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Abstract. A population-based study of a quantitative trait, e.g. Blood Pressure(BP) may
be seriously compromised when the trait is subject to the effects of a treatment. Without
appropriate corrections this can lead to considerable reduction of statistical power. Here we
demonestrate this in the scenario of QTL mapping through Single-Marker Analysis. The data
are simulated from a normal mixtrure for different values of allele frequencies, separation be-
tween normal populations and Linkage Disequilibrium, and several methods of correction are
compared to check which can best compensate for the loss of power if treatment effects are
ignored. In one of these methods, underlying BPs are approximated by subtracting an estimate
of mean value of medicine effect from obsereved BPs in treated subjects. We domonestrate
the efficacy of this method throughout different choices of parameters. Finally to account for
quantitative traits that follow non-normal distributions, data are simulated from lognormal
mixtures similarly and Kruskal-Wallis test is used to obtain estimates of powers for different
methods of analysis.
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1 Introduction

Quantitative traits are traits that take continuous values, like body height, body weight,
Blood Pressure (BP) etc., and can be attributed to polygenic effects i.e. product of two or
more genes. Population-based studies of a quantitative trait help to determine the genetic
determinants of the trait. But in many such studies selective individuals receive treatments,
like antihypertensive medicines for high BP. As a result, In treated subjects, the outcome
of primary interest, the underlying BP, which is the BP that an individual would have if
he=she was not treated, cannot be measured and analysis must therefore be based on the
observed BP. Without any correction, this leads to a reduction in statistical power and
shrinkage in the estimated effects of determinants[1][2].

Some common and often-used ways to tackle this situation are as follows. One can
completely ignore the information on treatment status and perform the analysis assuming
that the observed values are same as the underlying values of the BP of the subjects[3].
Treated or affected subjects are sometimes excluded from the analysis[4]. Another common
method is to adjust for BP treatment by incorporating it as a covariate [5]. One can also
convert BP into a binary trait by defining as hypertensive the subjects who are treated or
have an observed BP in excess of a stated threshold[6][7].

Apart from these, a general approach is Imputation. Here the observed values are re-
placed by some plausible approximation of the actual BPs. The methods under this include
addition of some statistic estimated from the data or some constant to the treated BP values
[8], replacing the treated values by some random or constant quantity [9], adding residuals
modified by a non-parametric algorithm [10], and censored normal regression [11].
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Here we first consider a simulation model for BP where observations are drawn from a
normal mixture and are treated with medicine with a high probability if they cross a certain
threshold. These are taken as observed BPs. Since in a practical scenario the genotype
at the Quantitative Trait Locus (QTL) is not observed, genotypes of marker loci with
different degrees of linkage with the QTL are considered and ANOVAs are calculated with
respect to them. With this basic premise, different methods of analysis were applied on the
simulated datasets and the resulting powers were compared. Lastly, we consider deviation
from normality for underlying QT values. We now simulate from a lognormal mixture instead
and then compare different methods of analysis through powers obtained through Kruskal-
Wallis test, instead of ANOVA as before.

2 Methods

2.1 The simulation model

We consider our parameter of interest the systolic blood presure (SBP) of a subject. An
individual is defined hypertensive if the observed SBP exceeds a certain fixed threshold,
which we take to be 140 mm Hg. In our case this ensures that the proportion of hyperten-
sive individuals to the full population is not more than 0.2.

Suppose that the alleles of a gene affecting BP are A and a, their frequencies being 1−p
and p. Then the possible genotypes are AA,Aa and aa. From Hardy Weinberg Equilibrium
we know that these genotypes occur in the population with probabilities (1− p)2, 2p(1− p)
and p2, respectively. For the populations under these genotypes, we assume three equidistant
normal distributions with means at 120− d, 120 and 120 + d mm Hg: d being the distance
between two adjacent means. With a given pair of values for p and d, 1000 datasets each
with 100 datapoints are simulated from the this normal mixture. Furthermore, a subject
was declared hypertensive if the simulated BP exceeds 140 mm Hg. If deemed hypertensive,
a subject was assigned to the treatment group with probability 0.8, and also a random
treatment effect from a N(−10, 32) distribution is added to the underlying BP to obtain
the observed BP. These simulations were performed with three choices of p (0.1, 0.3, 0.5)
and five choices of d (10, 15, 20, 25, 30).

2.2 Methods of analysis

Seven different methods of analysis were compared on the simulated data sets. Except one
method all others make use of the ANOVA model for calculating powers, with the effects
of genotypes taken as fixed effects. The methods are described below. Consider in general
Xi, Yi as the underlying and observed SBPs of the ith subject, respectively. We also define
Mi to be the indicator of the ith subject taking medicine.

