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ABSTRACT

In this work we propose a novel algorithm for multiple-event
localization for Hydraulic Fracture Monitoring (HFM) thugh the
exploitation of the sparsity of the observed seismic sigvten rep-
resented in a basis consisting of space time propagatorproViele
explicit construction of these propagators using a forwaatiel for
wave propagation which depends non-linearly on the prolpem
rameters - the unknown source location and mechanism dfifec
time and extent of event, and the locations of the receiversler
fairly general assumptions and an appropriate discrétizaf these
parameters we first build an over-complete dictionary okegealived
Radon propagators and assume that the data is well repedsast
a linear superposition of these propagators. Exploitimggtructure
we propose sparsity penalized algorithms and workflow faesu
resolution extraction of time overlapping multiple seisneivents
from single well data.

1. INTRODUCTION

Accurate seismic hydraulic fracturing monitoring (HFM)ncaniti-

gate many of the environmental impacts by providing a cleat-r
time image of where the fractures are occurring outside @fkttale
and how efficiently they are formed within the gas deposithéligh
simple in principle, real time monitoring of hydraulic ftacing is

extremely difficult to perform successfully due to high moisv-

els generated by the pumping equipment, anisotropic peijuag
of seismic waves through shale, and the multi-layeredigtegthy
leading to complex seismic ray propagatidn, (1, 2, 3]. Inithoka

the complexity of the source mechanism affects the waverigata
tion at the 3-axis seismometers| [4] introducing extra pesters in
the system.

2. PROBLEM SET-UP
The physical set-up is shown in Figlide 1. A typical seismiayaof
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Fig. 1. This figure shows the typical hydraulic fracturing setup in
which a seismic array detects the emitted signal from adraabc-
curring within the search volume.

nation of compressionap) wave component and shear component
which further consists of vertical shear componept,and horizon-

tal shear componenty,, as incident on the detector along the three
axes, i.e.,

Si;(t) = Sijp(t) + Sijs, (t) + Sijs, () 3)

For a given a wave type such asthe signal at the seismometer
induced by the waveS;;,(t), is completely determined by the sig-
nal waveform of the compressional wave at the sousggt), the
arrival time for the compressional wave of ti{é event at thej*"
detector,Tpij, the compressional polarization unit vectBr;,,, rep-
resenting the direction of particle movement at the detettsually
the signal waveforms;,(t) is time compact due to finite duration
of the seismic event. Therefore the signal at the seismarisetee
signal at the sources;,(t), delayed by a timer,, ,, and projected

(say) L three-axis seismometers sample the instantaneous displacyntg the three axes by the polarization unit vecRy;, . Therefore,

ment across the three axes at a sampling rate between 1-8rkidz.
4" detector in the array records a trace, see Figlre 2, alonbribe-
axes that will be a combination of. seismic events observed in
noise which can be effectively modeled as Additive White €&san
Noise (AWGN), se€ [5]. Therefore we have,

Y;(t) = Z((Sw‘(t) +N(t)) €))
where,
Y (t) Sija(t)
Yi(t) = |Yiy(t)| Sis(t) = [Sijy(t) 2
Yi-(1) Sijz ()

In the most general case of anisotropic forma®ep(t) is a combi-

mathematically we can write,
Sij, (1) = 0(t — 7p,;) * (Pij, 815, () = Pij, 865, — 7p,;) (4)

The time and location of the event, sé, [;}, and velocity profile
of the stratigraphy and the seismic source mechanism coehple
determine the arrival time of the wave and the polarizatiecter at
each of the detector. This is expressed in terms of a forwardiein
function,

{Pijp7TP1ij} = fj(ti79i7¢iyri)) (5)
l.

where we have characterized the location of the evehtiatterms
of the strike, dip and range relative to an absolute co-atdisys-
tem. Given that the seismic event at a one location will necaf
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the signal emitted from a seismic event at another locati@ncan ~ 7; = [tmin, tmaz] C [0, T for some total timel” of microseismic
assume that the observed dafa(t) at thej—th receiver resulting  stimulation. In this case the source signals(t) can be viewed as
from events that emit all three wave types can be viewed as-a li weighted sum of several delta functions,

ear combination of signals observed in AWGN. In this work witk w

focus on using the compressional waves for HFM as these waves si,(t) = Z U;t S(t — tr) (10)
typically have higher amplitude than the shear waves. Heweur theTi, *

approach can be easily extended to handle the processirtteaf s

waves. Using equatiofi](5), we can rewrite the Equafion (@)ffe  where the vector, determine theshape of the source waveform.

observed trace due to compressional wal¥eg) as follows, Here we would like to point our that in contrast to methodg #sa
m sume knowledge of the signal wavefortnl [5], here we have sot a
Y (1) = P, s (t—1, )+ N(t 6 sumed any knowledge of_ the wave shape. However, we assgme tha
i® ; dosip (= o) TN (E) ®  ihe search volume contains the gef for the event under consider-
ation.

