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Abstract. In this paper, we construct a moment inequality for mixing dependent random variables,

it is of independent interest. As applications, the consistency of the kernel density estimation is

investigated. Several limit theorems are established: First, the central limit theorems for the kernel

density estimator fn,K(x) and its distribution function are constructed. Also, the convergence rates

of ‖fn,K(x) − Efn,K(x)‖p in sup-norm loss and integral Lp-norm loss are proved. Moreover, the a.s.

convergence rates of the supremum of |fn,K(x)−Efn,K(x)| over a compact set and the whole real line

are obtained. It is showed, under suitable conditions on the mixing rates, the kernel function and the

bandwidths, that the optimal rates for i.i.d. random variables are also optimal for dependent ones.
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1. Introduction

Let X,X1, X2, ... be independent and identically distributed (i.i.d.) random variables with

common density f , and K be a bounded integrable kernel (a measurable function on R), the

classical kernel density estimators (KDEs) of f based on the observations X1, ..., Xn are defined

as

fn,K(x) =
1

nhn

n
∑

i=1

K
(Xi − x

hn

)

, x ∈ R, (1.1)

where the bandwidths {hn, n ≥ 1} satisfy some regularity conditions.

Since the famous work done by Rosenblatt [25] and Parzen [18], the limit behavior for the

KDEs has become an active subject. For the case of i.i.d. data, see, for example, Bickel and

Rosenblatt [1], Silverman [34] and Stute [35, 36]. Using empirical process approach, Einmahl

and Mason [4, 5] studied the uniform consistency and uniform consistency in bandwidth, re-

spectively. Giné and Guillou [8, 9] investigated the exact rates of almost sure (a.s.) convergence

of the supremum over adaptive intervals and all of Rd, and Giné, Koltchinskii and Zinn [10]

obtained weighted uniform consistency of KDEs, and so forth. As to weakly dependent observa-

tions, Földes [6], Rüschendorf [27], Sarda and Vieu [28], Peligrad [20] and Liebscher [13] studied

the strong convergence of density estimators for φ−mixing samples. Rosenblatt [25], Nze and

Rios [17], Liebscher [15] investigated a.s. convergence of kernel estimators for α−mixing ran-

dom variables. For other results, one can refer to Neumann [16], Woodroofe [37, 38], Wu et al.

[39], Yakowitz [40], and the reference therein. However, most of the work mentioned as above

on a.s. convergence rates in sup-norm loss under dependent data are not optimal. Yu [41]

obtained the best possible minimax rates for stationary sequences satisfying certain β−mixing

conditions at the cost of sufficient smoothness for density functions. The purpose of the present

article is to investigate the consistency of the KDEs, and tries to get the optimal convergence

rates for certain dependent observations. More precisely, we require the random variables to be

ρ−mixing, which is defined as follows:
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Definition. Suppose that X1, X2, ... is a sequence of random variables on a probability space

(Ω,F , P ). Set F−
n = σ(Xi, 1 ≤ i ≤ n), F+

n = σ(Xi, i ≥ n), define

ρ(n) = sup
k≥1

sup
X∈L2(F−

k )

sup
Y ∈L2(F+

k+n)

|EXY − EXEY |
√

E(X − EX)2E(Y − EY )2
. (1.2)

The sequence X1, X2, ... is said to be ρ−mixing if ρ(n) → 0 as n → ∞.

This definition was introduced by Kolmogorov and Rozanov [12]. As is known, the asymp-

totic behavior of ρ−mixing sequences have received much well-deserved attention, and a vari-

ety of elegant results have been obtained. See, for example, Lin and Lu [15], Peligrad [19-21],

Peligrad and Shao [23], Peligrad and Utev [24], Shao [29-33], and so forth.

Let X1, X2, ... be a sequence of stationary ρ−mixing random variables with density f .

replace the independent observations by the ρ−mixing ones in (1.1), one gets the corresponding

density estimator of f for the dependent random variables.

In this article, we devote ourselves to doing three things. The first one is to study con-

vergence in distribution of the estimator fn,K(x) both as an estimation for the true density

function f(x) and as an estimation Fn,K(x) =
∫ x

−∞ fn,K(t)dt for the true distribution function

F (x) of X . The second is to investigate the convergence rates for the difference of fn,K(x) and

its mean in sup-norm loss and integral Lp-norm loss. Our third goal is to discuss the strong

uniform convergence rates of |fn,K(x)− Efn,K(x)| over a compact set of R and the whole real

line R, respectively. Of course, a natural question is posed as follows: Whether the optimal

convergence rates could be achieved? The answer is affirmative for i.i.d. observations. As is

known a variety of sharp results have been established, see, for example, Einmahl and Mason

[4, 5], Giné and Guillou [8, 9], Giné, Koltchinskii and Zinn [10]. However, that in general is not

the case for dependent samples. To obtain the best possible convergence rates, some different

methods from those for i.i.d. case should be developed. The present paper tries to do this. Our

technical proofs consist in applications of the blocking techniques, the martingale methods and

some inequalities. It is showed that the optimal convergence rates for i.i.d. random variables

are also optimal for dependent ones.

The remainder of the paper is structured as follows. Section 2 introduces some notation

and assumptions. Section 3 formulates several results on the weak convergence. Section 4

constructs the rates of ‖fn,K(x)−Efn,K(x)‖p in the sup-norm loss and integral Lp-norm loss,

while Section 5 derives the rates of strong uniform consistency for KDEs. Some useful results

are stated in the Appendix.

2. Notation and assumptions

In this section, we present some basic notation and assumptions which will be used in

the sequel. Let X,X1, X2, ... be a sequence of non-degenerated and stationary ρ−mixing ran-

dom variables. Denote Ki(x) = K
(

(Xi − x)/hn

)

for fixed n ∈ N, where K is a measurable

function satisfying some regularity conditions. f(x) is the unknown density function of X

with respect to Lebesgue measure. For Borel measurable function g and Borel measure µ, let

Lp := Lp(µ) be the usual Lebesgue spaces of real-valued functions normed by ‖ · ‖p. As usual,
write ‖g‖p =

( ∫

R
|g(x)|pdµ(x)

)1/p
for 1 ≤ p < ∞. Define for any nonnegative integer s the

spaces Cs(R) of all bounded continuous real-valued functions that are s−times continuously dif-

ferentiable onR. I(·) is the indicator function. [z] denotes the integer part of z, log x = log(x∨e).
an = O(bn) means lim supn→∞ an/bn < ∞, an = o(bn) stands for lim supn→∞ an/bn = 0, and

an ≍ bn means 0 < lim infn→∞ an/bn ≤ lim supn→∞ an/bn < ∞. The letter C with subscripts

denotes some finite and positive universal constants, it may take different values in each ap-
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pearance.

Some assumptions are formulated below:

(B1) hn ց 0 and nhn → ∞ as n → ∞.

(B2) hn ≍ n−δl(n) for 0 < δ ≤ 1, l(n) is a slowly varying function.

(C1) the density function f(x) of X is uniformly bounded on R.

(C2) the density function f(x) of X is uniformly continuous and uniformly bounded on R.

(K1) K is a real-valued measurable function satisfying supx∈R |K(x)| < ∞ and
∫∞
−∞ |K(x)|dx <

∞.

(K2) K is a real-valued measurable function with compact support on R, and satisfies Lipschitz

condition.

Remark 1. Condition (B2) is a little more stronger than (B1). in other words, (B2) does

not allow the bandwidths hn to go to zero very slowly as n → ∞. For example, the form of the

bandwidths such as hn = 1/(logn)p, for all p > 0, is excluded. But we would like to point out

that most of the bandwidths including the optimal ones are contained in (B2).

3. Central limit theorems for KDEs and their distribution functions

Consider the KDE fn,K(x) defined in (1.1). The aim of this section is to investigate the

CLT for fn,K(x) and Fn,K(x). The classical theory of this subject was developed mostly in

the 1950s, and it is an important theory in probability and statistics. Our first result reads as

follows:

Theorem 3.1. Suppose that conditions (B1), (C2) and (K1) hold. Further assume that

f(x) > 0 and
∑∞

i=0 ρ(2
i) < ∞. Then we have
√

nhn(fn,K(x)− Efn,K(x))
d−→ N(0, ‖K‖22f(x)), (3.1)

where ”
d−→ ” stands for convergence in distribution.

Proof. For any fixed x ∈ R, we use the following decomposition:

fn,K(x) − Efn,K(x) =
[

fn,K(x) − Γn,K(x)
]

+
[

Γn,K(x)− Efn,K(x)
]

, (3.2)

where

Γn,K(x) :=
1

nhn

n
∑

i=1

E
[

K((Xi − x)/hn)|Fi−1

]

, Fi := σ(Xj , j ≤ i), F0 = {∅,Ω}.

