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Abstract. In this paper, we construct a moment inequality for mixing dependent random variables,
it is of independent interest. As applications, the consistency of the kernel density estimation is
investigated. Several limit theorems are established: First, the central limit theorems for the kernel
density estimator fn x(z) and its distribution function are constructed. Also, the convergence rates
of ||fn,x () — Efn ik (x)||p in sup-norm loss and integral LP-norm loss are proved. Moreover, the a.s.
convergence rates of the supremum of |fn x (z) — E fn,k (x)| over a compact set and the whole real line
are obtained. It is showed, under suitable conditions on the mixing rates, the kernel function and the
bandwidths, that the optimal rates for i.i.d. random variables are also optimal for dependent ones.
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1. Introduction

Let X, X5, Xo, ... be independent and identically distributed (i.i.d.) random variables with
common density f, and K be a bounded integrable kernel (a measurable function on R), the
classical kernel density estimators (KDEs) of f based on the observations X1, ..., X,, are defined
as
Xi — X
hn

n
fn,K(x)_n—;;K( ), weR (1.1)
where the bandwidths {h,,n > 1} satisfy some regularity conditions.

Since the famous work done by Rosenblatt [25] and Parzen [18], the limit behavior for the
KDEs has become an active subject. For the case of i.i.d. data, see, for example, Bickel and
Rosenblatt [1], Silverman [34] and Stute [35, 36]. Using empirical process approach, Einmahl
and Mason [4, 5] studied the uniform consistency and uniform consistency in bandwidth, re-
spectively. Giné and Guillou [8, 9] investigated the exact rates of almost sure (a.s.) convergence
of the supremum over adaptive intervals and all of R?, and Giné, Koltchinskii and Zinn [10]
obtained weighted uniform consistency of KDEs, and so forth. As to weakly dependent observa-
tions, Foldes [6], Riischendorf [27], Sarda and Vieu [28], Peligrad [20] and Liebscher [13] studied
the strong convergence of density estimators for ¢—mixing samples. Rosenblatt [25], Nze and
Rios [17], Liebscher [15] investigated a.s. convergence of kernel estimators for a—mixing ran-
dom variables. For other results, one can refer to Neumann [16], Woodroofe [37, 38], Wu et al.
[39], Yakowitz [40], and the reference therein. However, most of the work mentioned as above
on a.s. convergence rates in sup-norm loss under dependent data are not optimal. Yu [41]
obtained the best possible minimax rates for stationary sequences satisfying certain S—mixing
conditions at the cost of sufficient smoothness for density functions. The purpose of the present
article is to investigate the consistency of the KDEs, and tries to get the optimal convergence
rates for certain dependent observations. More precisely, we require the random variables to be
p—mixing, which is defined as follows:
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Definition. Suppose that X1, Xs, ... is a sequence of random variables on a probability space
(Q,Z,P). Set Z,, =0(X;,1<i<n), I =0(Xi,i>n), define
(n) |[EXY — EXEY|
p(n) =sup sup sup .
k21 xer2(#) ver2(#y,,) VEX — EX)?E(Y — EY)?

(1.2)

The sequence X1, X, ... is said to be p—mizing if p(n) = 0 as n — oo.

This definition was introduced by Kolmogorov and Rozanov [12]. As is known, the asymp-
totic behavior of p—mixing sequences have received much well-deserved attention, and a vari-
ety of elegant results have been obtained. See, for example, Lin and Lu [15], Peligrad [19-21],
Peligrad and Shao [23], Peligrad and Utev [24], Shao [29-33], and so forth.

Let X7, Xs,... be a sequence of stationary p—mixing random variables with density f.
replace the independent observations by the p—mixing ones in (1.1), one gets the corresponding
density estimator of f for the dependent random variables.

In this article, we devote ourselves to doing three things. The first one is to study con-
vergence in distribution of the estimator f, x(x) both as an estimation for the true density
function f(z) and as an estimation F, g (z) = [*__ fn,x(t)dt for the true distribution function
F(z) of X. The second is to investigate the convergence rates for the difference of f, x(x) and
its mean in sup-norm loss and integral LP-norm loss. Our third goal is to discuss the strong
uniform convergence rates of | f,, x(z) — E fn,k (z)| over a compact set of R and the whole real
line R, respectively. Of course, a natural question is posed as follows: Whether the optimal
convergence rates could be achieved? The answer is affirmative for i.i.d. observations. As is
known a variety of sharp results have been established, see, for example, Einmahl and Mason
[4, 5], Giné and Guillou [8, 9], Giné, Koltchinskii and Zinn [10]. However, that in general is not
the case for dependent samples. To obtain the best possible convergence rates, some different
methods from those for i.i.d. case should be developed. The present paper tries to do this. Our
technical proofs consist in applications of the blocking techniques, the martingale methods and
some inequalities. It is showed that the optimal convergence rates for i.i.d. random variables
are also optimal for dependent ones.

The remainder of the paper is structured as follows. Section 2 introduces some notation
and assumptions. Section 3 formulates several results on the weak convergence. Section 4
constructs the rates of || fn, k() — Efn ik ()|, in the sup-norm loss and integral LP-norm loss,
while Section 5 derives the rates of strong uniform consistency for KDEs. Some useful results
are stated in the Appendix.

2. Notation and assumptions

In this section, we present some basic notation and assumptions which will be used in
the sequel. Let X, X7, X5, ... be a sequence of non-degenerated and stationary p—mixing ran-
dom variables. Denote K;(z) = K((X; — )/hy) for fixed n € N, where K is a measurable
function satisfying some regularity conditions. f(z) is the unknown density function of X
with respect to Lebesgue measure. For Borel measurable function g and Borel measure y, let
LP := LP(u) be the usual Lebesgue spaces of real-valued functions normed by || - ||,. As usual,

write [lgll, = ([ |g(x)|pdu(x))1/p for 1 < p < oo. Define for any nonnegative integer s the
spaces C*(R) of all bounded continuous real-valued functions that are s—times continuously dif-
ferentiable on R. I(+) is the indicator function. [z] denotes the integer part of z, log z = log(zVe).
an = O(by) means limsup,, .. an/b, < 00, an = 0(by,) stands for limsup,, , . an/by, = 0, and
ap, < by, means 0 < liminf, . ay/b, <limsup,,_, ., a,/b, < co. The letter C' with subscripts
denotes some finite and positive universal constants, it may take different values in each ap-
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pearance.