Note that here we focus on isotropic fracture mechanism evtre _ _

moment tensor is known save f_or_ the sca_ling factor._Nev_taﬂse)ur si,(t) = Z n;tk S(t—ty) @ my, =0Vt ¢ T,  (11)
approach can be extended to jointly estimate the time, imtaind t,€[0,T]

moment tensor for other mechanisms such as double couple, [2
Given our definition of a propagator, assuming no geométrica
3. SPARSITY PENALIZED FRAMEWORK FOR HFM spreading, we can define the arriving observed vectorizatesr

To illustrate the sparsity of the HEM signal, we begin by defia Y »(:) due to an event as a sum of propagators with the same source
propagatorl, = {I‘;-,J(t)}f:l, which corresponds to noiseless data l0cation and varying event times. Therefore we can write,

at the receivers as excited by a hypothetical seismic evesay) at

locationi; and timet; with animpulse source signal, i.e., Y,() = ®,X(:) + N (12)

T3, (t) = 0(t — 7p,;) * Pijp (7)  whereX(:) € R™v ™ is the coefficient vector (with elementg*

) corresponding to the spatio-temporal volume of possibémes. If
With this notion of a propagator we construct a basis for @g#h e were to reshape the true vec:) into a two dimensional ma-
ized Radon transform as follows. \Mescretize the search volume iy X the dictionary weights corresponding to a single event d@oul
in space and time with locations within the search volumelsay-  pe sparse along the location dimension while compact atuatetn-
from 1 to ns,,. Then for each of the discretized locations and time;cross the rows &K and is thus said to be simultaneously sparse.
we construct a propagator using Equatibh (7). For sake absxp
tion wevector_ize the space time propagators by stacking the tri-axial 4 SPARSITY PENALIZED ALGORITHM FOR EVENT
time tracesI™; ,(t) for each receiveyj as column vectors obtaining LOCALIZATION
a3 x T x L vector for each propagator. We denote this vector by
I'.(:). (NOTE - here(:) denotes the vectorization operation simi- Motivated by the row-sparse structure of the data, we uselthe
lar to the MATLAB operator(:)). Running over the locations and 907ithm presented in [6] for a high spatio-temporal resotumap-
time indices over the events, we collect the vectorized agapors ~ PiNg of the micro-seismic events. The algorithm corresgandhe
as columns of a matrix denoted i,. The data is also vectorized following mathematical optimization problem also knowngasup
to a vector)Y ,(:) which is a3 x T’ x L vector in a similar manner SParse penalizatiori/[7] in the literature.

as the propagators. Then a generalized discrete Radofoimansf . )

the data is given by, X = ar%(mnnY(:) = @X()l2 + AlIX]|1.2 (13)
R(Y) = (I’LYP(:) ®) where is a sparse tuning factor that controls the group sparseness

of X versus the signal error. Where group or row spareness is the

measure of number of non-zero rowsXf We can induce this mini-

— [Py 12/ i, ny Xniy o mizing the the/; norm of the euclidian norm of the rows (same time
Po = Lo Tp(e), o, Lo (), o T (')} ©) indices) ofX. The parameteh is chosen depending on the noise
level and the anticipated number of events. For the apitatt
hand we use the method proposed_in([8][9] for selection of@go
regularization parameter. In this context our method idéht than
that used in[[10] in that we are exploiting the row-sparsitytte
generalized discrete radon transform.

where

and T denotes the conjugate transpose. This linear oper@tbr,
transforms the vectorized trace da¥(:) to a function of source
location and the time at which an event occurs. It is esdgntian-
ilar to generating a slant-stack (or time-moveout) map efdhta,
albeit along the non-linear trajectories. Note that beedhs noise
is spatially incoherent the transform will spread the nasergy )
evenly across all of the possible propagators. From thisfeam  4-1- Algorithm workflow

we can see that the trace data becomes sparse when viewed in fhhe geometry of the linear seismic array lends itself todiig the
in the generalized Radon domain (figlile 2). However becéwese t task of localization into two subtasks, viz.,

dictionary is over complete, we see a number of sidelobepiftra e Localization in the sagittal plane (estimatefedndr); and
single seismic event, making it difficult to determine thedtion of « Determination of the strike angig:

the event in heavy noise. As stated in the problem statement w 9
assume that the signal at the source is time compact. Therefoln order to determine the location of the seismic event irstigttal
we assume that the signa) for an eventi is supported on a set plane the two horizontal axes (x and y) of the traces are coeabi
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Fig. 2. This figure shows the traces for a synthetiwave across for two SNRs: 15 and 5. Also shown are the (grentaRadon transforms.
Note the signal sparsity in the Radon domain which is comaged at a single position index and among a few time indices.
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Fig. 3. This figure shows the x,y, and z traces for all 6 synthetiaevin the presence of noise.