Thus, (3.1) will be derived if one can show that

Γn,K(x) − Efn,K(x) = oP

(

1√
nhn

)

(3.3)

and
√

nhn

(

fn,K(x) − Γn,K(x)
) d−→ N(0, ‖K‖22f(x)). (3.4)

We first prove (3.3). However, some preliminary work is needed. Denote N+ = {1, 2, ...},
and let Ik be the integer interval [2k, 2k+1). Clearly, for each n ∈ N+, there exists integer kn ≥ 0

such that 2kn ≤ n < 2kn+1. Moreover, for 0 < β < α < 1, let pk = [2αk], qk = [2βk], rk =

[2k/(pk + qk)], then the integer set Ik can be blocked as follows:

Ik(m) = [2k + (m− 1)(pk + qk), 2
k + (m− 1)qk +mpk) ∩ N+,

Jk(m) = [2k + (m− 1)qk +mpk, 2
k +m(pk + qk)) ∩N+,

1 ≤ m ≤ rk, Jk(rk + 1) = [2k + rk(pk + qk), 2
k+1) ∩ N+.



It is easy to see that rk ∼ 2(1−α)k. According to the symbols as above, there also exists some

integer mn ≥ 0 such that n ∈ Ikn(mn) ∪ Jkn(mn). For simplicity, we introduce some extra

notation as follows: Denote

Wm
k (x) :=

∑

i∈Ik(m)

[

E(Ki(x)|Fi−1)− EKi(x)
]

, V m
k (x) :=

∑

i∈Jk(m)

[

E(Ki(x)|Fi−1)− EKi(x)
]

.

Then it follows that

nhn

[

Γn,K(x)− Efn,K(x)
]

=

[

kn−1
∑

k=0

rk
∑

m=1

Wm
k (x) +

mn−1
∑

m=1

Wm
kn
(x)

]

+

[

kn−1
∑

k=0

rk+1
∑

m=1

V m
k (x) +

mn−1
∑

m=1

V m
kn
(x)

]

+

n
∑

i=Nn

[

E(Ki(x)|Fi−1)− EKi(x)
]

,

where Nn = 2kn + (mn − 1)(pkn + qkn).

Thus, in order to verify (3.3), it suffices to show that the sums on the big blocks satisfy

E

[

kn−1
∑

k=0

rk
∑

m=1

Wm
k (x) +

mn−1
∑

m=1

Wm
kn
(x)

]2

= o
(

nhn

)

. (3.5)

Note that the left-hand side of (3.5) is controlled by

2E

[

kn−1
∑

k=0

rk
∑

m=1

Wm
k (x)

]2

+ 2E

[

mn−1
∑

m=1

Wm
kn
(x)

]2

=: Σ1 +Σ2. (3.6)

So we only need to show that

Σ1 = o
(

nhn

)

, Σ2 = o
(

nhn

)

. (3.7)

Using the towering property and Jensen,s inequality for the conditional expectations together

with Lemma A.4 with p = 2, we have

Σ1 = 2E

[

kn−1
∑

k=0

E

(

rk
∑

m=1

Wm
k (x)

∣

∣

∣
F2k+rk−1

)]2

≤ C log2(2kn)

kn−1
∑

k=0

ρ2(qk)E

[

rk
∑

m=1

Wm
k (x)

]2

= C log2(2kn)

kn−1
∑

k=0

ρ2(qk)E

[

rk
∑

m=1

E
(

Wm
k (x)

∣

∣Ftk(m)

)

]2

≤ C log2(2kn)

kn−1
∑

k=0

ρ4(qk) log
2(2rk)

rk
∑

m=1

E
(

Wm
k (x)

)2

≤ C log2(2kn)

kn−1
∑

k=0

2kρ4(qk) log
2(2rk) log

2(2pk)‖K1(x)‖22,

where tk(m) = 2k + (−qk−1)I(m = 1) + (m− 2)(pk + qk)I(m 6= 1) + pk, 1 ≤ m ≤ rk.

Recalling the condition imposed on the mixing rates, without loss of generality (w.l.o.g.),

suppose that ρ(n) ≤ 1/ logn, and observe that

EK2
1(x) = hn

∫ ∞

−∞
K2(u)f(x+ hnu)du ≤ hn‖f‖∞‖K‖∞‖K‖1. (3.8)
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Then, applying Lemma A.2, we can get

Σ1 ≤ C log2(2kn)EK2
1 (x)

kn−1
∑

k=0

2kk−2 ≤ Cnhn(log logn)
2(logn)−1 = o(nhn). (3.9)

Similarly, we have

Σ2 ≤ Cnhn(log logn)
2(log n)−2 = o(nhn). (3.10)

Combining (3.9) and (3.10) yields (3.3).

As to (3.4), note that

√

nhn

(

fn,K(x) − Γn,K(x)
)

=
1√
nhn

n
∑

i=1

[

Ki(x) − E
(

Ki(x)|Fi−1

)

]

. (3.11)

We next estimate the conditional variance

1

nhn

n
∑

i=1

E
{

[

Ki(x) − E
(

Ki(x)|Fi−1

)]2|Fi−1

}

=
1

nhn

n
∑

i=1

E
[

K2
i (x)|Fi−1

]

− 1

nhn

n
∑

i=1

[

E
(

Ki(x)|Fi−1

)]2
=: Ξ1 − Ξ2.

For Ξ1, observe that

P
(

|Ξ1 − ‖K‖22f(x)| > ǫ
)

= P
(

|Ξ1 − h−1
n EK2

1 (x) + h−1
n EK2

1 (x) − ‖K‖22f(x)| > ǫ
)

. (3.12)

Clearly, on account of condition (C2) and Bonchner,s lemma, we have

h−1
n EK2

1 (x) =

∫ ∞

−∞
K2(u)f(x+ hnu)du → ‖K‖22f(x). (3.13)

Therefore, by Lemma A.2 and Jensen,s inequality together with condition (B1), the right-hand

side of (3.12), for large n, is controlled by

P
(

|Ξ1 − h−1
n EK2

1(x)| > ǫ/2
)

≤ Cǫ−2n−1h−2
n EK4

1(x) ≤ Cǫ−2(nhn)
−1‖f‖∞ → 0. (3.14)

For Ξ2, we have with probability one,

h−1
n E

(

Ki(x)|Fi−1

)

=

∫ ∞

−∞
K(u)f(x+ hnu|Fi−1)du ≤ ‖K‖∞‖f‖∞.

Then, it follows that

EΞ2 ≤ hn‖K‖∞‖f‖∞ → 0. (3.15)

Combining (3.12)−(3.15) yields

1

nhn

n
∑

i=1

E
{

[

Ki(x)− E
(

Ki(x)|Fi−1

)]2|Fi−1

}

P−→ ‖K‖22f(x). (3.16)

Moreover, applying the Cr-inequality, we have

E
(

Ki(x)− E
(

Ki(x)|Fi−1

))2 ≤ 4EK2
i (x) ≤ 4hn‖f‖∞. (3.17)

Thus on account of (B1), the Lindeberg condition

1

nhn

n
∑

i=1

E
[

Ki(x) − E
(

Ki(x)|Fi−1

)

]2

I(|Ki(x)− E(Ki(x)|Fi−1)| > ǫ
√

nhn)

≤ 4h−1
n EK2

1 (x)I(|K1(x)| > ǫ
√

nhn/2) ≤ 4‖f‖∞
∫

|K(u)|>ǫ
√
nhn/2

K(u)du = o(1) (3.18)



holds for any ǫ > 0.

Finally, according to (3.16) and (3.18), then using the martingale central limit theorem

together with Slutsky,s theorem gives (3.1).

Remark 2. Let us consider the deviation of the kernel density estimator with respect to

the true density function. Note that

fn,K(x) − f(x) =
[

fn,K(x) − Efn,K
]

+
[

Efn,K(x) − f(x)
]

. (3.19)

The first term on the right-hand side of (3.19) is the probabilistic term, while the second term

is the bias. If (C2) and the conditions imposed on the kernel K in Theorem 3.1 are replaced by

(C3) the density function f(x) is uniformly bounded, f(x) ∈ C(R) and supx |f
′

(x)| < ∞,

(K3) K satisfies supx |K(x)| < ∞,
∫∞
−∞ |xK(x)|dx < ∞,

then applying Taylor,s expansion, we have for some 0 < υ < 1,

∣

∣Efn,K(x)− f(x)
∣

∣ =

∣

∣

∣

∣

∫ ∞

−∞
K(y)

[

f(x− hny)− f(x)
]

dy

∣

∣

∣

∣

= hn

∣

∣

∣

∣

∫ ∞

−∞
yK(y)f

′

(x− υhny)dy

∣

∣

∣

∣

= O(hn).

Therefore, (3.1) holds whenever nh3
n → 0 as n → ∞.

In fact, the bias can always be balanced with the probabilistic term by calibrating the

normalizing sequence {hn, n ≥ 1}, provided enough regularity for K and f are assumed.