Some assumptions are formulated below:
B1) h, \Oandnh — 00 as n — 0.

(

(B2) hy, < n%(n) for 0 < 6 < 1, I(n) is a slowly varying function.

(C1) the density function f(x) of X is uniformly bounded on R.

(C2) the density function f(x) of X is uniformly continuous and uniformly bounded on R.
(K1) K is a real-valued measurable function satisfying sup,cp |[K (z)| < oo and [*_|K(z)|dx <
0.

(K2) K is a real-valued measurable function with compact support on R, and satisfies Lipschitz
condition.

Remark 1. Condition (B2) is a little more stronger than (B1). in other words, (B2) does
not allow the bandwidths h,, to go to zero very slowly as n — co. For example, the form of the
bandwidths such as h,, = 1/(logn)P, for all p > 0, is excluded. But we would like to point out
that most of the bandwidths including the optimal ones are contained in (B2).

3. Central limit theorems for KDEs and their distribution functions

Consider the KDE f,, x(z) defined in (1.1). The aim of this section is to investigate the
CLT for f, kx(z) and F, g (z). The classical theory of this subject was developed mostly in
the 1950s, and it is an important theory in probability and statistics. Our first result reads as
follows:

Theorem 3.1. Suppose that conditions (B1), (C2) and (K1) hold. Further assume that
f(z) >0 and Y ;2 p(2°) < co. Then we have

Vil (i () = Efn i (x)) 2 N0, [|K|3/(2)), (3.1)

where ” —% 7 stands for convergence in distribution.
Proof. For any fixed x € R, we use the following decomposition:

an(fE) - Ean(x) = [an(I) - Fn,K(fE)] =+ [FH,K(fE) - Ean(x)} ) (3.2)

where
Lo ( nh ZE X; =) /)| Fica], Fi=0(X;,5 < i), Fo=1{0,0}.
Thus, (3.1) will be derived if one can show that

T x(2) — Efux(z) = op < \/:LT”) (3.3)

and
Vi (fuse(@) = T (@) =5 NO, [ K3/ (). (3.4)
We first prove (3.3). However, some preliminary work is needed. Denote N* = {1,2,...},
and let I, be the integer interval [2F, 25+1). Clearly, for each n € N, there exists integer k,, > 0
such that 287 < n < 2F=F1 Moreover, for 0 < 8 < a < 1, let pr, = [2%%],qp = [2°%], 7 =
[2%/(pr + qx)], then the integer set I can be blocked as follows:
Iy (m) = [28 + (m — 1) (pk + i), 2" + (m — 1)gx +mpy) NNT,
Je(m) = [2% + (m — D)gr. + mp, 28 + m(pr + qr)) NNT,
1<m<rg, Jelre+1) =2+ re(pr + qr), 281 NN,



It is easy to see that 7, ~ 2(1-®* According to the symbols as above, there also exists some
integer m,, > 0 such that n € I, (my) U Jg, (my,). For simplicity, we introduce some extra
notation as follows: Denote

Wit@)i= Y [BK(@)|Fi) - BKi(@)], V@)= Y [BlK:(@)|Fio) - BKi()].

i€l (m) i€k (m)

Then it follows that

kn—1 rg my—1

kpn—1rp+1 mpy—1 e n
DA OED IR MOIEDS [ 2)| Fio1) — EKZ-(;C)},
k=0 m=1 m=1 i=N,,

where N,, = 2% + (my, — 1)(px,, + r,.)-
Thus, in order to verify (3.3), it suffices to show that the sums on the big blocks satisfy

kn—1 7 ma,—1 2
S W@+ Y kan(:zr)] = o(nh,,). (3.5)
k=0 m=1 m=1

Note that the left-hand side of (3.5) is controlled by

kn—1 71 My —1 2
E| Y wir@)| +2E] Y Wy (x)] =% + %o. (3.6)
k=0 m=1 m=1
So we only need to show that
¥ = o(nhn), Yo = o(nhn). (3.7)

Using the towering property and Jensen’s inequality for the conditional expectations together
with Lemma A.4 with p = 2, we have

kz_:lE< Z Wi( )’92“%1)1

Y =2F

ke —1 T 2
< C'log?(2ky) Z p*(qr)E Z len(w)]
k=0 m=1
kn—1 2
= Clog®(2k,) Z p( Z E( ’ytk m))‘|
k=0
kn—1 Tk 2
< C'log?(2ky) p*(qr) log?(2r1) E(Wl:n(l’))
k=0 m=1
kn—1
< Clog?(2kn) Y, 2¥p*(gx) log®(2ry) log® (2ps) | K1 ()13,
k=0

where tg(m) = 28 + (—qr_1)I(m = 1)+ (m — 2)(pr + qu)I(m # 1) + pp, 1 <m < 7.
Recalling the condition imposed on the mixing rates, without loss of generality (w.l.o.g.),
suppose that p(n) < 1/logn, and observe that

EK3(z) = hy / K?(w)f(2 + hw)du < ho | f ool Kl oo | K. (3.8)
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Then, applying Lemma A.2, we can get
kn—1
1 < Clog?(2kn)EEF(z) Y 28k < Cnhy(loglogn)?(logn) ™' = o(nhy).
k=0
Similarly, we have
¥y < Cnhy,(loglogn)?(logn) ™2 = o(nhy,).

Combining (3.9) and (3.10) yields (3.3).
As to (3.4), note that

Vil (Fo e (@) = D)) = === 37 [Kifa) = B(Ki(@) Fi1)]

We next estimate the conditional variance

1 — 9
1 <« ) _ ~
= iy 2 P @F] = e 3 (B @IZ)] = 5 -2
For =, observe that
P(21 - |K|3f(x)] > €) = P(IE1 — hy, ' EKZ(2) + h '\ EK}(z) — ||K|3f (2)] > €).

Clearly, on account of condition (C2) and Bonchner’s lemma, we have

h 'EK}(zx / K2(u)f(x 4 hpu)du — ||K||3f(z).