(a) Taking underlying BPs as observed: Although this is not feasible in practice, this
is done to estimate the actual power of ANOVA on a sample from the full population.

(b) No adjustment from treatment: We ignore the information on treatment status
and perform the ANOVA assuming that observed BPs are same as underlying BPs, i.e. here
Xi = Yi for all i. This gives an idea about the reduction of power due to treatment.

(c) Omitting all affected individuals: Here we take Xi = Yi if Yi < 140 and Mi = 0.



(d) Omitting all treated individuals: We take Xi = Yi if Mi = 0.

(e) Treatment effect modeled as a covariate: Here the underlying model is

Xi = µ+ αi + βMi + ǫi

and Xi = Yi for all i, with αi being the fixed effect of genotype and β being the random
treatment effect. This is a mixed model, and the power is calculated considering the p-value
of the F-statistic corresponding to the fixed effect.

(f) Correction by a fixed quantity: The difference of means in treated and untreated
but affected subjects, say m is an unbiased and consistent estimate of the medicine effect
(Proof in Appendix). We subtract this from each treated observation to get an estimate of
the underlying BP and then perform the ANOVA, i.e. here we have Xi = Yi −mMi.

(g) Correction by a non-parametric algorithm: Here we use the non-parametric
adjustment algorithm by Levy et al [10] which has already been shown to give good approx-
imations of actual powers in similar situation[11].

In this method, first observations are centered around the mean and raw residuals are
obtained:

ri = Yi − Ȳ

Then the residuals are ordered and modified residuals are obtained as follows (assume
now that {ri} is the set of ordered residuals):

r∗k = (1−Mi)rk +Mi

(

rk +
∑k−1

j=1 r
∗
j

k

)

The residuals are then sorted back to their original order and added to the mean observed
BP to get estimates of the underlying BPs:

Xi = Ȳ + r∗i = Yi − ri + r∗i

2.3 Modifications for QTL mapping

A caveat in the above approach is that in a practical situation, we do not exactly know
the location of the Quantitative Trait Locus (QTL). Instead one can obtain genotypes at
several marker loci near to the approximate position of the QTL within the genome. In that
case, we perform the ANOVA with respect to each of these genotypes ignoring the effect
of others and infer the QTL to be closest to the most significant marker within a given
chromosomal region. This is called Single-Marker Analysis. We now attempt to integrate
this scenario into our approach.

Proximity of the marker loci to the QTL means a high degree of linkage among them, i.e.
alleles at these two loci in an organism tend to pass on simultaneously to the next generation
while reproducing. Now the effect of linkage between two loci in the genome is measured by
a quantity called Linkage Disequilibrium (LD). It measures the of non-random association
of alleles at two or more loci. Given the allele-pairs A/a and B/b the LD between two loci
is defined as:

δ = P (AB)− P (A)P (B)



Where P (AB) is the probability of the alleles A and B co-segregating, and P (A), P (B)
the respective individual allele frequencies. To make the value independent of the allele
frequencies, δ is divided by its theoretical maximum to obtain a scale free quantity:

δ′ =

{

δ
min{P (A)P (B),P (a)P (b)} if δ < 0

δ
max{P (A)P (b),P (a)P (B)} if δ > 0

Note that δ′ = 1 means complete linkage and δ′ = 0 means no linkage at all i.e. inde-
pendent assortment of alleles.

Our previous simulation model is now changed to incorporate this situation. Say we
denote the alleles of the marker locus by B/b. Then under the above model, the frequencies
of the four haplotypes are:

P (AB) = (1− p)2 + δ

P (Ab) = p(1− p)− δ

P (aB) = p(1− p)− δ

P (ab) = p2 + δ

Now two biallelic haplotypes, each with a QTL and a marker allele, are generated and they
are fused to obtain a biallelic genotype. Then the underlying BP value is generated from the
distribution corresponding QTL genotype, but the observed genotype is taken as that of the
marker locus. For example, if the haplotypes generated are AB, aB and thus the genotype
of a subject is AaBB, then the observation is taken from a N(120, 202) population which
is the distribution corresponding to the QTL genotype Aa, but the observed genotype is
taken as BB and ANOVA is done based on the genotypes BB,Bb and bb.

As before, 1000 datasets with 100 points each were simulated for δ′ = 1/3 and 2/3. Note
that our previous simulation corresponds to δ′ = 1.

