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ABSTRACT

In this work we propose a novel algorithm for multiple-event
localization for Hydraulic Fracture Monitoring (HFM) through the
exploitation of the sparsity of the observed seismic signalwhen rep-
resented in a basis consisting of space time propagators. Weprovide
explicit construction of these propagators using a forwardmodel for
wave propagation which depends non-linearly on the problempa-
rameters - the unknown source location and mechanism of fracture,
time and extent of event, and the locations of the receivers.Under
fairly general assumptions and an appropriate discretization of these
parameters we first build an over-complete dictionary of generalized
Radon propagators and assume that the data is well represented as
a linear superposition of these propagators. Exploiting this structure
we propose sparsity penalized algorithms and workflow for super-
resolution extraction of time overlapping multiple seismic events
from single well data.

1. INTRODUCTION

Accurate seismic hydraulic fracturing monitoring (HFM) can miti-
gate many of the environmental impacts by providing a clear real-
time image of where the fractures are occurring outside of the shale
and how efficiently they are formed within the gas deposit. Although
simple in principle, real time monitoring of hydraulic fracturing is
extremely difficult to perform successfully due to high noise lev-
els generated by the pumping equipment, anisotropic propagation
of seismic waves through shale, and the multi-layered stratigraphy
leading to complex seismic ray propagation, [1, 2, 3]. In addition
the complexity of the source mechanism affects the wave polariza-
tion at the 3-axis seismometers, [4] introducing extra parameters in
the system.

2. PROBLEM SET-UP

The physical set-up is shown in Figure 1. A typical seismic array of
(say)L three-axis seismometers sample the instantaneous displace-
ment across the three axes at a sampling rate between 1-8 kHz.The
jth detector in the array records a trace, see Figure 2, along thethree-
axes that will be a combination ofm seismic events observed in
noise which can be effectively modeled as Additive White Gaussian
Noise (AWGN), see [5]. Therefore we have,

Yj(t) =
m∑

i=1

((Sij(t) +N(t)) (1)

where,

Yj(t) =





Yjx(t)
Yjy(t)
Yjz(t)



 Sij(t) =





Sijx(t)
Sijy(t)
Sijz(t)



 (2)

In the most general case of anisotropic formationSij(t) is a combi-
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Fig. 1. This figure shows the typical hydraulic fracturing setup in
which a seismic array detects the emitted signal from a fracture oc-
curring within the search volume.

nation of compressional (ρ) wave component and shear component
which further consists of vertical shear component,sv, and horizon-
tal shear component,sh, as incident on the detector along the three
axes, i.e.,

Sij(t) = Sijρ(t) + Sijsh (t) + Sijsv (t) (3)

For a given a wave type such asρ, the signal at the seismometer
induced by the wave,Sijρ(t), is completely determined by the sig-
nal waveform of the compressional wave at the source,siρ(t), the
arrival time for the compressional wave of theith event at thejth

detector,τρij , the compressional polarization unit vector,Pijρ , rep-
resenting the direction of particle movement at the detector. Usually
the signal waveformsiρ(t) is time compact due to finite duration
of the seismic event. Therefore the signal at the seismometer is the
signal at the source,siρ(t), delayed by a time,τρij , and projected
onto the three axes by the polarization unit vector,Pijρ . Therefore,
mathematically we can write,

Sijρ(t) = δ(t− τρij ) ∗ (Pijρsijρ(t)) = Pijρsijρ(t− τρij ) (4)

The time and location of the event, say{ti, li}, and velocity profile
of the stratigraphy and the seismic source mechanism completely
determine the arrival time of the wave and the polarization vector at
each of the detector. This is expressed in terms of a forward model
function,

{Pijρ , τρij} = fj(ti, θi, φi, ri)
︸ ︷︷ ︸

li

) (5)

where we have characterized the location of the event atli in terms
of the strike, dip and range relative to an absolute co-ordinate sys-
tem. Given that the seismic event at a one location will not affect
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the signal emitted from a seismic event at another location,we can
assume that the observed dataYj(t) at thej−th receiver resulting
from events that emit all three wave types can be viewed as a lin-
ear combination of signals observed in AWGN. In this work we will
focus on using the compressional waves for HFM as these waves
typically have higher amplitude than the shear waves. However, our
approach can be easily extended to handle the processing of shear
waves. Using equation (5), we can rewrite the Equation (1) for the
observed trace due to compressional waves,Yj(t) as follows,

Yj(t) =

m∑

i=1

Pijρsiρ(t− τρij ) +N(t) (6)

Note that here we focus on isotropic fracture mechanism where the
moment tensor is known save for the scaling factor. Nevertheless our
approach can be extended to jointly estimate the time, location and
moment tensor for other mechanisms such as double couple, [2].