(3.11)

(3.12)

(3.13)

Therefore, by Lemma A.2 and Jensen's inequality together with condition (B1), the right-hand

side of (3.12), for large n, is controlled by
P(|21 — h,'EK}(2)| > €/2) < Ce *n 'h, 2EK{(z) < Ce ?(nhy) | flloe — 0.
For =5, we have with probability one,
o B (Ki(x)| Fi) :/ K(u)f(z + hpu| Fia)du < [ Kloo|[ f]oo-

Then, it follows that
EZy < hn| K]l flloo — 0.

Combining (3.12)—(3.15) yields
> B [Kiw) - B(Ki@) )15} D KN,
" i=1

Moreover, applying the C,-inequality, we have
E(K(z) — E(Ki(2)|Fi_1))® <AEK?(z) < 4hy f]|oo-

Thus on account of (B1), the Lindeberg condition
IR 2
— ZE[KZ-(@ - E(Ki(x)@,l)] (|Ki(z) — E(K;(2)| Zio1)| > ev/nhn)
" i=1

< 4h, ' EKT (2)1(| Ky (2)] > ev/nhy/2) < 4] flloo /K( pp— K (u)du = o(1)

(3.14)

(3.15)

(3.16)

(3.17)

(3.18)



holds for any € > 0.
Finally, according to (3.16) and (3.18), then using the martingale central limit theorem
together with Slutsky’s theorem gives (3.1).

Remark 2. Let us consider the deviation of the kernel density estimator with respect to
the true density function. Note that

fux(@) = f(@) = [fax(@) = Efn.] + [Efnxc(2) = f(2)]. (3.19)

The first term on the right-hand side of (3.19) is the probabilistic term, while the second term
is the bias. If (C2) and the conditions imposed on the kernel K in Theorem 3.1 are replaced by

(C3) the density function f(x) is uniformly bounded, f(x) € C(R) and sup, |f ()] < oo,
(K3) K satisfies sup, |K(z)| < oo, [ |zK(z)|dx < oo,
then applying Taylor’s expansion, we have for some 0 < v < 1,

[Bfuice) = $@)] = | [~ K5~ o) - 710 dy\

:hn

/_OO yK ) f (& - Uhny)dy’ = O(hy,).

Therefore, (3.1) holds whenever nh? — 0 as n — oc.
In fact, the bias can always be balanced with the probabilistic term by calibrating the
normalizing sequence {h,,,n > 1}, provided enough regularity for K and f are assumed.

Another interesting problem is the weak convergence for the distribution function of the
KDE. More precisely, denote Fy, i (z) = [*_ fn i (t)dt, we construct the CLT for the difference
between F,, i (z) and its mean.

Theorem 3.2. Suppose that condition (B1) holds, and that Y ;o p(2") < co. Further, as-
sume that the density function f(x) is continuous and positive on R, and that the kernel K is
symmetric and [ K(x)dx = 1. Then we have

Vi(Fo i () = EFy k(2)) —5 N(0, F(z)(1 - F(a))), (3.20)

where F(x) is the true distribution function of X.
Proof. Observe that

F, k(x) — EF, k(x) = [Fo, k() — Ap k (2)] + [An k (2) — EF, k(2)], (3.21)

where
“
An,K(I) = n—hn ii - E1|:/OO Kz(t)dt’g\zl] .

Along the similar proof lines as those of (3.3), one can get
A s (2) = EFy xc(2) = op (%) (3.22)
We next show that
Fo ix(x) — Ay k(2) 4, N(0, F(z)(1 — F(x))). (3.23)

Note that Fy, x(z) — Ap x(2) is a martingale with respect to an increasing o-algebra %, =
o(X1,...,Xn). So in order to verify (3.23), we only need to check the conditions on the CLT
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for martingales. For simplicity, set

EF,(z) = han(/; K, (t)dt>2.

(3.24)

We claim that the limit of EX,(z) exists for any fixed 2 € R as n — oo. The proof is as follows:

Denote

Gr(z) = [ Oo K (u)du.

Recalling that [* K(z)dz = 1. Obviously, Gk (z) is the distribution function of a finite

measure. Then by the symmetry of kernel K, we have

: X -t Tt X
_ For _
h;l/ K1 (t)dt = h;l/ K( 2 )dt:/ K (u)du = GK(”” L

n oo

Note that G is bounded from above by one almost surely, it then turns out that

EX,(x) :E[GK(QC;)Q)r <1

n

Thus we have for any fixed = € R,
eloe(S)] = [ [ox (552
([ o) o) -

The conditional variance
Fi1 }

% Zj;E{ U; K(t)dt — E(/; Ki(t)dt’,%lﬂ i

n

. n_;% ZEEK/; Ki(t)dt)2‘9i1] - n%% > [E(/; Ki(t)dt‘ﬂ‘il)r —

=1
For £, by Lemma A.2 and Jensen’s inequality, it follows for any = € R,
P(|E2 = F(z)] > ¢)
= P(|2' - EX,(z) + EXy(z) — F(2)| > ¢)
< P(IE - EE,(2)] > €/2) < Ce2n 2EGK ((x — X1)/hy)
<Ce2n ' > 0, n— oo.
As for 27 First, similarly to that of (3.27), we have
xr — X1

n

EF, ::E[GK< )] — F(z), n— oo.

Moreover, we have for large n,
P(2" - F(x)| >
= P(IE" ~ (B (
< P(E" = (BS,(2)?] > €/2).

—
fl

(3.25)

(3.26)

(3.27)

’ 1"

[1]

(3.28)

(3.29)

(3.30)



Further, note that

= - = 1 3 o (*

By the a.s. boundness of Gk, (3.29) and Lemma A.2, the right-hand side of (3.30) is less than

or equal to
1< T — X, X
P ﬁg Gk - —Epqi(x)| >€/4) =0, n— o0, (3.32)

i=1 n

Xl) _Ef,l(x)] [GK(:C;L&) +Ef§1(x)]. (3.31)

mn

Then it turns out that
> B{[Ki(@) - E(Ki(@)|Fi1)]*| i1 | 5 F@)(1 - F(a)). (3.33)
i=1

Similarly to that of (3.18), one can show that the Lindeberg condition holds. Finally, by the
CLT for martingales and Slutskys theorem, we obtains (3.20).

Before stating the next result, we introduce the following condition:

(B3) h, \¢ 0, nh, — oo and /nw(n)h, — 0, where w(n) is a nonnegative real function
satisfying w(n) oo as n — oo.

