, we have the following lemma. For
a fixed parameter c ≥ 1, the capped-ℓ1 penalty [27] is given by

ρλ(t) := min

{
λ2c

2
, λ|t|

}
. (105)

Lemma 17. The capped-ℓ1 regularizer (105) with parameter c satisfies the conditions of
Assumption 2, with µ1 = 0, µ2 =

1
c , and L = 1.

Proof. We will show how to construct an appropriate choice of ρ̃λ. Note that ρλ is piecewise
linear and locally equal to |t| in the range

[
−λc

2 ,
λc
2

]
, and takes on a constant value outside

that region. However, ρλ does not have either a gradient or subgradient at t = ±λc
2 , hence is

not “convexifiable” by adding a squared-ℓ2 term.
We begin by defining the function ρ̃ : R → R via

ρ̃λ(t) =

{
λ|t|, if |t| ≤ λc

2 ,
λ2c
2 , if |t| > λc

2 .

42



For a fixed local optimum β̃, note that we have ρ̃λ(β) =
∑

j∈T λ|β̃j | +
∑

j∈T c
λ2c
2 , where

T :=
{
j | |β̃j | ≤ λc

2

}
. Clearly, ρ̃λ is a convex upper bound on ρλ, with ρ̃λ(β̃) = ρλ(β̃). Fur-

thermore, by the convexity of ρ̃λ, we have

〈∇ρ̃λ(β̃), β∗ − β̃〉 ≤ ρ̃λ(β
∗)− ρ̃λ(β̃) =

∑

j∈T

(
ρ̃λ(β

∗
j )− ρ̃λ(β̃j)

)
−
∑

j /∈T

ρ̃λ(β̃j), (106)

using decomposability of ρ̃. For j ∈ T , we have ρ̃λ(β
∗
j ) − ρ̃λ(β̃j) = λ|β∗j | − λ|β̃j | ≤ λ|ν̃j|,

whereas for j /∈ T , we have ρ̃λ(β
∗
j )− ρ̃λ(β̃j) = 0 ≤ λ|ν̃j|. Combined with the bound (106), we

obtain

〈∇ρ̃λ(β̃), β∗ − β̃〉 ≤
∑

j∈T

λ|ν̃j| −
∑

j /∈T

ρ̃λ(β̃j)

= λ‖ν̃S‖1 −
∑

j /∈S

ρλ(β̃j)

= λ‖ν̃T ‖1 − λ‖ν̃T c‖1 +
∑

j /∈T

(
λ|β̃j | − ρλ(β̃j)

)
. (107)

Now observe that

λ|t| − ρλ(t) =

{
0, if |t| ≤ λc

2 ,

λ|t| − λ2c
2 , if |t| > λc

2 ,

and moreover, the derivative of t2

c always exceeds λ for |t| > λc
2 . Consequently, we have

λ|t| − ρλ(t) ≤ t2

c for all t ∈ R. Substituting this bound into inequality (107) yields

〈∇ρ̃λ(β̃), β∗ − β̃〉 ≤ λ‖ν̃S‖1 − λ‖ν̃Sc‖1 +
1

c
‖ν̃Sc‖22,

which is condition (v) of Assumption 2 on ρ̃λ with L = 1, A = S, and µ2 =
1
c . The remaining

conditions are easy to verify (see also Zhang and Zhang [27]).
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