3. SPARSITY PENALIZED FRAMEWORK FOR HFM

To illustrate the sparsity of the HFM signal, we begin by defining a
propagator,Γi

ρ = {Γi
jρ(t)}

L
j=1, which corresponds to noiseless data

at the receivers as excited by a hypothetical seismic eventi (say) at
locationli and timeti with an impulse source signal, i.e.,

Γ
i
jρ(t) = δ(t− τρij ) ∗Pijρ (7)

With this notion of a propagator we construct a basis for a general-
ized Radon transform as follows. Wediscretize the search volume
in space and time with locations within the search volume sayV in-
dexed from1 to nV and time of the events in this volume indexed
from 1 to ntV . Then for each of the discretized locations and time
we construct a propagator using Equation (7). For sake of exposi-
tion wevectorize the space time propagators by stacking the tri-axial
time tracesΓi

jρ(t) for each receiverj as column vectors obtaining
a 3 × T × L vector for each propagator. We denote this vector by
Γ

i
ρ(:). (NOTE - here(:) denotes the vectorization operation simi-

lar to the MATLAB operator(:)). Running over the locations and
time indices over the events, we collect the vectorized propagators
as columns of a matrix denoted byΦρ. The data is also vectorized
to a vector,Yρ(:) which is a3 × T × L vector in a similar manner
as the propagators. Then a generalized discrete Radon transform of
the data is given by,

R(Y) = Φ
†
ρYρ(:) (8)

where

Φρ =
[

Γ
1
ρ(:),Γ

2
ρ(:), . . . ,Γ

i
ρ(:), . . . ,Γ

nV ×ntV
ρ (:)

]

(9)

and † denotes the conjugate transpose. This linear operator,Φ
†
ρ,

transforms the vectorized trace data,Y(:) to a function of source
location and the time at which an event occurs. It is essentially sim-
ilar to generating a slant-stack (or time-moveout) map of the data,
albeit along the non-linear trajectories. Note that because the noise
is spatially incoherent the transform will spread the noiseenergy
evenly across all of the possible propagators. From this transform
we can see that the trace data becomes sparse when viewed in the
in the generalized Radon domain (figure 2). However because the
dictionary is over complete, we see a number of sidelobes forjust a
single seismic event, making it difficult to determine the location of
the event in heavy noise. As stated in the problem statement we
assume that the signal at the source is time compact. Therefore
we assume that the signalsi for an eventi is supported on a set

Ti = [tmin, tmax] ⊂ [0, T ] for some total timeT of microseismic
stimulation. In this case the source signalssiρ(t) can be viewed as
weighted sum of several delta functions,

siρ(t) =
∑

tk∈Tiρ

ηi
ρtk

δ(t− tk) (10)

where the vectorηtk determine theshape of the source waveform.
Here we would like to point our that in contrast to methods that as-
sume knowledge of the signal waveform, [5], here we have not as-
sumed any knowledge of the wave shape. However, we assume that
the search volume contains the setTiρ for the event under consider-
ation.

siρ(t) =
∑

tk∈[0,T ]

ηi
ρtk

δ(t− tk) : ηi
tk

= 0∀ tk /∈ Tiρ (11)

Given our definition of a propagator, assuming no geometrical
spreading, we can define the arriving observed vectorized traces
Yρ(:) due to an event as a sum of propagators with the same source
location and varying event times. Therefore we can write,

Yρ(:) = ΦρX(:) +N (12)

whereX(:) ∈ R
nV ·ntv is the coefficient vector (with elementsηtk

i

) corresponding to the spatio-temporal volume of possible events. If
we were to reshape the true vectorX(:) into a two dimensional ma-
trix X the dictionary weights corresponding to a single event would
be sparse along the location dimension while compact along the tem-
poral dimension, see Figure 2. In this way the signal exhibits sparsity
across the rows ofX and is thus said to be simultaneously sparse.

4. SPARSITY PENALIZED ALGORITHM FOR EVENT
LOCALIZATION

Motivated by the row-sparse structure of the data, we use theal-
gorithm presented in [6] for a high spatio-temporal resolution map-
ping of the micro-seismic events. The algorithm corresponds to the
following mathematical optimization problem also known asgroup
sparse penalization, [7] in the literature.

X̂ = argmin
X

||Y(:)−ΦX(:)||2 + λ||X||1,2 (13)

whereλ is a sparse tuning factor that controls the group sparseness
of X versus the signal error. Where group or row spareness is the
measure of number of non-zero rows ofX. We can induce this mini-
mizing the theℓ1 norm of the euclidian norm of the rows (same time
indices) ofX. The parameterλ is chosen depending on the noise
level and the anticipated number of events. For the application at
hand we use the method proposed in [8][9] for selection of a good
regularization parameter. In this context our method is different than
that used in [10] in that we are exploiting the row-sparsity of the
generalized discrete radon transform.

4.1. Algorithm workflow

The geometry of the linear seismic array lends itself to dividing the
task of localization into two subtasks, viz.,

• Localization in the sagittal plane (estimate ofθ andr); and
• Determination of the strike angleφ.