Theorem 3.3. Suppose that condition (B3) holds, and that Y i, p(2°) < co. Further, assume
that the density function f(x) is positive and Lipschitz continuous on R, and that the kernel K
is a symmetric function with bounded support, ffooo K(z)dx =1 and f (x)|dx < co. Then
we have .
Vi(Fu (@) = F(2)) <5 N(0, F(z)(1 - F(a)). (3.34)
Proof. Observe that
Fo () = F(2) = [Fo,x () = Ak (2)] + [An, i (2) = EF, g (2)] + [EF, k (2) — F(2)], (3.35)

where A, k() is defined in the proof of Theorem 3.2. In fact, according to Theorem 3.2, one

only needs to show that

EF, x(z) — F(z) = 0(%) (3.36)

Observe that f(z) is integrable on R. Then for any given e > 0, it can be decomposed as
follows:

f(@) = fi(x) + fa(), (3.37)
where f1(x) is continuous on a compact interval [c1, co] (say), and fo(x) satisfies
/OO | fol@)]dz < e. (3.38)

Denote 7, = 1/(y/nw(n)). Recalling that [*° K (x)dz =1, we then have for any fixed = € R,

|EF, x(z) |_‘/ U K(u t+uhn)—f(t)]du]dt‘

/ / K @)If2(t + uhn) = fo(t)|dudt
|[u|>Tnhy
/ /|< w)|| f2(t + uhy) — fa(t)|dudt =: ©1 4 O,
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Recall that the kernel K is supported on the bounded interval. Clearly, ©; is controlled by

/u|>rnhn1 I () [/_Z |f2(t + uhn) — f2(t)|dt] du
< 2/|u>7nhn1 | K (u)] [/Z |f2(t)|dt] du—0, n— oo. (3.39)

For ©9, note that f; is Lipschitz continuous on [c1, ¢2]. Subsequently,

(catTn)Az
o, §/|u<mn1 |K(u)|[/c sup |f1(t+s)—f1(t)|dt]du

1—Tn [s|<Tn

< Cles — 1) + 0(%) _ 0(%) (3.40)

Therefore, we complete the proof of (3.36).

4. Convergence rates of || f, x(z) — Efn x(z)||, in sup-norm and integral LP-norm

One may be interested in the consistency of || fn i (2) — E fy, ik (z)||p, which are investigated
in this section. Among which, the uniform convergence rate with respect to LP-norm distance is

established in Theorem 4.1, while the convergence rate for integral LP-norm is given in Theorem
4.2.

Theorem 4.1. Let p > 2. Suppose that 3 ;o p?/P(2') < oo, and that the conditions (B1),
(C1), (K1) are satisfied. Then we have

ilelﬁufm;((:v)—Eme(x)szo[(nLM)l/?]' (4.1)

Proof. We will use the symbols such as p, gi, 7, Ix(m),Jp(m) etc. appeared in the proof of
Theorem 3.1. However, the values of « and 3 are different from those as in the proof of Theorem
3.1. Here we select some (p —2)/(p—1) < a < 1and 0 < f < min(e, 1 + pa — p). In fact, 8
allows taking the value 1 4+ pa — p. For simplicity, define

Z Ki(z), Z'(x) = Z Ki(z), 1 <m < rg; Z,Z"'H(x): Z K;(z),

i€l (m) i€Jk(m) i€l (rr+1)
&' (2) = Y™ (@) = B[Y," ()| Fr(m — 1)], where
Fi(m) = o(Xp,r < 2% — g l(m = 1) + [(m = 1)(pr, + q1) — q]I(m # 1)).
Then we have for any fixed z € R,

n—1 7 mn,—1
frx (@) — Efn k(@) {[Z dSGr@+ Y @2’1(@]

k=0 m=1 m=1

—1rg+1 my—1
| S S paen 3 @ - pa)
k=0 m=1 m=1
kn—1 7 mpy—1 n

+ Ui @)+ Y U@ + > (Ki(x>_EKi(I))}
k=0 m=1 m=1 i=Np
n; (I (x) + Io(z) + Is(z) + La(x)),

where U (z) = E(Y"(x)|.Fr(m — 1)) — EY;"(z).



Thus in order to prove (4.1), it is enough to show that
sup [Tz (@) + Ty () + L) (@)1, = of (nhn)"/?] (4.2)
fAS]

and
sup [[I1(z)]|, = O [(nhn)l/ﬂ : (4.3)
z€R

The proof of (4.2) will be divided into two steps:
Step 1. We first show for any = € R,

re+1

Y (Zi(2) - BZ{ ()

m=1

- o[(zkhzk)l/ﬂ . (4.4)

p
Using Lemma A.4, and note that 3 ;o p*/?(2%) < oo, it follows that
E|Z (x) — BZ7(2)]" < Cq| Ky ()5 + Car| Ka (@)]5. (4.5)
Recalling conditions (C1) and (K1), then by a simple calculation, we have
KL @15 < (L ool lloo |l K [l 1hr )P/ (4.6)
and
I @5 < I flloo 1B 1155 H I |1 hox. (4.7)
Applying (4.5)—(4.7) and Minkowski's inequality yields

kn—17rip+1

Y D (Zie) — BEZp ()

k=0 m=1
kn—1
<Cy
k=0
O{(nhn)l/z (n(1+6—2a)/2 N 0(n1—a—(1—6>/p))} _ O{(nhn)1/2}7

where the first equality is obtained by 1/h,, = o(n), and the second one is due to § < 1+pa—p.
Note that h,, N\ 0 and nh, — oo implies that h,/h,+1 < 2 for n > 1. Similarly, we have

p

(el {26/ + rusllrat’?)

my—1
sup || > (Zf(z) — EZ}! (a:))H = o[(nhn)l/z‘] (4.8)
zeR Il 5 P
Step 2. We next prove for any = € R,
- o[(2kh2k)1/2}. (4.9)
P

Recalling that Y 2 p?/P(2°) < oo, hence w.lo.g., we suppose that p(n) < (logn)~P/2. By
Lemma A.4, we have

U (@) < L(log 2p1)? [ZW 1> >>}||K1<w>||z

L(log 2py,)” [Zp (i/2)) ]p/QIIKl(I)IQ

< L[]#’27@16/(20*1)]12]C + kp2a(1fp)p/2h;g£2},
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where ¢(z) is the linear interpolating function of g;. Subsequently,
U™ (@), < L[k2_""“/p(p DhalP 4 k200 P>/2h1/2} (4.10)

Then taking (4.10) back into (4.9), a standard computation leads to

kn—1 1y
supl| > Y Uit(
2€R I k=0 m=1 P
kn—1
<C Y [rha oW P gy 002y 2]
k=0
kn—1

=0 {lznzn)l/z(log n) (nl/Qfafa/p(pfl)hi/pfl/Q + n(kmpa)/?)}
= O[(nhn)1/2(10gn) (nl—a—l/iﬂ n n(l—a—paw” _ 0[(,1,%)1/2}

where the third equality is obtained by nh,, — oo, and the last equality is due to & > (p—1)/p.