Another interesting problem is the weak convergence for the distribution function of the

KDE. More precisely, denote Fn,K(x) =
∫ x

−∞ fn,K(t)dt, we construct the CLT for the difference

between Fn,K(x) and its mean.

Theorem 3.2. Suppose that condition (B1) holds, and that
∑∞

i=0 ρ(2
i) < ∞. Further, as-

sume that the density function f(x) is continuous and positive on R, and that the kernel K is

symmetric and
∫∞
−∞ K(x)dx = 1. Then we have

√
n(Fn,K(x)− EFn,K(x))

d−→ N(0, F (x)(1− F (x))), (3.20)

where F (x) is the true distribution function of X.

Proof. Observe that

Fn,K(x)− EFn,K(x) = [Fn,K(x)− Λn,K(x)] + [Λn,K(x)− EFn,K(x)], (3.21)

where

Λn,K(x) :=
1

nhn

n
∑

i=1

E

[
∫ x

−∞
Ki(t)dt

∣

∣

∣
Fi−1

]

.

Along the similar proof lines as those of (3.3), one can get

Λn,K(x)− EFn,K(x) = oP

(

1√
n

)

. (3.22)

We next show that

Fn,K(x) − Λn,K(x)
d−→ N(0, F (x)(1 − F (x))). (3.23)

Note that Fn,K(x) − Λn,K(x) is a martingale with respect to an increasing σ-algebra Fn =

σ(X1, ..., Xn). So in order to verify (3.23), we only need to check the conditions on the CLT
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for martingales. For simplicity, set

EK
n,2(x) := h−2

n E

(
∫ x

−∞
K1(t)dt

)2

. (3.24)

We claim that the limit of EK
n,2(x) exists for any fixed x ∈ R as n → ∞. The proof is as follows:

Denote

GK(x) :=

∫ x

−∞
K(u)du.

Recalling that
∫∞
−∞ K(x)dx = 1. Obviously, GK(x) is the distribution function of a finite

measure. Then by the symmetry of kernel K, we have

h−1
n

∫ x

−∞
K1(t)dt = h−1

n

∫ x

−∞
K
(X1 − t

hn

)

dt =

∫

x−X1
hn

−∞
K(u)du = GK

(

x−X1

hn

)

. (3.25)

Note that GK is bounded from above by one almost surely, it then turns out that

EK
n,2(x) = E

[

GK

(

x−X1

hn

)]2

≤ 1. (3.26)

Thus we have for any fixed x ∈ R,

E

[

GK

(

x−X1

hn

)]2

=

∫ ∞

−∞

[

GK

(

x− u

hn

)]2

f(u)du

=

(
∫ x

−∞
+

∫ ∞

x

){[

GK

(

x− u

hn

)]2

f(u)du

}

→ F (x). (3.27)

The conditional variance

1

nh2
n

n
∑

i=1

E

{[
∫ x

−∞
Ki(t)dt− E

(
∫ x

−∞
Ki(t)dt

∣

∣

∣
Fi−1

)]2∣
∣

∣

∣

Fi−1

}

=
1

nh2
n

n
∑

i=1

E

[(
∫ x

−∞
Ki(t)dt

)2
∣

∣

∣
Fi−1

]

− 1

nh2
n

n
∑

i=1

[

E

(
∫ x

−∞
Ki(t)dt

∣

∣

∣
Fi−1

)]2

=: Ξ
′ − Ξ

′′

.

For Ξ
′

, by Lemma A.2 and Jensen,s inequality, it follows for any x ∈ R,

P
(

|Ξ′ − F (x)| > ǫ
)

= P
(

|Ξ′ − EK
n,2(x) + EK

n,2(x)− F (x)| > ǫ
)

≤ P
(

|Ξ′ − EK
n,2(x)| > ǫ/2) ≤ Cǫ−2n−2EG4

K((x −X1)/hn

)

≤ Cǫ−2n−1 → 0, n → ∞. (3.28)

As for Ξ
′′

. First, similarly to that of (3.27), we have

EK
n,1 := E

[

GK

(

x−X1

hn

)]

→ F (x), n → ∞. (3.29)

Moreover, we have for large n,

P
(

|Ξ′′ − F 2(x)| > ǫ
)

= P
(

|Ξ′′ − (EK
n,1(x))

2 + (EK
n,1(x))

2 − F 2(x)| > ǫ
)

≤ P
(

|Ξ′′ − (EK
n,2(x))

2| > ǫ/2
)

. (3.30)



Further, note that

Ξ
′′ − (EK

n,2(x))
2 =

1

n

n
∑

i=1

[

GK

(

x−X1

hn

)

− EK
n,1(x)

][

GK

(

x−X1

hn

)

+ EK
n,1(x)

]

. (3.31)

By the a.s. boundness of GK , (3.29) and Lemma A.2, the right-hand side of (3.30) is less than

or equal to

P

(

1

n

n
∑

i=1

[

GK

(

x−X1

hn

)

− EK
n,1(x)

]

> ǫ/4

)

→ 0, n → ∞. (3.32)

Then it turns out that
n
∑

i=1

E
{

[

Ki(x)− E
(

Ki(x)|Fi−1

)]2|Fi−1

}

P−→ F (x)(1 − F (x)). (3.33)

Similarly to that of (3.18), one can show that the Lindeberg condition holds. Finally, by the

CLT for martingales and Slutsky,s theorem, we obtains (3.20).

Before stating the next result, we introduce the following condition:

(B3) hn ց 0, nhn → ∞ and
√
nω(n)hn → 0, where ω(n) is a nonnegative real function

satisfying ω(n) ր ∞ as n → ∞.

Theorem 3.3. Suppose that condition (B3) holds, and that
∑∞

i=0 ρ(2
i) < ∞. Further, assume

that the density function f(x) is positive and Lipschitz continuous on R, and that the kernel K

is a symmetric function with bounded support,
∫∞
−∞ K(x)dx = 1 and

∫∞
−∞ |K(x)|dx < ∞. Then

we have √
n(Fn,K(x) − F (x))

d−→ N(0, F (x)(1 − F (x))). (3.34)

Proof. Observe that

Fn,K(x) − F (x) = [Fn,K(x)− Λn,K(x)] + [Λn,K(x)− EFn,K(x)] + [EFn,K(x) − F (x)], (3.35)

where Λn,K(x) is defined in the proof of Theorem 3.2. In fact, according to Theorem 3.2, one

only needs to show that

EFn,K(x)− F (x) = o

(

1√
n

)

. (3.36)

Observe that f(x) is integrable on R. Then for any given ǫ > 0, it can be decomposed as

follows:

f(x) = f1(x) + f2(x), (3.37)

where f1(x) is continuous on a compact interval [c1, c2] (say), and f2(x) satisfies
∫ ∞

−∞
|f2(x)|dx < ǫ. (3.38)

Denote τn = 1/(
√
nω(n)). Recalling that

∫∞
−∞ K(x)dx = 1, we then have for any fixed x ∈ R,

|EFn,K(x)− F (x)| =
∣

∣

∣

∣

∫ x

−∞

[
∫ ∞

−∞
K(u)

[

f(t+ uhn)− f(t)
]

du

]

dt

∣

∣

∣

∣

≤
∫ x

−∞

∫

|u|>τnh
−1
n

|K(u)||f2(t+ uhn)− f2(t)|dudt

+

∫ x

−∞

∫

|u|≤τnh
−1
n

|K(u)||f2(t+ uhn)− f2(t)|dudt =: Θ1 +Θ2.
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Recall that the kernel K is supported on the bounded interval. Clearly, Θ1 is controlled by
∫

|u|>τnh
−1
n

|K(u)|
[
∫ ∞

−∞
|f2(t+ uhn)− f2(t)|dt

]

du

≤ 2

∫

|u|>τnh
−1
n

|K(u)|
[
∫ ∞

−∞
|f2(t)|dt

]

du → 0, n → ∞. (3.39)

For Θ2, note that f1 is Lipschitz continuous on [c1, c2]. Subsequently,

Θ2 ≤
∫

|u|≤τnh
−1
n

|K(u)|
[
∫ (c2+τn)∧x

c1−τn

sup
|s|≤τn

|f1(t+ s)− f1(t)|dt
]

du

≤ C(c2 − c1)τn + o

(

1√
n

)

= o

(

1√
n

)

. (3.40)

Therefore, we complete the proof of (3.36).

4. Convergence rates of ‖fn,K(x) − Efn,K(x)‖p in sup-norm and integral Lp-norm

One may be interested in the consistency of ‖fn,K(x)−Efn,K(x)‖p, which are investigated

in this section. Among which, the uniform convergence rate with respect to Lp-norm distance is

established in Theorem 4.1, while the convergence rate for integral Lp-norm is given in Theorem

4.2.