3 Results and discussion

All analyses were done on MATLAB version R2008a[12]. For all the methods except (e),
single-factor ANOVA was used to calculate the p-values, while for method (e), the p-value
was calculated from the F-statistic of fixed effect in the mixed model. All significance levels
were set at α = 0.05. For a choice of (p, d, δ′) the power to detect the effect of QTL, was
therefore estimated as the proportion of datasets which were found to have the F-statistic
with p-value < 0.05. The following three tables contain the powers for the three values of δ
considered.

First of all, as shown before[13], it is found that as the value of LD and thus degree
of linkage between the QTL and marker locus decreases, the estimated power also falls for
a given allele frequency and distance between marker genotype means. More importantly,
from the above tables it is clear that there is reduction of power when single-marker ANOVA
is performed considering the observed BPs instead of the true underlying BP values. Since
a large proportion of hypertensive subjects, i.e. whose underlying BPs exceed the threshold
of 140 mm Hg, are subjected to treatments that reduce the BP, a negative bias comes to the
measurement of BP from these subjects. Without any adjustments this leads to shrinkage
in the estimates of the effects of the genetic determinant[11].



Method of analysis (powers in percentage)

p d All All Omit affected Omit treated Treatment Constant Non-parametric
(mm Hg) underlying observed subjects subjects as covariate adjustment adjustment

10 44.7 42.4 29.9 31.7 29.0 44.3 41.7
15 81.2 79.1 60.8 68.6 59.5 80.9 79.8

0.1 20 97.3 97.0 86.1 89.9 85.9 97.3 97.1
25 99.7 99.7 97.5 98.1 97.0 99.7 99.7
30 100.0 100.0 99.7 99.7 99.5 100.0 100.0

10 80.3 79.1 53.3 65.9 56.6 80.0 78.0
15 98.9 97.8 90.2 93.9 91.6 98.6 98.8

0.3 20 100.0 100.0 99.3 99.8 99.7 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0

10 86.0 84.3 65.5 74.0 70.4 86.0 83.2
15 99.7 98.8 95.2 97.6 96.9 99.7 99.5

0.5 20 100.0 100.0 99.9 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 1. Powers obtained by different methods for δ′ = 1

Method of analysis (powers in percentage)

p d All All Omit affected Omit treated Treatment Constant Non-parametric
(mm Hg) underlying observed subjects subjects as covariate adjustment adjustment

10 24.8 23.1 12.1 15.3 16.9 24.4 22.6
15 45.5 43.1 24.3 32.0 27.9 45.3 41.7

0.1 20 68.3 64.8 42.1 49.5 46.5 67.2 64.5
25 84.5 83.0 59.0 68.4 65.2 84.5 82.9
30 92.7 92.4 74.7 78.4 80.7 92.5 92.0

10 43.4 42.5 25.8 29.9 29.2 43.0 41.2
15 75.1 74.9 47.7 58.1 56.0 75.1 73.8

0.3 20 92.9 92.8 71.7 81.1 76.9 92.6 91.8
25 98.6 98.3 84.3 91.2 90.6 98.5 98.2
30 99.5 99.5 93.3 96.3 94.9 99.5 99.5

10 50.2 49.6 31.8 39.4 35.1 50.0 49.5
15 82.1 80.9 58.3 68.7 61.4 82.1 79.2

0.5 20 95.9 95.6 79.4 89.0 82.8 95.7 94.3
25 98.6 98.6 90.1 96.7 90.8 98.6 98.2
30 99.8 99.8 93.6 98.1 96.1 99.9 99.6

Table 2. Powers obtained by different methods for δ′ = 2/3

Among the adjustment methods considered, the first two methods (coulmns 5 and 6
in the tables) are found to be very inefficient, understandably so because they selectively
remove all or most of the affected individuals, who have high underlying BP, thus discarding
a lot of useful information.

The method of including treatment status as covariates also results in marked reduction
of statistical powers. Although taking the information that whether a subject is being treated
or not as a random effect in the assumed model seems to be a valid approach, it is actually
flawed. This is so because a subject can receive treatment only if the underlying BP crosses a
certain threshold, i.e. treatments are not assigned in a completely random way for all values
of underlying BP. To be precise, if the underlying BP is > 140 mm Hg, the probability of
the subject receiving treatment is 0.8, but if it is less than the threshold, the probability
is 0, i.e. none of these subjects are treated. Thus, rather than being an explanation to the



Method of analysis (powers in percentage)

p d All All Omit affected Omit treated Treatment Constant Non-parametric
(mm Hg) underlying observed subjects subjects as covariate adjustment adjustment