Similarly, we have

myp—1
ilelﬁ mzl Ui ( = 0[(nhn)1/2} (4.11)
and
sup (K;(z) — EK;(x))|| = o{(nhn)lﬂ]. (4.12)
z€R i=N,, P

According to the two steps as above, we complete the proof of (4.2).

In order to prove (4.3), we first show for any integer s > 1,

sup |1y () }2: = o[mhn)l/ﬂ. (4.13)
z€R
Note that
Z Z (4.14)
k=0 m= 2s m=1 28
Hence, we only need to show that
Tk
‘ = 0{(2’%%)1/2]. (4.15)
m=1

(4.15) will be derived by induction on s: If s = 1, using the orthogonal property of the martingale
sequences and Lemma A.2, we have

E[ > &m] = 3 B <13 B0 =0 ). @19

Suppose that (4.15) holds true for any integer less that s, we next show that it remains valid



for s itself. Applying the the Marcinkiewicz—Zygmund—Burkholder inequality yields

. - N ot
E[ Z &T(sc)] < CE[ Z (&T(w)?]
_ OE{ S [(60@)? - B @)2150m - 1) + B(€ @)F1Fi(m — 1) }
m=1
< cx > (@ w)? - B @)1z - 1) }

—1

+ CE{ TZi E((&"(2))?| Fr(m — 1))} }25 =:1I; + 1,

where the definition of .%;(m — 1) can be referred to the beginning of the proof.

Note that & (2))? — E((&(%))?|-#k(m —1),m = 1,2, ..., are martingale differences. By the
induction hypothesis, II; is of order O((2kh2k)2572).

Using Lemma A.4 and Jensen’s inequality, we have

I < OK (log 2ry)? [sz : }usk ()220

_ 2572

s—1
+ K (log2ry)? [zp Er @)?)3
< CK(log 2ri)* [ZpQ “(q(i/2)) ||Ykm(:1:) 2
_ 2572
+ CK (log 2ry)? [Z P2 ( 1Y (2)||2 =: Tlay + Tas.

Note that p(n) < (log n)72571. By Lemma A.2, a standard calculation yields
1121 _ O|:k23712(1 a)k/2 (2a2 1kh2s 1 +2akh2k):| _ 0(225 lkhQ 71). (417)
Similarly,
I,y = O{kzs 9(1—a)(1-2)2° *%(20‘2 1kh25 ' ga2” Qkhz *2)}
= o (27 AET) x (207D 4 g0me2 ) | = (22 RS, (4.18)

Combining (4.17) and (4.18) gives (4.15).
We next show that (4.15) holds true for any p > 2. In fact, there exists an integer s > 1
such that p € (2°,2°F1). Then it follows from Lyapunovs inequality,

Tk P Tk 25 _p 1 T 2p—2°+! )
‘ ‘ = 0[(2*har)""?]. (4.19)
2s 25+1
Finally, we have
knfl Tk
sup Z &)l =0 {(nhn)l/z}. (4.20)
z€R p
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Similarly, we have

mp—1
sup mz::l & (z) - 0[(nhn)1/2}. (4.21)

According to the proof as above, we claim that (4.1) holds true.

Remark 3. If conditions (C1) and (K1) in Theorem 4.1 are replaced by (C3) and (K3),
respectively, we have

sup
zeR

use(a) = 1)), =0| (=) "+ . (4.22)

Theorem 4.2. Under the conditions of Theorem 4.1, we have for p > 2,

o0 1/p 1 \1/2
[ ko - Bfxla] T =o[(-)" (423
Proof. According to the decomposition as above, we only need to prove
0 1/p
[/ T (z) + Ia(z) + Is(2) + I4($)H§d$:| =0 [(nhn)l/ﬂ. (4.24)

Obviously, (4.24) will be derived if one can show that

24: UO; Hlj(x)Hde} e 0| (nhn)""?]. (4.25)

Jj=1

In fact, the proof of (4.25) is contained in that of Theorem 4.1. For example, noting that

kn—1 7 D [kn—1 Tk P
X g@| | X | g ] . (4.26)
k=0 m=1 p L k=0 =1 P
Then we have
oo || kn—1 Tk P 1/p 12
[ / PRI dx] :O{(nhn) } (4.27)
N k=0 m=1 P

and the order of H Yok L& () Hp has been obtained in Theorem 4.1. Similarly, one can derive
the order for other terms, here they are omitted.

5. Rates of strong uniform consistency for KDEs

In this section, we consider the a.s. convergence rates for KDEs, which are an active sub-
ject in probability and statistics these years. Among these results, Theorem 5.1 establishes the
uniform rate over a compact set, while Theorem 5.2 gives the same rate over the whole real
line. It is showed that the uniform convergence rates for mixing dependent observations are as
good as those for i.i.d. ones.