Theorem 4.1. Let p ≥ 2. Suppose that
∑∞

i=0 ρ
2/p(2i) < ∞, and that the conditions (B1),

(C1), (K1) are satisfied. Then we have

sup
x∈R

∥

∥fn,K(x)− Efn,K(x)
∥

∥

p
= O

[( 1

nhn

)1/2]

. (4.1)

Proof. We will use the symbols such as pk, qk, rk, Ik(m), Jk(m) etc. appeared in the proof of

Theorem 3.1. However, the values of α and β are different from those as in the proof of Theorem

3.1. Here we select some (p − 2)/(p− 1) < α < 1 and 0 < β < min(α, 1 + pα − p). In fact, β

allows taking the value 1 + pα− p. For simplicity, define

Y m
k (x) =

∑

i∈Ik(m)

Ki(x), Zm
k (x) =

∑

i∈Jk(m)

Ki(x), 1 ≤ m ≤ rk; Zrk+1
k (x) =

∑

i∈Jk(rk+1)

Ki(x),

ξmk (x) = Y m
k (x)− E[Y m

k (x)|Fk(m− 1)], where

Fk(m) = σ
(

Xr, r ≤ 2k − qk−1I(m = 1) + [(m− 1)(pk + qk)− qk]I(m 6= 1)
)

.

Then we have for any fixed x ∈ R,

fn,K(x)− Efn,K(x) =
1

nhn

{[

kn−1
∑

k=0

rk
∑

m=1

ξmk (x) +

mn−1
∑

m=1

ξmkn
(x)

]

+

[

kn−1
∑

k=0

rk+1
∑

m=1

(Zm
k (x)− EZm

k (x)) +

mn−1
∑

m=1

(Zm
kn
(x)− EZm

kn
(x))

]

+

[

kn−1
∑

k=0

rk
∑

m=1

Um
k (x) +

mn−1
∑

m=1

Um
kn
(x)

]

+

n
∑

i=Nn

(Ki(x) − EKi(x))

}

=:
1

nhn
(I1(x) + I2(x) + I3(x) + I4(x)),

where Um
k (x) = E(Y m

k (x)|Fk(m− 1))− EY m
k (x).



Thus in order to prove (4.1), it is enough to show that

sup
x∈R

‖I2(x) + I3(x) + I4)(x)‖p = o
[

(nhn)
1/2
]

(4.2)

and

sup
x∈R

‖I1(x)‖p = O
[

(nhn)
1/2
]

. (4.3)

The proof of (4.2) will be divided into two steps:

Step 1. We first show for any x ∈ R,

∥

∥

∥

∥

rk+1
∑

m=1

(Zm
k (x)− EZm

k (x))

∥

∥

∥

∥

p

= o
[

(2kh2k)
1/2
]

. (4.4)

Using Lemma A.4, and note that
∑∞

i=0 ρ
2/p(2i) < ∞, it follows that

E|Zm
k (x)− EZm

k (x)|p ≤ Cq
p/2
k ‖K1(x)‖p2 + Cqk‖K1(x)‖pp. (4.5)

Recalling conditions (C1) and (K1), then by a simple calculation, we have

‖K1(x)‖p2 ≤ (‖f‖∞‖K‖∞‖K‖1h2k)
p/2 (4.6)

and

‖K1(x)‖pp ≤ ‖f‖∞‖K‖p−1
∞ ‖K‖1h2k . (4.7)

Applying (4.5)−(4.7) and Minkowski,s inequality yields
∥

∥

∥

∥

∥

kn−1
∑

k=0

rk+1
∑

m=1

(Zm
k (x) − EZm

k (x))

∥

∥

∥

∥

∥

p

≤ C

kn−1
∑

k=0

(

rkh
1/2

2k
q
1/2
k + rkh

1/p

2k
q
1/p
k

)

= O
[

(nhn)
1/2
(

n(1+β−2α)/2 + o(n1−α−(1−β)/p)
)]

= o
[

(nhn)
1/2
]

,

where the first equality is obtained by 1/hn = o(n), and the second one is due to β ≤ 1+pα−p.

Note that hn ց 0 and nhn → ∞ implies that hn/hn+1 ≤ 2 for n ≥ 1. Similarly, we have

sup
x∈R

∥

∥

∥

∥

mn−1
∑

m=1

(Zm
kn
(x) − EZm

kn
(x))

∥

∥

∥

∥

p

= o
[

(nhn)
1/2
]

. (4.8)

Step 2. We next prove for any x ∈ R,
∥

∥

∥

∥

rk
∑

m=1

Um
k (x)

∥

∥

∥

∥

p

= o
[

(2kh2k)
1/2
]

. (4.9)

Recalling that
∑∞

i=0 ρ
2/p(2i) < ∞, hence w.l.o.g., we suppose that ρ(n) ≤ (log n)−p/2. By

Lemma A.4, we have

E|Um
k (x)|p ≤ L(log 2pk)

p

[ pk
∑

i=1

ρ2/(p−1)(q(i/2))

]

‖K1(x)‖pp

+ L(log 2pk)
p

[ pk
∑

i=1

ρ2(q(i/2))

]p/2

‖K1(x)‖p2

≤ L
[

kp2−αk/(p−1)h2k + kp2α(1−p)p/2h
p/2

2k

]

,
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where q(x) is the linear interpolating function of qk. Subsequently,

‖Um
k (x)‖p ≤ L

[

k2−αk/p(p−1)h
1/p

2k
+ k2α(1−p)/2h

1/2

2k

]

. (4.10)

Then taking (4.10) back into (4.9), a standard computation leads to

sup
x∈R

∥

∥

∥

∥

kn−1
∑

k=0

rk
∑

m=1

Um
k (x)

∥

∥

∥

∥

p

≤ C

kn−1
∑

k=0

[

rkk2
−αk/p(p−1)h

1/p

2k
+ rkk2

α(1−p)/2h
1/2

2k

]

= C

kn−1
∑

k=0

[

k2(1−α−α/p(p−1))kh
1/p

2k
+ k2(1−α+α(1−p)/2)kh

1/2

2k

]

= O
[

(nhn)
1/2(log n)

(

n1/2−α−α/p(p−1)h1/p−1/2
n + n(1−α−pα)/2

)]

= O
[

(nhn)
1/2(log n)

(

n1−α−1/p + n(1−α−pα)/2
)]

= o
[

(nhn)
1/2
]

,

where the third equality is obtained by nhn → ∞, and the last equality is due to α > (p−1)/p.

Similarly, we have

sup
x∈R

∥

∥

∥

∥

mn−1
∑

m=1

Um
kn
(x)

∥

∥

∥

∥

p

= o
[

(nhn)
1/2
]

(4.11)

and

sup
x∈R

∥

∥

∥

∥

n
∑

i=Nn

(Ki(x)− EKi(x))

∥

∥

∥

∥

p

= o
[

(nhn)
1/2
]

. (4.12)

According to the two steps as above, we complete the proof of (4.2).

In order to prove (4.3), we first show for any integer s ≥ 1,

sup
x∈R

‖I1(x)‖2s = O
[

(nhn)
1/2
]

. (4.13)

Note that
∥

∥

∥

∥

kn−1
∑

k=0

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

2s
≤

kn−1
∑

k=0

∥

∥

∥

∥

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

2s
. (4.14)

Hence, we only need to show that

∥

∥

∥

∥

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

2s
= O

[

(2kh2k)
1/2
]

. (4.15)

(4.15) will be derived by induction on s: If s = 1, using the orthogonal property of the martingale

sequences and Lemma A.2, we have

E

[ rk
∑

m=1

ξmk (x)

]2

=

rk
∑

m=1

E(ξmk (x))2 ≤ 4

rk
∑

m=1

E(Y m
k (x))2 = O

(

2kh2k
)

. (4.16)

Suppose that (4.15) holds true for any integer less that s, we next show that it remains valid



for s itself. Applying the the Marcinkiewicz−Zygmund−Burkholder inequality yields

E

[ rk
∑

m=1

ξmk (x)

]2s

≤ CE

[ rk
∑

m=1

(ξmk (x))2
]2s−1

= CE

{ rk
∑

m=1

[

(ξmk (x))2 − E
(

(ξmk (x))2|Fk(m− 1)
)

+ E
(

(ξmk (x))2|Fk(m− 1)
)

]

}2s−1

≤ CE

{ rk
∑

m=1

[

(ξmk (x))2 − E
(

(ξmk (x))2|Fk(m− 1)
)

}2s−1

+ CE

{ rk
∑

m=1

E
(

(ξmk (x))2|Fk(m− 1)
)

]

}2s−1

=: II1 + II2,

where the definition of Fk(m− 1) can be referred to the beginning of the proof.

Note that ξmk (x))2−E
(

(ξmk (x))2|Fk(m− 1),m = 1, 2, ..., are martingale differences. By the

induction hypothesis, II1 is of order O
(

(2kh2k)
2s−2)

.