into a single quantityY » (¢) allowing the data to be observed in the to several semi-toruses of constant range and dip as theuonly
Y (t) andY . (t) domain,Y’(t), where known parameter is strike. Because of the possible locatdthe
event have been constrained to a small subset of the enéirehse
Yjn(t) volume, the computational load of performing the minimiaaton
W) = VY2 1Y, (02 Yi) = | 14 , p performing
Yin(t) Yia(t)® + Y (t) i®) [sz(t)] (14) the full three axes traces has been significantly decredseatder

o ) o to estimate the strike of a seismic event a subset of thenatigic-
Furthermore, the transformation is applied to each dietiprele-  tionary, .., consisting of propagators in the full axes setup only
ments and the modified dictiona,.. is constructed. By con-  gjong the semi-toruses. Once this small dictionary is congtd a
s:ructlng the dlct:jonar()j/ 'Q th;f domaLn b°tfh the r_lglmber_lftldnark); £(1,2) minimization is then applied to the full three dimensionafad
elements are reduce the number of possible strike angles . S -
decreases the size of egch dictionary entF;y by the numbérgef t to estimate the signal's strike SUppOLL».
samples. However, because the amplitude difference athiess & _ . ) )
andy components are eliminated in this procedure, all eventmgav Kays = a)r(nglnHYzyz(.) = Py Xy ()2 + Al Xay: |12
the same strike will have the same amplitude in the radon @oma
The ¢1,2 minimization that was described in Equatfod 13, can nowAs with the sagittal localization, we again take thenorm of each
be applied to the traces in thé’(¢) space. The minimization now row of the dictionary coefficientsX...,. , across time to generate a
takes the form df-15 in whick,. is the compressed dictionary and column vector. Because the number of events has been deetmi
X is the dictionary weights and results in the estimationgfals  in sagittal localization, the strike of each event can bemteined
time and sagittal location suppoX,,.. by picking the corresponding number of largest peaks of dfignen
. vector.
Xpz = argmin|[Ynz (1) — ®neXnz ()2 + Al[Xnz|[12 (15)
Xnz 5. PERFORMANCE EVALUATION ON SYNTHETIC DATA

Once the minimization has been performed the range and @épth To illustrate the performance of the proposed method 6 seism
the location can then be determined by thresholding théodiaty  events were generated in short succession after with a tampo
coefficients. To locate the events or a single event we takéth spacing of 5 milliseconds, see Figlife 3. Furthermore, tiwmie
norm of each row across time to generate a column vector wérese events follow a near linear path occurring roughly 50 meagrart.

tries represent the total signal energy at a given locafite.largest  In this simulation a search volume with a depth from 750 to0L05
entries of these vectors correspond to location of the seisment.  meters, a range from 750 to 1050 meters, and set of strikesang|
Once a set of seismic events have been located in the sagitted  from 0 to 30 degrees. A spatial resolution of 50 meters and .1
the algorithm has identified the events’ strike, range, @ame tith degrees was used. Each of the seismic events generated a 150H
some uncertainty, the event’s true location is effectiapstrained compressional ricker wavelet with the same amplitude aceds
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Fig. 4. Left: This figure shows the resulting dictionary coeffi¢c®nf the sparse penalized minimization for the sagittadliaation and the
radon transform of the observed data. Right: This figure shitv resulting dictionary coefficients of the sparse peadliminimization of
the strike minimization and the strike radon transformethd@he events’ locations are easily identifiable after wipglthe minimization.
The 6 distinct horizontal bands in this image corresponti¢adictionary elements from the 6 different sagittal |omasi.

events. Although these traces do not overlap along someeof th

detectors, at many detectors the events fall on top of edudr,ot
making it difficult to determine the arrival times of each evand
corrupting the relatively amplitude across the x and y afigsire
B). As in the multiple events simulation the sare., minimiza-
tion and thresholding operations were applied to the daiguré&
[4 shows the resulting radon transform and dictionary caeffts.
After applying the minimization it easy to determine thekstrand
sagittal location of each of the 6 events.

In order to characterize the performance of our algorithrihén
presence of noise, the simulation was repeated 25 timessitigle
seismic event occurring in the middle of the search volunth ttie
same detector configuration but with varying SNR’s from 150 1
In addition, the sagittal resolution was increases to 5 metéhe
results of the application of the algorithm to the varyingFStases
are shown in figurgl5. The algorithm is able to accuratelylinea
seismic events in the sagittal to plane to within 10 metarsifmal to
noise ratios above 8. However, below a signal to noise réittotbe
algorithm becomes unstable the algorithm consistentlyneses the
event as occurring on the edge of the search volume 50 metays a
from the true event’s location, driving the apparent tractusacy to
50 meters second.

6. CONCLUSION & FUTURE WORK

We demonstrated a novel method based on sparsity penagized-r
struction methods for accurate HFM. Our method assumesmaini
knowledge of the waveform signatures and also exploitsehmb-
ral information in the signal. Currently our processing k&on the
compressional and shear waves separately. In future wextéhd
this framework to jointly process these arrivals and explee de-
pendencies in polarization to improve the accuracy.
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