Theorem 5.1. Let D be a compact subset of R. Suppose that p(1) < 1/4 and Y ;7 p(2¢) < oo,
and that the conditions (B2), (C1), (K2) are satisfied. Then we have

ol

:gg ’fn,K(I) - E.fn,K(x)‘ = Oa.s. |:( (51)

Proof. We first introduce some notation: Let Hj denote the set of all integers in the interval



[2F,2k+1) k. > 0. For 0 < b < a < 1/2, whose values will be specified later. Define p; =
[29%], qr = [2°%], 7 = [2%/(pr + q1)], and blocks

Ie(j) = 28 + (G — 1) (px + q&), 2 + (j — D)ax + jpr) NNT,

() =24+ (G — Dar + ok 28 + jlaw + pr)) NNT, 1< 5 <y,

Ji(re +1) = 2% + re(pr + qr), 2871 NNT.
Note that (5.1) will be derived if one can show that

B [log hor |y 1/2
2k<r’f112,)2(k+1 jgp }fn K\ ) Efn’K(I)| = Oas. [(W) ' (5.2>

In order to prove (5.2), observe that D is a compact set, so one can choose finite open
balls with centers at a1, ..., 2y,, and radius dj, = (h3,|loghor|/2¥)*/? to cover D. Obviously,
the numbers of the balls are of order O((2¥/(h3,|log hox[))*/?). Further denote the ith ball by

B; = B(=z;,dg),1 <i <l, it is easy to see that D C Ul-’;l B;. For simplicity, write

Sp(x) = Z — EK;(z)). (5.3)

\/_n

By the Lipschitz condition on kernel K, we have for any = € B,, and some U > 0,

|Sn(z) = Sp(zm)| < Udy  max  nh,3/% < U4/28+1 | log hgr]. (5.4)
2k<n<2k+1 2k <n<2k+1

Denote A, = y/n|loghy|, we have for M > U,

P( max  sup |Sy(z)] 22Mx\2k+1)

2k<n<2ktl pcp

Ly

< max P( max |Sn(:vm)|2M)\2k+1) (5.5)
' 1<m<ly 2k <n<2k+1
Iy
+3° P(2k<13113§k+11s6qu 15 (2) — Sy ()| > MAQM). (5.6)

Clearly, (5.6) vanishes on account of (5.4), so we only need to consider (5.5). Let us first
introduce some extra notation, define

1
U (ju xm) = [Ki(xm)_EKi(xm)}u Vi (.77 xm —FK; ( )}
' Vot ie%j) ' V ze%ﬁ
1<j<ri; Vi(re+1,2m) = ﬁ [Ki(zm) — EKi(2m)],

€]k (r+1)

Ce(dy 2m) = Ui(f, om) — E[Uk(j, 2m)| F6(G — V)], F(j) = o(Xpor <28+ (5 — D) (pr +ar)).

Then, it is easy to give the following decomposition:

Sulim) = " Gl ) + 5 B[UG 0| 20— 1)]

j=1 j=1
re+1

+ ) E[Vi(j,2m)| Fu(i — 1)] =: £y + B2 + Ta.
j=1

The main ideas of the proof are as follows: First, note that ¥; is a martingale, in order to
obtain good estimation of the tail probability for ¥;, the exponential inequality is necessary.
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Clearly, the Freedman inequality is suitable for the present setting. However, some preliminary
work is required. More precisely, one needs to derive the growth rates of the bound for the
martingale differences, and the bound of the sum of the conditional variances. Second, we will
show that Yo and X3 can be negligible, that is ¥o + X3 is of order o4 5. (Agr ).

The procedure as above follows from three facts below:

(F1) We first show that maxi<j<r, |Ck(], Tm)| < pr with probability one. We use the
following decomposition:

N g
Ck(]axm) = \/@ie%j) (Al( m) E[Al( m)|'/k ])
+ . Z (E[Ai (zm)| 7] = E[Ai(@m) | Fk (5 — 1)]) =: S11 + 12,

where
Ai(zm) = Ki(zm) — EKi(zm), Fi() =o(Xp,r <28+ (G — 1) (pr +q) +i—1).

Thus by Markov’s inequality, it follows for some s > 0,
. < _s s s ' '
;P(lgljagﬁk |Ce(, wm)| > Pk) < C;ﬁcpk (E’Eu’ + E|S1s| ) (5.7)

It suffices to prove the term on the right-hand side of (5.7) is finite. In fact, one only needs to
estimate E|211 |s and E|212 |S. For the first term, denote B; 1 () = A; (xm)—E[Ai(:Emﬂf,ifl].
Furthermore define recursively B (@) = B} (2m) — E[B?, |(zm)|Z.'],l € N. Clearly,
Biy(xm),i =25+ ( — 1)(pr + qr) + 1, ..., 28 + (j — 1)gx + jip, are martingale differences. We
will show by the induction method that

l -
Elsnl” =0 ], rent, (5.8)
If I = 1, recalling the conditions on K and f, it turns out that
4
EX} < — Y EK}(zm)=O(p). (5.9)
het &
i€l

Suppose that (5.8) holds true for 3 </ € N*. Then using the Marcinkiewicz—Zygmund—Burkholder
inequality, we have for [ € NT,

2[71
ol _ol—1
E|S1]| §01h2k2 E Z B (zm)
i€l (5)
2l—t gl—1
<ahy? E| Y Bislaw)|  +ahyl E| S E[B(zn)|Fic] . (5.10)
i€l () 1€l (7)

According to the induction hypothesis, one can easily get the first term in (5.10) is of order
O(pil%). As for the second term in (5.10), note that with probability one,

BB ) (2m)|Zi1] < 4hor | K31 f ]l o, (5.11)

which is of order O(p2 ).
We next show (5.8) holds true for any integer s on (2!,2!*1). By Lyapunov's inequality, it



turns out for large k,

ElSu| = E‘E11‘(2572H1)+(2H175)

tq (2! —s)/2! 1417 (s—24) /2! s
< [Ex2]® T En3MCTE o). (5.12)
As to ¥12. Recalling the conditions on K and f, we have with probability one,
E[Ai(zm)| F] = hox / K (u) f(zm + uhor | Fi 1 du = O(hagr). (5.13)
Thus it follows for large k,
E|S12|" = O(pphil?). (5.14)

On account of condition (B2), one can choose large s, then taking (5.12) and (5.14) back
into (5.7), the desired result is obtained by the Borel-Cantelli lemma.
(F2) We also have

Tk
ZE[C}%(L $m)|y/€(] - 1)] = Oq.s. [216] (5'15)
j=1
Which is proved as follows: Observe that
) . ) . . . 2
E[G G zm)Z (i — 1] = B[UF (G, 2m)| Z (i — D] = (E[Uk(j,2m)|Fr(i = 1)])" = A1 = A
For As, by the definition of p—mixing (or Lemma A.1), we have
) ) 2
E(E[Uk(j,2m)|Z:(j — 1)])
= E{Uk(j, 2m) E[Ur (j, 2m)| Zx (5 — 1)]}
2
< 4p(q) E[Uk(j, xm)]” = O[prp(ar)]-
Using Y 0, p(2%) < oo, it turns out that