Using Lemma A.4 and Jensen,s inequality, we have

II2 ≤ CK(log 2rk)
2s−1

[ rk
∑

i=1

ρ2
−s

(q(i/2))

]

‖(ξmk (x))2‖2s−1

2s−1

+ CK(log 2rk)
2s−1

[ rk
∑

i=1

ρ2(q(i/2))

]2s−2

‖(ξmk (x))2‖2s−1

2

≤ CK(log 2rk)
2s−1

[ rk
∑

i=1

ρ2
−s

(q(i/2))

]

‖Y m
k (x)‖2s2s

+ CK(log 2rk)
2s−1

[ rk
∑

i=1

ρ2(q(i/2))

]2s−2

‖Y m
k (x)‖2s4 =: II21 + II22.

Note that ρ(n) ≤ (logn)−2s−1

. By Lemma A.2, a standard calculation yields

II21 = O
[

k2
s−1

2(1−α)k/2
(

2α2
s−1kh2s−1

2k + 2αkh2k

)]

= o
(

22
s−1kh2s−1

2k

)

. (4.17)

Similarly,

II22 = O
[

k2
s−1

2(1−α)(1−2s)2s−2k
(

2α2
s−1kh2s−1

2k + 2α2
s−2kh2s−2

2k

)]

= o
[

(

22
s−1kh2s−1

2k

)

×
(

2(α−1)k + 2α−α2s−2)
]

= o
(

22
s−1kh2s−1

2k

)

. (4.18)

Combining (4.17) and (4.18) gives (4.15).

We next show that (4.15) holds true for any p > 2. In fact, there exists an integer s ≥ 1

such that p ∈ (2s, 2s+1). Then it follows from Lyapunov,s inequality,

∥

∥

∥

∥

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

p

p

≤
∥

∥

∥

∥

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

2s+1−p

2s

∥

∥

∥

∥

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

2p−2s+1

2s+1

= O
[

(

2kh2k
)p/2

]

. (4.19)

Finally, we have

sup
x∈R

∥

∥

∥

∥

kn−1
∑

k=0

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

p

= O
[

(nhn)
1/2
]

. (4.20)
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Similarly, we have

sup
x∈R

∥

∥

∥

∥

mn−1
∑

m=1

ξmkn
(x)

∥

∥

∥

∥

p

= O
[

(nhn)
1/2
]

. (4.21)

According to the proof as above, we claim that (4.1) holds true.

Remark 3. If conditions (C1) and (K1) in Theorem 4.1 are replaced by (C3) and (K3),

respectively, we have

sup
x∈R

∥

∥

∥
fn,K(x) − f(x)

∥

∥

∥

p
= O

[

( 1

nhn

)1/2

+ hn

]

. (4.22)

Theorem 4.2. Under the conditions of Theorem 4.1, we have for p ≥ 2,
[
∫ ∞

−∞

∥

∥fn,K(x)− Efn,K(x)
∥

∥

p

p
dx

]1/p

= O
[( 1

nhn

)1/2]

. (4.23)

Proof. According to the decomposition as above, we only need to prove
[
∫ ∞

−∞

∥

∥I1(x) + I2(x) + I3(x) + I4(x)
∥

∥

p

p
dx

]1/p

= O
[

(

nhn

)1/2
]

. (4.24)

Obviously, (4.24) will be derived if one can show that

4
∑

j=1

[
∫ ∞

−∞

∥

∥Ij(x)
∥

∥

p

p
dx

]1/p

= O
[

(

nhn

)1/2
]

. (4.25)

In fact, the proof of (4.25) is contained in that of Theorem 4.1. For example, noting that

∥

∥

∥

∥

kn−1
∑

k=0

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

p

p

≤
[

kn−1
∑

k=0

∥

∥

∥

∥

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

p

]p

. (4.26)

Then we have
[
∫ ∞

−∞

∥

∥

∥

∥

kn−1
∑

k=0

rk
∑

m=1

ξmk (x)

∥

∥

∥

∥

p

p

dx

]1/p

= O
[

(

nhn

)1/2
]

, (4.27)

and the order of
∥

∥

∑rk
m=1 ξ

m
k (x)

∥

∥

p
has been obtained in Theorem 4.1. Similarly, one can derive

the order for other terms, here they are omitted.

5. Rates of strong uniform consistency for KDEs

In this section, we consider the a.s. convergence rates for KDEs, which are an active sub-

ject in probability and statistics these years. Among these results, Theorem 5.1 establishes the

uniform rate over a compact set, while Theorem 5.2 gives the same rate over the whole real

line. It is showed that the uniform convergence rates for mixing dependent observations are as

good as those for i.i.d. ones.

Theorem 5.1. Let D be a compact subset of R. Suppose that ρ(1) ≤ 1/4 and
∑∞

i=0 ρ(2
i) < ∞,

and that the conditions (B2), (C1), (K2) are satisfied. Then we have

sup
x∈D

∣

∣fn,K(x)− Efn,K(x)
∣

∣ = Oa.s.

[( | log hn|
nhn

)1/2]

. (5.1)

Proof. We first introduce some notation: Let Hk denote the set of all integers in the interval



[2k, 2k+1), k ≥ 0. For 0 < b < a < 1/2, whose values will be specified later. Define pk =

[2ak], qk = [2bk], rk = [2k/(pk + qk)], and blocks

Ik(j) = [2k + (j − 1)(pk + qk), 2
k + (j − 1)qk + jpk) ∩ N+,

Jk(j) = [2k + (j − 1)qk + jpk, 2
k + j(qk + pk)) ∩ N+, 1 ≤ j ≤ rk,

Jk(rk + 1) = [2k + rk(pk + qk), 2
k+1) ∩ N+.

Note that (5.1) will be derived if one can show that

max
2k≤n<2k+1

sup
x∈D

∣

∣fn,K(x) − Efn,K(x)
∣

∣ = Oa.s.

[

( | log h2k |
2kh2k

)1/2
]

. (5.2)

In order to prove (5.2), observe that D is a compact set, so one can choose finite open

balls with centers at x1, ..., xlk , and radius dk = (h3
2k | log h2k |/2k)1/2 to cover D. Obviously,

the numbers of the balls are of order O((2k/(h3
2k | log h2k |))1/2). Further denote the ith ball by

Bi = B(xi, dk), 1 ≤ i ≤ lk, it is easy to see that D ⊂ ⋃lk
i=1 Bi. For simplicity, write

Sn(x) :=
1√
hn

n
∑

i=1

(

Ki(x) − EKi(x)
)

. (5.3)

By the Lipschitz condition on kernel K, we have for any x ∈ Bm and some U > 0,

max
2k≤n<2k+1

∣

∣Sn(x) − Sn(xm)
∣

∣ ≤ Udk max
2k≤n<2k+1

nh−3/2
n ≤ U

√

2k+1| log h2k+1 |. (5.4)

Denote λn =
√

n| log hn|, we have for M > U ,

P
(

max
2k≤n<2k+1

sup
x∈D

|Sn(x)| ≥ 2Mλ2k+1

)

≤
lk
∑

m=1

max
1≤m≤lk

P
(

max
2k≤n<2k+1

|Sn(xm)| ≥ Mλ2k+1

)

(5.5)

+

lk
∑

m=1

P
(

max
2k≤n<2k+1

sup
x∈Bm

|Sn(x)− Sn(xm)| ≥ Mλ2k+1

)

. (5.6)

Clearly, (5.6) vanishes on account of (5.4), so we only need to consider (5.5). Let us first

introduce some extra notation, define

Uk(j, xm) =
1√
h2k

∑

i∈Ik(j)

[

Ki(xm)−EKi(xm)
]

, Vk(j, xm) =
1√
h2k

∑

i∈Jk(j)

[

Ki(xm)−EKi(xm)
]

,

1 ≤ j ≤ rk; Vk(rk + 1, xm) =
1√
h2k

∑

i∈Jk(rk+1)

[

Ki(xm)− EKi(xm)
]

,

ζk(j, xm) = Uk(j, xm)− E
[

Uk(j, xm)|Fk(j − 1)
]

, Fk(j) = σ
(

Xr, r ≤ 2k + (j − 1)(pk + qk)
)

.

Then, it is easy to give the following decomposition:

Sn(xm) =

rk
∑

j=1

ζk(j, xm) +

rk
∑

j=1

E
[

Uk(j, xm)|Fk(j − 1)
]

+

rk+1
∑

j=1

E
[

Vk(j, xm)|Fk(j − 1)
]

=: Σ1 +Σ2 +Σ3.

The main ideas of the proof are as follows: First, note that Σ1 is a martingale, in order to

obtain good estimation of the tail probability for Σ1, the exponential inequality is necessary.
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Clearly, the Freedman inequality is suitable for the present setting. However, some preliminary

work is required. More precisely, one needs to derive the growth rates of the bound for the

martingale differences, and the bound of the sum of the conditional variances. Second, we will

show that Σ2 and Σ3 can be negligible, that is Σ2 +Σ3 is of order oa.s.(λ2k ).