10 8.9 7.9 6.8 7.7 6.5 8.5 7.3
15 15.5 14.6 8.4 10.5 9.8 15.4 14.5

0.1 20 24.5 22.5 12.5 14.2 16.2 24.4 22.2
25 32.1 30.4 17.2 20.5 19.6 32.0 30.0
30 39.4 36.9 22.5 28.1 26.0 39.2 36.0

10 12.9 12.5 9.9 10.3 8.5 12.2 12.5
15 27.0 25.6 14.0 18.4 16.9 25.5 25.4

0.3 20 36.8 34.9 17.5 24.6 21.3 36.0 34.5
25 46.8 45.7 24.3 29.8 28.9 46.3 43.9
30 55.8 55.6 32.2 37.6 34.9 56.2 53.3

10 14.7 15.0 11.1 13.5 12.7 14.4 14.8
15 24.1 23.3 17.6 18.9 15.1 23.9 22.7

0.5 20 40.2 38.9 27.6 29.6 26.0 40.2 37.0
25 50.6 50.2 29.2 40.3 31.6 49.8 47.9
30 59.7 56.6 32.8 41.8 36.3 58.5 54.3

Table 3. Powers obtained by different methods for δ′ = 1/3

underlying BP, treatment status is an outcome of it. Since much of the variability of the
observed BPs is explained by underlying BPs, including treatment status as a covariate in
a model with underlying BPs as the response variable is not a good idea.

Finally, correction by a fixed estimate of the effect of antihypertensive medicine gives
the closest estimates of the true powers of the procedure in almost all the cases. The non-
parametric adjustment algorithm by Levy et al [10] also gives good estimates of the powers,
but it is not much reliable since in most of the cases they are less than the powers when
analysis is done ignoring treatment status.

4 Deviation from normality

Many quantitative traits follow non-normal distributions, like lognormal[14], skew-normal[15]
etc. For analyzing data on these traits from a population we cannot directly use ANOVA
to obtain statistical power. To tackle this, one either has to go for ANOVA after some data
transformation. In case a suitable transformation is not found or there are issues regarding
interpretation, non-parametric methods can be used to obtain estimates of powers.

For this situation, we simulate the datasets with the same choices of values for the
parameters (p, d, δ′), from a lognormal mixture population with the same values of means
and variance as before. Kruskal-Wallis test is used to obtain estimates of powers. Among
the seven methods of analysis described before, all except the one considering treatment
effect as covariate are used in this case as well. In addition, in the method of correcting by
a fixed value, we obtain the estimate of medicine effect in a slightly different way. Instead
of using the difference of mthe eans of observed BPs of treated and affected but untreated
subjects, the difference of the corresponding medians is used. The results obtained are as
follows.



Method of analysis (powers in percentage)

p d All All Omit affected Omit treated Constant Non-parametric
(mm Hg) underlying observed subjects subjects adjustment adjustment

10 43.3 42.2 35.8 36.6 43.3 43.3
15 79.3 78.6 72.7 73.1 79.3 77.5

0.1 20 96.8 95.9 91.5 93.5 96.8 96.8
25 99.6 99.1 98.9 99.8 99.6 99.6
30 100.0 100.0 99.9 100.0 100.0 100.0

10 79.8 79.0 69.6 72.5 79.8 78.5
15 98.8 98.2 96.0 97.4 98.8 98.8

0.3 20 100.0 100.0 100.0 99.8 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0

10 85.5 85.4 76.8 82.3 85.5 83.3
15 99.8 99.6 98.7 99.3 99.8 99.8

0.5 20 100.0 100.0 100.0 100.0 100.0 100.0
25 100.0 100.0 100.0 100.0 100.0 100.0
30 100.0 100.0 100.0 100.0 100.0 100.0

Table 4. Non-parametric case: powers obtained by different methods for δ′ = 1

Method of analysis (powers in percentage)

p d All All Omit affected Omit treated Constant Non-parametric
(mm Hg) underlying observed subjects subjects adjustment adjustment

10 21.1 20.5 15.3 19.8 21.1 20.6
15 44.8 44.5 33.8 35.2 44.5 44.1

0.1 20 63.5 63.0 52.5 58.4 63.5 63.2
25 77.9 77.7 70.1 71.4 78.0 76.8
30 90.0 89.9 79.2 79.4 89.7 89.6

10 45.3 45.2 34.7 40.0 45.1 43.6
15 75.7 75.0 63.0 67.0 75.0 72.8

0.3 20 94.3 94.2 82.1 85.1 94.3 93.5
25 98.6 98.3 92.3 94.2 98.6 98.1
30 99.9 99.7 96.8 97.7 99.8 99.5