ZZE Uk (G, )| F (G — 1)])? /2% < o0, (5.16)
k=1 j=1
which implies
Z Z EU(j, 2m)| Z(j = 1)])°/2F < o0. (5.17)

k=1j=rk_1+1

Applying the Borel-Cantelli lemma and the Kronecher lemma gives

Tn

ST (B0, 20)| Zn (G — 1)) = 0a.5.(27). (5.18)

j=1
Thus, the estimation for Ay is finished.
For A1, let

Uy, (s 2m) = Us(Gy 21Uk (G )| < 252, Uy (s 2m) = Uiy )1 Uk (G, 2n )| > 24/2).
Obviously, we have
E[Uk(, 2m)| Z1(G — V)] = E[UG, 2m)|Fx(G — V)] + E[U, Gy 2m)| Z1(G — D], (5.19)
Note that
E(E[U.*(,2m)| 2k — D)) = BUZ(G, ) H(|Uk (G, 2m)| > 28/2)
S 2_k6/2E|Uk(j, xm)|2+6 S 2—]{}5/2 [2(1]{}(2-‘1-5)/2 + 2akh;k6/2] ) (520)
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Consequently,

32 B (B0, o) Fi — D)) < ox. (5.21)

k=1 j=1
Using the Kronecher lemma yields
ZZE jv'rm)|</k(] - 1)]) = 0a5(2n) (522)
k=1 j=1

As for the first term on the right-hand side of (5.19), it follows that

Tk

P( 3 [(WhlGiwn) = BU G 2)| 2l = 1) 2 €2*)

< 02 B3 (U4 ) — UG 2|7~ 1))
=1
< (22 Z UL )] (log )2

< 027216 Z k7222ak(10g ’I”k)2 < 02((171)]6
j=1
The second inequality as above follows from Lemma A.4 with p = 2.
Thus by the Borel-Cantelli lemma, we have

Tk

S ((UrGo2m) = BUL(G @m))| (= 1)] = Oaus.(25). (5.23)

Jj=1

According to (5.18), (5.22) and (5.23), the proof of (5.15) is complete. Furthermore, w.l.o.g.,
there exists some constant V' > 0, such that

Tk
2N E[GU.am) Z( -] <V as. (5.24)
j=1
(F3) Since X3 is a sum on the small blocks, we only need to consider ¥5. We have
Tk
>~ ElUG, o)l Pl = 1)) = 0u.s.[ /24 log hax . (5.25)
j=1
Note that 2%|log hox| > 2F for k > ko, clearly, (5.25) follows from the stronger result below.
T
> E[UL(j, 2m)| Zk(j — 1)] = 0a.s. (V2F). (5.26)
j=1
Furthermore, (5.26) can be derived from (5.17).

On account of the preliminary work as above, we next consider (5.5), observe that

P( max  |Sp(zm)] ZM/\2k+1) :P( max_ [Sy s (2m))| >M/\2k+1) (5.27)

2k <n<2k+1 1<j<2k



Then similarly to the proof of Lemma 3.1 in Herrndorf [11], we have

P(lgﬁx |Sor 1 j(xm)] > M)\2k+1)
< P(|52k+1 ($m)| > M)\2k+1/3)

X |:1 — 4p2(1) — 121;22)§k P(|82k+1($m) — 82k+j(ibm)| > M/\2k+1/3):|

By the Markov inequality, we have

max P (|Sger1 — Sonyj| > MAgit1/3) < 1/2. (5.28)
1<j<2F

Recalling p(1) < 1/4, which together with (5.28) yields

P( max_ [Sy s (@m)| > MAW) < AP(|Syes1 (Tm)| > MAgiss /3). (5.29)

1<j<2k

Finally, with the help of (F1)—(F3) together with (5.29 )
(see, e.g., Lemma A.3 in the Appendix), we have for M > /7

Z Z (2k<n<2k+1 [Sn ()| = M)‘2k+1)

k=1m=1

< cizkp(] fjck(j,xm] > Mgt /6)
k=1 j=1

> —M?2%|1og hox |
<cN1
= kzl kOXP { T2 Mpr2¥/2| log hor |1/2 + 36V 2F }

n by the Freedman inequality

< CZ LA/ < (5.30)

Thus, applying the Borel-Cantelli lemma yields (5.1).

Remark 4. We compare (5.1) with those of Peligrad [22] and Shao [30] for mixing obser-
vations. Peligrad [22] obtained the following result: Let D be a compact support subset of
R? and {X,,n > 1} be a sequence of R%valued ¢—mixing random variables with common
unknown density function f(z) = f(z1,...,24). Suppose that (B1) holds, f is continuous in a
e-neighborhood of D, and kernel K satisfies:

1) K is a density function on R

2) for any z € RY, K(x) < K7 < o0,

3) ||lz||¢T K (z) — 0 as 2 — oo,

1) [ o] K (2)dz < oo,

5) K is Lipschitzian continuous of order v on R.

Further, assume that

i¢1/2(2”) < 00, (5.31)
n=1

then it follows that

o 12(0) ~ B = 0ns | (251 5.3

xeD nhlril
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Especially, if h,, = O((log®n/n)"/(4+2)) it turns out that

log® ny 1/(4+2)
sup | fu(z) = f(2)] = Oa.s. {( 5 ) ] (5.33)
rzeD n
If the mixing rates are strengthened to ¢(n) = O(n=2~%), Shao [30] obtained
logny\1/2
Slelg |fn(2) = Efn(z)] = Ous. |:(n—h§ll) ] (5.34)
Especially, if h, = O((logn/n)Y/(@+2) it turns out that
log n\ 1/(d+2)
sup | fn(2) — f(2)] = Oa.s. [( = ) } (5.35)
rzeD n

Under conditions 3) and 4), by Bochner—Parzen theorem, we have Ef,, x(z) — f(z) = O(hy).
Note that ¢—mixing is contained in p—mixing, so Theorem 5.1 holds true for ¢—mixing data.
Obviously, the rate in (5.1) is better than that in (5.32) under the condition (5.31); (5.34)
achieves the best possible a.s. convergence rate, however, the mixing rate ¢(n) = O(n=2-9) is
more stronger than that in (5.31).