The procedure as above follows from three facts below:

(F1) We first show that max1≤j≤rk |ζk(j, xm)| ≤ pk with probability one. We use the

following decomposition:

ζk(j, xm) =
1√
h2k

∑

i∈Ik(j)

(

Ai(xm)− E[Ai(xm)|F i−1
k ]

)

+
1√
h2k

∑

i∈Ik(j)

(

E[Ai(xm)|F i−1
k ]− E[Ai(xm)|Fk(j − 1)]

)

=: Σ11 +Σ12,

where

Ai(xm) = Ki(xm)− EKi(xm), F
i
k(j) = σ(Xr, r ≤ 2k + (j − 1)(pk + qk) + i− 1).

Thus by Markov,s inequality, it follows for some s > 0,

∞
∑

k=1

P
(

max
1≤j≤rk

∣

∣ζk(j, xm)
∣

∣ > pk

)

≤ C

∞
∑

k=1

rkp
−s
k

(

E
∣

∣Σ11

∣

∣

s
+ E

∣

∣Σ12

∣

∣

s
)

. (5.7)

It suffices to prove the term on the right-hand side of (5.7) is finite. In fact, one only needs to

estimate E
∣

∣Σ11

∣

∣

s
and E

∣

∣Σ12

∣

∣

s
. For the first term, denote Bi,1(xm) = Ai(xm)−E[Ai(xm)|F i−1

k ].

Furthermore define recursively Bi,l(xm) = B2
i,l−1(xm) − E[B2

i,l−1(xm)|F i−1
k ], l ∈ N. Clearly,

Bi,l(xm), i = 2k + (j − 1)(pk + qk) + 1, ..., 2k + (j − 1)qk + jpk, are martingale differences. We

will show by the induction method that

E
∣

∣Σ11

∣

∣

2l

= O
[

p2
l−1

k

]

, l ∈ N
+. (5.8)

If l = 1, recalling the conditions on K and f , it turns out that

EΣ2
11 ≤ 4

h2k

∑

i∈Ik(j)

EK2
i (xm) = O(pk). (5.9)

Suppose that (5.8) holds true for 3 ≤ l ∈ N+. Then using the Marcinkiewicz−Zygmund−Burkholder

inequality, we have for l ∈ N+,

E
∣

∣Σ11

∣

∣

2l ≤ clh
−2l−1

2k
E

∣

∣

∣

∣

∑

i∈Ik(j)

B2
i,1(xm)

∣

∣

∣

∣

2l−1

≤ clh
−2l−1

2k
E

∣

∣

∣

∣

∑

i∈Ik(j)

Bi,2(xm)

∣

∣

∣

∣

2l−1

+ clh
−2l−1

2k
E

∣

∣

∣

∣

∑

i∈Ik(j)

E[B2
i,1(xm)|Fi−1]

∣

∣

∣

∣

2l−1

. (5.10)

According to the induction hypothesis, one can easily get the first term in (5.10) is of order

O(p2
l−2

k ). As for the second term in (5.10), note that with probability one,

E[B2
i,1(xm)|Fi−1] ≤ 4h2k‖K‖22‖f‖∞, (5.11)

which is of order O(p2
l−1

k ).

We next show (5.8) holds true for any integer s on (2l, 2l+1). By Lyapunov,s inequality, it



turns out for large k,

E
∣

∣Σ11

∣

∣

s
= E

∣

∣Σ11

∣

∣

(2s−2l+1)+(2l+1−s)

≤
[

EΣ2l

11

](2l+1−s)/2l[
EΣ2l+1

11

](s−2l)/2l

= O
[

p
s/2
k

]

. (5.12)

As to Σ12. Recalling the conditions on K and f , we have with probability one,

E[Ai(xm)|F i−1
k ] = h2k

∫ ∞

−∞
K(u)f(xm + uh2k |F i−1

k )du = O(h2k). (5.13)

Thus it follows for large k,

E
∣

∣Σ12

∣

∣

s
= O(pskh

s/2

2k
). (5.14)

On account of condition (B2), one can choose large s, then taking (5.12) and (5.14) back

into (5.7), the desired result is obtained by the Borel-Cantelli lemma.

(F2) We also have
rk
∑

j=1

E
[

ζ2k(j, xm)|Fk(j − 1)
]

= Oa.s.

[

2k
]

. (5.15)

Which is proved as follows: Observe that

E
[

ζ2k(j, xm)|Fk(j − 1)
]

= E
[

U2
k (j, xm)|Fk(j − 1)

]

−
(

E
[

Uk(j, xm)|Fk(j − 1)
])2

=: ∆1 −∆2.

For ∆2, by the definition of ρ−mixing (or Lemma A.1), we have

E
(

E
[

Uk(j, xm)|Fk(j − 1)
])2

= E
{

Uk(j, xm)E[Uk(j, xm)|Fk(j − 1)]
}

≤ 4ρ(qk)E
[

Uk(j, xm)
]2

= O
[

pkρ(qk)
]

.

Using
∑∞

i=0 ρ(2
i) < ∞, it turns out that

∞
∑

k=1

rk
∑

j=1

E
(

E[Uk(j, xm)|Fk(j − 1)]
)2
/2k < ∞, (5.16)

which implies
∞
∑

k=1

rk
∑

j=rk−1+1

E
(

E[Uk(j, xm)|Fk(j − 1)]
)2
/2k < ∞. (5.17)

Applying the Borel-Cantelli lemma and the Kronecher lemma gives

rn
∑

j=1

(

E[Un(j, xm)|Fn(j − 1)]
)2

= oa.s.(2
n). (5.18)

Thus, the estimation for ∆2 is finished.

For ∆1, let

U
′

k(j, xm) = Uk(j, xm)I(|Uk(j, xm)| ≤ 2k/2), U
′′

k (j, xm) = Uk(j, xm)I(|Uk(j, xm)| > 2k/2).

Obviously, we have

E
[

Uk(j, xm)|Fk(j − 1)
]

= E
[

U
′

k(j, xm)|Fk(j − 1)
]

+ E
[

U
′′

k (j, xm)|Fk(j − 1)
]

. (5.19)

Note that

E
(

E[U
′′2
k (j, xm)|Fk(j − 1)]

)

= EU2
k (j, xm)I(|Uk(j, xm)| > 2k/2)

≤ 2−kδ/2E|Uk(j, xm)|2+δ ≤ 2−kδ/2
[

2ak(2+δ)/2 + 2akh
−δ/2

2k

]

. (5.20)
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Consequently,

∞
∑

k=1

rk
∑

j=1

2−kE
(

E[U
′′2
k (j, xm)|Fk(j − 1)]

)

< ∞. (5.21)

Using the Kronecher lemma yields

n
∑

k=1

rk
∑

j=1

E
(

E[U
′′2
k (j, xm)|Fk(j − 1)]

)

= oa.s.
(

2n
)

. (5.22)

As for the first term on the right-hand side of (5.19), it follows that

P
(

rk
∑

j=1

[

(U
′

k(j, xm)− EU
′

k(j, xm))|Fk(j − 1)
]

≥ ǫ2k
)

≤ C2−2kE
[

rk
∑

j=1

[

(U
′

k(j, xm)− EU
′

k(j, xm))|Fk(j − 1)
]

]2

≤ C2−2k
rk
∑

j=1

(

ρ(qk)
)2
E[U

′

k(j, xm)]2(log rk)
2

≤ C2−2k
rk
∑

j=1

k−222ak(log rk)
2 ≤ C2(a−1)k.

The second inequality as above follows from Lemma A.4 with p = 2.

Thus by the Borel-Cantelli lemma, we have

rk
∑

j=1

[

(U
′

k(j, xm)− EU
′

k(j, xm))|Fk(j − 1)
]

= Oa.s.(2
k). (5.23)

According to (5.18), (5.22) and (5.23), the proof of (5.15) is complete. Furthermore, w.l.o.g.,

there exists some constant V > 0, such that

2−k
rk
∑

j=1

E
[

ζ2k(j, xm)|Fk(j − 1)
]

≤ V a.s. (5.24)

(F3) Since Σ3 is a sum on the small blocks, we only need to consider Σ2. We have

rk
∑

j=1

E[Uk(j, xm)|Fk(j − 1)] = oa.s.

[

√

2k| log h2k |
]

. (5.25)

Note that 2k| log h2k | ≥ 2k for k ≥ k0, clearly, (5.25) follows from the stronger result below.

rk
∑

j=1

E[Uk(j, xm)|Fk(j − 1)] = oa.s.
(

√
2k
)

. (5.26)

Furthermore, (5.26) can be derived from (5.17).