10 52.7 52.1 40.6 45.9 52.4 50.7
15 84.3 83.0 69.6 77.4 84.3 81.2

0.5 20 95.5 95.1 88.0 91.0 95.3 94.3
25 99.0 98.8 94.8 98.0 98.8 98.6
30 99.9 99.8 97.0 98.8 99.8 99.6

Table 5. Non-parametric case: powers obtained by different methods for δ′ = 2/3



Method of analysis (powers in percentage)

p d All All Omit affected Omit treated Constant Non-parametric
(mm Hg) underlying observed subjects subjects adjustment adjustment

10 8.2 7.7 6.4 6.3 8.3 7.2
15 12.4 12.1 9.8 12.6 12.2 11.7

0.1 20 18.2 18.1 15.9 14.3 18.1 18.3
25 27.8 27.1 16.9 18.0 27.6 27.0
30 32.8 32.6 22.2 27.8 32.8 33.3

10 12.7 12.1 9.8 11.8 12.7 12.1
15 22.3 22.0 17.2 19.5 22.1 22.4

0.3 20 36.6 36.3 25.0 27.3 36.6 35.6
25 39.7 39.7 33.0 35.0 39.7 38.4
30 52.8 52.2 34.6 37.9 52.7 51.7

10 13.5 12.8 13.1 13.7 13.5 13.4
15 26.2 25.7 20.0 20.7 26.2 25.7

0.5 20 38.9 38.0 27.6 32.9 38.3 36.7
25 50.1 49.5 36.8 40.5 49.7 47.8
30 59.3 58.4 39.4 46.2 59.1 55.0

Table 6. Non-parametric case: powers obtained by different methods for δ′ = 1/3

The powers obtained by different methods are comparable with the same powers when
simulated from the normal mixture. In this case the reduction of power due to treatment
effects seems to be less severe than the normal mixture simulation. The constant adjustment
gives the closest powers to the estimated true powers, as before.

5 Conclusion

We have demonestrated through simulation that the distorting effect of antihypertensive
therapy in studies of quantitatively measured blood pressure can lead to loss of statistical
power in the Single-marker analysis approach of QTL mapping. Among the adjustment
methods considered, ignoring the problem altogether and analysing observed BP in treated
subjects as if it was the underlying BP, excluding affected or treated subjects from analysis,
or fitting a mixed model with treatment as a binary covariate perform very poorly and thus
should not be used. Finally we have concluded that adding an estimate of the reduced BP
due to medicine can reasonably nullify the reduction of powers.
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Appendix: Properties of the estimate obtained in method (f) of section 2

Suppose in a dataset there are total n subjects, among whom m are hypertensive and
k are treated with medicine. Given affected, a subject is treated with probability p, i.e.
k ∼ Bin(m, p). Now, without loss of generality, say the subjects 1, ...,m are affected, and
among them 1, ..., k are treated. Xi, Yi are the underlying and observed BPs of the ith

subject, respectively.
For the sake of simplicity, we assume that underlying BP of all subjects come from a

N(µ, σ2) population, instead of the normal mixture considered in the main work. Subjects
with underlying BP above a threshold c are considered affected, and the medicine effects
(say Bi, for the i

th subject) are assumed to follow a N(ν, τ2) distribution. With this setting,
our estimate under consideration will be:

ν̂ =
1

k

k
∑

i=1

Xi −
1

m− k

m
∑

i=k+1

Xi

Unbiasedness:

For i = 1, ..., k we have Xi = Yi +Bi, and for i = k + 1, ...,m, we have Xi = Yi. Thus

E(ν̂) =
1

k

k
∑

i=1

E(Yi +Bi)−
1

m− k

m
∑

i=k+1

EYi = µc + ν − µc = ν

with µc being the mean of the N(µ, σ2) distribution truncated at c.

Consistency:

V ar(ν̂) =
1

k
(V ar(Y1) + V ar(B1)) +

1

m− k
V ar(Y1)

=

(

1

k
+

1

m− k

)

V ar(Y1) +
1

k
V ar(B1)

=
mσ2

k(m− k)
+

τ2

k

⇒ lim
n→∞

V ar(ν̂) = lim
m→∞

1

m

[

σ2

k
m

(

1− k
m

) +
τ2

k
m

]

because as n → ∞,m → ∞.

Now k ∼ Bin(m, p) ⇒ limm→∞
k

m
= p, hence the quantity inside brackets will tend to

σ2/p(1− p) + τ2/p, i.e. a fixed quantity as m → ∞. It follows that limn→∞ V ar(ν̂) = 0.