In order to determine the location of the seismic event in thesagittal
plane the two horizontal axes (x and y) of the traces are combined
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Fig. 2. This figure shows the traces for a syntheticρ-wave across for two SNRs: 15 and 5. Also shown are the (generalized) Radon transforms.
Note the signal sparsity in the Radon domain which is concentrated at a single position index and among a few time indices.
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Fig. 3. This figure shows the x,y, and z traces for all 6 synthetic events in the presence of noise.

into a single quantityYh(t) allowing the data to be observed in the
Yh(t) andYz(t) domain,Y′(t), where

Yjh(t) =
√

Yjx(t)2 + Yjy(t)2 Y
′
j(t) =

[
Yjh(t)
Yjz(t)

]

(14)

Furthermore, the transformation is applied to each dictionary ele-
ments and the modified dictionaryΦhz is constructed. By con-
structing the dictionary in this domain both the number of dictionary
elements are reduced by the number of possible strike anglesand
decreases the size of each dictionary entry by the number of time
samples. However, because the amplitude difference acrossthe x
andy components are eliminated in this procedure, all events having
the same strike will have the same amplitude in the radon domain.
The ℓ1,2 minimization that was described in Equation 13, can now
be applied to the traces in theY′(t) space. The minimization now
takes the form of 15 in whichΦhz is the compressed dictionary and
Xhz is the dictionary weights and results in the estimation of signals
time and sagittal location support,X̂hz .

X̂hz = argmin
Xhz

||Yhz(:)−ΦhzXhz(:)||2 + λ||Xhz||1,2 (15)

Once the minimization has been performed the range and depthof
the location can then be determined by thresholding the dictionary
coefficients. To locate the events or a single event we take the ℓ2
norm of each row across time to generate a column vector whoseen-
tries represent the total signal energy at a given location.The largest
entries of these vectors correspond to location of the seismic event.
Once a set of seismic events have been located in the sagittalplane
the algorithm has identified the events’ strike, range, and time with
some uncertainty, the event’s true location is effectivelyconstrained

to several semi-toruses of constant range and dip as the onlyun-
known parameter is strike. Because of the possible locations of the
event have been constrained to a small subset of the entire search
volume, the computational load of performing the minimization on
the full three axes traces has been significantly decreased.In order
to estimate the strike of a seismic event a subset of the original dic-
tionary,Φxyz, consisting of propagators in the full axes setup only
along the semi-toruses. Once this small dictionary is constructed a
ℓ(1,2) minimization is then applied to the full three dimensional data
to estimate the signal’s strike supportX̂xyz.

X̂xyz = argmin
Xxyz

||Yxyz(:)−ΦxyzXxyz(:)||2 + λ||Xxyz||1,2

As with the sagittal localization, we again take theℓ2 norm of each
row of the dictionary coefficients ,̂Xxyz , across time to generate a
column vector. Because the number of events has been determined
in sagittal localization, the strike of each event can be determined
by picking the corresponding number of largest peaks of the column
vector.

5. PERFORMANCE EVALUATION ON SYNTHETIC DATA

To illustrate the performance of the proposed method 6 seismic
events were generated in short succession after with a temporal
spacing of 5 milliseconds, see Figure 3. Furthermore, the seismic
events follow a near linear path occurring roughly 50 metersapart.
In this simulation a search volume with a depth from 750 to 1050
meters, a range from 750 to 1050 meters, and set of strike angles
from 0 to 30 degrees. A spatial resolution of 50 meters and .1
degrees was used. Each of the seismic events generated a 150Hz
compressional ricker wavelet with the same amplitude across all
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Fig. 4. Left: This figure shows the resulting dictionary coefficients of the sparse penalized minimization for the sagittal localization and the
radon transform of the observed data. Right: This figure shows the resulting dictionary coefficients of the sparse penalized minimization of
the strike minimization and the strike radon transformed data. The events’ locations are easily identifiable after applying the minimization.
The 6 distinct horizontal bands in this image correspond to the dictionary elements from the 6 different sagittal locations.

events. Although these traces do not overlap along some of the
detectors, at many detectors the events fall on top of each other,
making it difficult to determine the arrival times of each event and
corrupting the relatively amplitude across the x and y axes (figure
3). As in the multiple events simulation the sameℓ(1,2) minimiza-
tion and thresholding operations were applied to the data. Figure
4 shows the resulting radon transform and dictionary coefficients.
After applying the minimization it easy to determine the strike and
sagittal location of each of the 6 events.

In order to characterize the performance of our algorithm inthe
presence of noise, the simulation was repeated 25 times witha single
seismic event occurring in the middle of the search volume with the
same detector configuration but with varying SNR’s from 1 to 15.
In addition, the sagittal resolution was increases to 5 meters. The
results of the application of the algorithm to the varying SNR cases
are shown in figure 5. The algorithm is able to accurately localize
seismic events in the sagittal to plane to within 10 meters for signal to
noise ratios above 8. However, below a signal to noise ratio of 5 the
algorithm becomes unstable the algorithm consistently estimates the
event as occurring on the edge of the search volume 50 meters away
from the true event’s location, driving the apparent track accuracy to
50 meters second.

6. CONCLUSION & FUTURE WORK

We demonstrated a novel method based on sparsity penalized recon-
struction methods for accurate HFM. Our method assumes minimal
knowledge of the waveform signatures and also exploits the tempo-
ral information in the signal. Currently our processing works on the
compressional and shear waves separately. In future we willextend
this framework to jointly process these arrivals and exploit the de-
pendencies in polarization to improve the accuracy.
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