On account of the preliminary work as above, we next consider (5.5), observe that

P
(

max
2k≤n<2k+1

|Sn(xm)| ≥ Mλ2k+1

)

= P
(

max
1≤j<2k

|S2k+j(xm)| ≥ Mλ2k+1

)

. (5.27)



Then similarly to the proof of Lemma 3.1 in Herrndorf [11], we have

P
(

max
1≤j<2k

|S2k+j(xm)| ≥ Mλ2k+1

)

≤ P
(

|S2k+1(xm)| ≥ Mλ2k+1/3
)

×
[

1− 4ρ2(1)− max
1≤j<2k

P
(

|S2k+1(xm)− S2k+j(xm)| ≥ Mλ2k+1/3
)

]−1

.

By the Markov inequality, we have

max
1≤j<2k

P
(

|S2k+1 − S2k+j | ≥ Mλ2k+1/3
)

≤ 1/2. (5.28)

Recalling ρ(1) ≤ 1/4, which together with (5.28) yields

P
(

max
1≤j<2k

|S2k+j(xm)| ≥ Mλ2k+1

)

≤ 4P
(

|S2k+1(xm)| ≥ Mλ2k+1/3
)

. (5.29)

Finally, with the help of (F1)−(F3) together with (5.29), then by the Freedman inequality

(see, e.g., Lemma A.3 in the Appendix), we have for M ≥
√
74V ,

∞
∑

k=1

lk
∑

m=1

P
(

max
2k≤n<2k+1

|Sn(xm)| ≥ Mλ2k+1

)

≤ C

∞
∑

k=1

lkP
(∣

∣

∣

rk
∑

j=1

ζk(j, xm)
∣

∣

∣
≥ Mλ2k+1/6

)

≤ C

∞
∑

k=1

lk exp

{ −M22k| log h2k |
72Mpk2k/2| log h2k |1/2 + 36V 2k

}

≤ C
∞
∑

k=1

lkh
M2/37V

2k
< ∞. (5.30)

Thus, applying the Borel-Cantelli lemma yields (5.1).

Remark 4. We compare (5.1) with those of Peligrad [22] and Shao [30] for mixing obser-

vations. Peligrad [22] obtained the following result: Let D be a compact support subset of

Rd and {Xn, n ≥ 1} be a sequence of Rd-valued φ−mixing random variables with common

unknown density function f(x) = f(x1, ..., xd). Suppose that (B1) holds, f is continuous in a

ε-neighborhood of D, and kernel K satisfies:

1) K is a density function on Rd,

2) for any x ∈ Rd, K(x) ≤ K1 < ∞,

3) ‖x‖d+1K(x) → 0 as x → ∞,

4)
∫

‖x‖K(x)dx < ∞,

5) K is Lipschitzian continuous of order γ on Rd.

Further, assume that

∞
∑

n=1

φ1/2(2n) < ∞, (5.31)

then it follows that

sup
x∈D

|fn(x) − Efn(x)| = Oa.s.

[

( log2 n

nhd
n

)1/2
]

. (5.32)
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Especially, if hn = O((log2 n/n)1/(d+2)), it turns out that

sup
x∈D

|fn(x)− f(x)| = Oa.s.

[

( log2 n

n

)1/(d+2)
]

. (5.33)

If the mixing rates are strengthened to φ(n) = O(n−2−d), Shao [30] obtained

sup
x∈D

|fn(x)− Efn(x)| = Oa.s.

[

( logn

nhd
n

)1/2
]

. (5.34)

Especially, if hn = O((log n/n)1/(d+2)), it turns out that

sup
x∈D

|fn(x) − f(x)| = Oa.s.

[

( logn

n

)1/(d+2)
]

. (5.35)

Under conditions 3) and 4), by Bochner−Parzen theorem, we have Efn,K(x) − f(x) = O(hn).

Note that φ−mixing is contained in ρ−mixing, so Theorem 5.1 holds true for φ−mixing data.

Obviously, the rate in (5.1) is better than that in (5.32) under the condition (5.31); (5.34)

achieves the best possible a.s. convergence rate, however, the mixing rate φ(n) = O(n−2−d) is

more stronger than that in (5.31).

Theorem 5.2. Let X ∈ Lp for p ≥ 2. Under the conditions of Theorem 5.1, we have

sup
x∈R

∣

∣fn,K(x) − Efn,K(x)
∣

∣ = Oa.s.

[( | log hn|
nhn

)1/2]

. (5.36)

Proof. In order to prove (5.36), it suffices to show that

sup
x≤n3/p

∣

∣fn,K(x) − Efn,K(x)
∣

∣ = Oa.s.

[( | log hn|
nhn

)1/2]

(5.37)

and

sup
x>n3/p

∣

∣fn,K(x)− Efn,K(x)
∣

∣ = Oa.s.

[( | log hn|
nhn

)1/2]

. (5.38)

Along the similar proof lines as those in Theorem 5.1, one can complete the proof of (5.37).

Therefore, we only need to consider (5.38). Note that K is bounded with compact support and

X ∈ Lp, using the Markov inequality, it follows that

E
[

sup
x>n3/p

∣

∣fn,K(x) − Efn,K(x)
∣

∣

]

≤ 2h−1
n E

[

sup
x>n3/p

∣

∣Ki(x)
∣

∣

]

≤ Ch−1
n P (|Xi| ≥ n3/p/2) ≤ Cn−3h−1

n , (5.39)

which implies for some M > 0,

∞
∑

n=1

P
(

sup
x>n3/p

∣

∣fn,K(x)− Efn,K(x)
∣

∣ ≥ M(| log hn|/nhn)
1/2
)

≤
∞
∑

n=1

1

n2
. (5.40)

Thus, (5.38) is obtained by the Borel-Cantelli lemma.

Appendix

We list the following basic lemmas, the first one comes from Bradley and Bryc [2], the

second can be found in Shao [33], while the third one is due to Freedman [7].



Lemma A.1. Let p, q > 1 with 1/p+ 1/q = 1. Suppose that X ∈ Lp(F k
1 ) and Y ∈ Lq(F∞

k+n)

are two ρ−mixing random variables. Then we have

|EXY − EXEY | ≤ 10
(

ρ(n)
)

2
p∧ 2

q ‖X‖p‖Y ‖q.

Lemma A.2. Let {Xn, n ≥ 1} be a sequence of ρ−mixing random variables with mean zero

and ‖Xi‖p < ∞ for some p ≥ 2. Then there exists a constant L depending only on p and ρ(·)
such that for any k ≥ 0, n ≥ 1,

E|Sk(n)|p ≤ Lnp/2 exp

[

L

[logn]
∑

i=0

ρ(2i)

]

max
k<i≤k+n

∥

∥Xi

∥

∥

p

2

+ Ln exp

[

L

[logn]
∑

j=0

ρ2/p(2j)

]

max
k<i≤k+n

∥

∥Xi

∥

∥

p

p
.

Lemma A.3. Let {Xn,Fn, n ≥ 1} be a martingale difference sequence with Sn =
∑n

i=1 Xi.

Suppose that τ is a stopping time, and L a positive real number. Suppose P (|Xi| ≤ L, i ≤ τ) = 1.

Then for all positive real numbers a and b,

P (Sn ≥ a, Tn ≤ b for some n ≤ τ) ≤ exp

[ −a2

2(La+ b)

]

,

where Tn =
∑n

i=1 Var(Xi|Fi−1).

Before formulating the next Lemma, we give some extra notation: Let pk and qk be se-

quences of positive integers satisfying qk = o(pk) and qk ր ∞ as k → ∞. Then the successively

blocks which only include integers are defined as follows:

Ik = [(k − 1)(pk + qk) + 1, (k − 1)qk + kpk) ∩ N+,

Jk = [(k − 1)qk + kpk, k(pk + qk)) ∩ N+, k = 1, 2, ...

Furthermore, let {Xn, n ≥ 1} be a sequence of ρ−mixing random variables with mean zero,

and E|Xn|p < ∞ for some p ≥ 2. Denote

ξk =
∑

i∈Ik

Xi, ηk =
∑

i∈Jk

Xi.

Lemma A.4. Let {ξn, n ≥ 1} be as above. Suppose that
∑∞

i=0 ρ(2
i) < ∞, then for p ≥ 2,

there exists a positive constant L = L(p, ρ(·)) depending only on p and ρ(·) such that for every

k ≥ 0, n ≥ 1,

E|Gm(n)|p ≤ L(log 2n)p

[

m+n
∑

k=m+1

ρ2(q(k/2))
∥

∥ξk
∥

∥

2

2

]p/2

+ L(log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))
∥

∥ξk
∥

∥

p

p

]

, (A.1)

where Gm(n) =
∑m+n

k=m+1 E(ξk|Fk−1), Fk = σ(Xi, i ≤ (k − 1)(pk + qk) + pk), and q(x) is the

linear interpolating function of qk.

Proof. We claim that p may not be integer. However, we only consider the integral case in

the present article since the proof for the non-integral part is similar. We first show that (A.1)
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holds true for all even numbers, then verify that it is the case for all odd numbers. The proof

is decomposed into the following three steps by induction on p.

Step 1. If p = 2, (A.1) can be rewrote as follows:

EG2
m(n) ≤ L(log 2n)2

[

m+n
∑

k=m+1

ρ2(q(k/2))
∥

∥ξk
∥

∥

2

2

]

. (A.2)

A similar result as (A.2) can be found in Shao [31]. However, for the reader,s convenience, we

give its proof by induction on n below: If n = 1, by Lemma A.1, it follows that

EG2
m(1) = E(E(ξm+1|Fm))2

= E(ξm+1E(ξm+1|Fm))

≤ 10ρ(qm)‖ξm+1‖2‖E(ξm+1|Fm)‖2. (A.3)

Then a simple calculation leads to

EG2
m(1) ≤ 100ρ2(qm)‖ξm+1‖22. (A.4)

Suppose that (A.2) holds true for any integer less than n. We next show it remains valid

for n itself. Let n1 = [n/2], n2 = n− n1. Clearly,

EG2
m(n) = EG2

m(n1) + EG2
m+n1

(n2) + 2EGm(n1)Gm+n1
(n2)

≤ EG2
m(n1) + EG2

m+n1
(n2) + 2ρ(qm+n1

)‖Gm(n1)‖2‖Gm+n1
(n2)‖2. (A.5)

By the induction hypothesis and Lemma A.2 with
∑∞

i=0 ρ(2
i) < ∞, we have

EG2
m(n) ≤ L(log 2n1)

2

[

m+n1
∑

k=m+1

ρ2(q(k/2))
∥

∥ξk
∥

∥

2

2

]

+ L(log 2n2)
2

[

m+n
∑

k=m+n1+1

ρ2(q(k/2))
∥

∥ξk
∥

∥

2

2

]

+ L log(2n1)ρ(qm+n1
)

[

m+n
∑

k=m+n1+1

∥

∥ξk
∥

∥

2

2

]1/2[ m+n1
∑

k=m+1

ρ2(q(k/2))
∥

∥ξk
∥

∥

2

2

]1/2

≤ L(log 2n)2

[

m+n
∑

k=m+1

ρ2(q(k/2))
∥

∥ξk
∥

∥

2

2

]

. (A.6)

Step 2. Let p = 2l for l ≥ 2. Suppose that (A.1) holds true for all even numbers less than p.

We will show that it is also valid for p. To this end, the following preliminary work is needed.

(i) We will derive an upper bound for the pth moment of Gk(n). The basic inequalities

below are useful: For any x ≥ 0 and p > 1, we have

(1 + x)p ≤ 1 + xp + 4p(x+ xp−1). (A.7)

Moreover, let α, β > 0 and α+ β = 1. Applying Young,s inequality, we have for any x, y > 0,

xαyβ ≤ αx+ βy ≤ x+ y. (A.8)

Thus by (A.7), it follows for n ≥ 2,

EGp
m(n) = E(Gm(n1) +Gm+n1

(n2))
p

≤ E(Gm(n1))
p + E(Gm+n1

(n2))
p

+ 4p
(

EGm(n1)(Gm+n1
(n2))

p−1 + E(Gm(n1))
p−1Gm+n1

(n2)
)

. (A.9)



Using Lemma A.1 and (A.8), we give the following stronger upper bound,

EGm(n1)(Gm+n1
(n2))

p−1

≤ E|Gm(n1)|E|Gm+n1
(n2)|p−1 + 10ρ2/p(qm+n1

)‖Gm(n1)‖p‖Gm+n1
(n2)‖p−1

p

≤ E|Gm(n1)|E|Gm+n1
(n2)|p−1 + 10ρ2/p(qm+n1

)
[

‖Gm(n1)‖pp + ‖Gm+n1
(n2)‖pp

]

.

Similarly, we have

E(Gm(n1))
p−1Gm+n1

(n2)

≤ E|Gm(n1)|p−1E|Gm+n1
(n2)|+ 10ρ2/p(qm+n1

)
[

‖Gm(n1)‖pp + ‖Gm+n1
(n2)‖pp

]

.

Hence combining the estimations as above, we get

EGp
m(n) ≤

(

1 + 20× 4pρ2/p(qm+n1
)
)

[

EGp
m(n1) + EGp

m+n1
(n2)

]

+ E|Gm(n1)|p−1E|Gm+n1
(n2)|+ E|Gm(n1)|E|Gm+n1

(n2)|p−1

≤
(

1 + 20× 4pρ2/p(qm+n1
)
)

[

E|Gm(n1)|p + E|Gm+n1
(n2)|p

]

+ ‖ Gm(n1) ‖p−1
p−1‖ Gm+n1

(n2) ‖2 + ‖ Gm(n1) ‖2‖ Gm+n1
(n2) ‖p−1

p−1 .

(ii) We next show for each n ≥ 1,

EGp
m(n) ≤ L(log 2n)p

[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]p/2

+ L(log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−2)(q(k/2))‖ξk‖p−1
p−1

][

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]1/2

+ L(log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖pp

]

. (A.10)

To prove (A.10), we apply the induction method on n: If n = 1, it follows from Lemma A.1,

EGp
m(1) = E

[

Gm(1)(Gm(1))p−1
]

≤ 10ρ2/p(qm) ‖ ξm+1 ‖p‖ Gm(1) ‖p−1
p . (A.11)

Then a standard calculation leads to

EGp
m(1) ≤ 10ρ2(qm) ‖ ξm+1 ‖pp . (A.12)

Observe that ρ2(qm) ≤ ρ2/(p−1)(qm) for l ≥ 1, it is easy to see that (A.10) holds true.

Suppose that (A.10) is valid for any integer less than n, we next show that it is the case for
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n itself. On account of the induction hypothesis, EGm(n)p is less than or equal to

L(log 2n)p

{[

m+n1
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]p/2

+

[

m+n
∑

k=m+n1+1

ρ2(q(k/2))‖ξk‖22

]p/2}

+ L(log 2n)p

{[

m+n1
∑

k=m+1

ρ2/(p−2)(q(k/2))‖ξk‖p−1
p−1

][

m+n1
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]1/2

+

[

m+n
∑

k=m+n1+1

ρ2/(p−2)(q(k/2))‖ξk‖p−1
p−1

][

m+n
∑

k=m+n1+1

ρ2(q(k/2))‖ξk‖22

]1/2}

+

[

L

m+n1
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖pp + L

m+n
∑

k=m+n1+1

ρ2/(p−1)(q(k/2))‖ξk‖pp

]

+ 43pL

{

log1/2(2n)

(

k+n
∑

k=k+1

ρ2(q(k/2))‖ξk‖22

)1/2

(log 2n)p−1

×
{[

m+n
∑

k=m+1

ρ2/(p−2)(q(k/2))‖ξk‖p−1
p−1

]

+

[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]

p−1

2
}}

≤ L(log 2n)p

[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]p/2

+ L(log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2)))‖ξk‖pp

]

+ L(log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−2)(q(k/2))‖ξk‖p−1
p−1

][

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]1/2

.

Therefore the proof of (A.10) is complete.

(iii) We finally verify that (A.1) holds true for p = 2l. Observe that

(log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−2)(q(k/2))‖ξk‖p−1
p−1

][

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]1/2

≤ (log 2n)p

[

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖p−1
p−1

][

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]1/2

. (A.13)

Then by Lyapunov,s inequality, it follows that

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖p−1
p−1 ≤

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖2/(p−2)
2 ‖ξk‖p(p−3)/(p−2)

p . (A.14)

Furthermore note that

2

p− 1
=

2

p− 2
+

2(p− 3)

(p− 1)(p− 2)
. (A.15)

Therefore by the Hölder inequality, the right hand side of (A.14) is less than or equal to
[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]1/(p−2)[ m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖pp

](p−3)/(p−2)

. (A.16)



On account of (A.14) and (A.16), the right hand side of (A.13) is controlled by

(log 2n)p

[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]
1
2
+ 1

p−2
[

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖pp

]

p−3

p−2

= (log 2n)p

[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]

p
2
× 1

p−2
[

m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖pp

]

p−3

p−2

≤ (log 2n)p

{[

m+n
∑

k=m+1

ρ2(q(k/2))‖ξk‖22

]p/2

+
m+n
∑

k=m+1

ρ2/(p−1)(q(k/2))‖ξk‖pp

}

. (A.17)

Step 3. Assume that p is an odd number. Clearly, there exists integer l ≥ 2 such that

2l− 2 < p < 2l. Again using Lyapunov,s inequality and (A.8), we have

E|Gm(n)|p = E|Gm(n)|2l−1 (A.18)

≤
(

EGm(n)2l−2
)1/2(

EGm(n)2l
)1/2

≤ EGm(n)2l−2 + EGm(n)2l. (A.19)

According to the procedures as above, the proof of (A.1) is complete.
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