Theorem 5.2. Let X € LP for p > 2. Under the conditions of Theorem 5.1, we have

sup | fr i (2) = B fo, k()] = Oa.s. [(M)W] (5.36)

nhy,

Proof. In order to prove (5.36), it suffices to show that

B | log hy, |\ 1/2
2 | ok (%) = Efn ()] = Oas. [(W) | (5.37)
and | N
_ log h, |\ 1/2
Sup | fr i (2) = B fo ik (2)]| = Oa.s. [(Thn) } (5.38)

Along the similar proof lines as those in Theorem 5.1, one can complete the proof of (5.37).
Therefore, we only need to consider (5.38). Note that K is bounded with compact support and
X € LP, using the Markov inequality, it follows that

E| swp |fux(e) = Efaxc(@)|] <207 B[ sup |Ki()]

x>n3/P x>n3/p
< Ch'P(|Xy] > n®?/2) < Cn=3h; L, (5.39)
which implies for some M > 0,
oo o0 1
Z P( sup | fo,x () — Efa, i ()| > M(] loghn|/nhn)1/2> < Z —- (5.40)
el z>n3/P =1

Thus, (5.38) is obtained by the Borel-Cantelli lemma.

Appendix

We list the following basic lemmas, the first one comes from Bradley and Bryc [2], the
second can be found in Shao [33], while the third one is due to Freedman [7].



Lemma A.1. Let p, ¢ > 1 with 1/p+1/q = 1. Suppose that X € LP(Ff) and Y € LI(F3.,)
are two p—mixing random variables. Then we have

PN
|[EXY — EXEY| < 10(p(n))*" % | X[,V [l,-

Lemma A.2. Let {X,,n > 1} be a sequence of p—mizing random variables with mean zero
and || X;||p < oo for some p > 2. Then there exists a constant L depending only on p and p(-)
such that for any k> 0,n > 1,

[log n]
E|Si(n)|P < LnP?exp |L Z p(2i)] max || X; Hp

‘ k<i<k+n
1=0

[logn]
. p
+ Lnexp |L ZO pz/p(2j)‘| kg%%ﬁn ||Xi||p'
=

Lemma A.3. Let {X,, %,,n > 1} be a martingale difference sequence with S, = > 1 | X;.
Suppose that T is a stopping time, and L a positive real number. Suppose P(|X;| < L,i <71) = 1.
Then for all positive real numbers a and b,

2
P(S, > a,T,<b for some n<7)<exp {%Ta—l—b)}

where T, = E?:l Var(X;|Zi-1).

Before formulating the next Lemma, we give some extra notation: Let py and qx be se-
quences of positive integers satisfying qx = o(pr) and ¢ 00 as k — oo. Then the successively
blocks which only include integers are defined as follows:

L = [(k — 1)(px + @) + 1, (k — Dai + kpi) NN,

Je = [(k = 1)ar + kp, k(pr + qx)) NNT, k=12, ...
Furthermore, let {X,,n > 1} be a sequence of p—mixing random variables with mean zero,
and E|X,|P < oo for some p > 2. Denote

fk:ZXz‘, Uk:ZXi.

i€l i€l

Lemma A.4. Let {&,,n > 1} be as above. Suppose that Y .=, p(2") < oo, then for p > 2,
there exists a positive constant L = L(p, p(+)) depending only on p and p(-) such that for every
k>0,n>1,

m+n p/2
E|Gp(n)PP < L(log W[ > p2<q<k/2>>H§kH§]
k=m+1
m-+n

L(log 2n)P [ > pHeh (J(k/2))H£kHj, (A1)

k=m-+1
where Gy, (n) = E;n;n’:_i_l E(&k|Fr-1), Fr = o(X;,i < (k—1)(pk + qr) + pr), and q(x) is the
linear interpolating function of qi.

Proof. We claim that p may not be integer. However, we only consider the integral case in
the present article since the proof for the non-integral part is similar. We first show that (A.1)
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holds true for all even numbers, then verify that it is the case for all odd numbers. The proof
is decomposed into the following three steps by induction on p.
Step 1. If p =2, (A.1) can be rewrote as follows:

m—+n

EG2,(n) < L(log2n)?| 3" p*(a(k/2)jél5]. (A.2)
k=m+1

A similar result as (A.2) can be found in Shao [31]. However, for the reader’s convenience, we
give its proof by induction on n below: If n = 1, by Lemma A.1, it follows that

EG2,(1) = E(E(&mt1|Fm))?
= E(§m+1E(§m+l|ym))
< 10p(gm) lemsrll2l| EEma1]Fm)|2- (A-3)

Then a simple calculation leads to
EG?,(1) < 1000*(gm)[|€m11l3- (A.4)

Suppose that (A.2) holds true for any integer less than n. We next show it remains valid
for n itself. Let ny = [n/2],n2 =n —ny. Clearly,

EG:,(n) = EG},(n1) + EG}, ., (n2) + 2EGym(n1)Ggn, (n2)
< EGy,(n1) + EG} 0 (n2) 4 20(Gmon, ) |G (01) 12| Gy (n2) [|2. (AL5)

By the induction hypothesis and Lemma A.2 with Y p(2¢) < oo, we have

m+ni
EGZ,(n) < L(log 2“1)2[ Z P2(Q(k/2))H§kH§]

k=m+1
m—+n
+L(10g2n2)2[ Z P2(Q(/€/2))H§kH§]
k=m+4ni+1
m+n 1/2 m+n1 1/2
+L10g(2n1)p(qm+m)[ > H&Hi} l ST Pak/2)|
k=m+ni+1 k=m+1

m—+n
SL(10g2n)2[ > PQ(Q(k/2))H§kH§]- (A.6)

k=m-+1

Step 2. Let p = 2 for | > 2. Suppose that (A.1) holds true for all even numbers less than p.
We will show that it is also valid for p. To this end, the following preliminary work is needed.

(i) We will derive an upper bound for the pth moment of Gi(n). The basic inequalities
below are useful: For any z > 0 and p > 1, we have

(1+2)P <1+aP +4P(z + 2P ). (A7)
Moreover, let a, > 0 and o+ 8 = 1. Applying Young’s inequality, we have for any x, y > 0,
tyP <oax+ By <z +y. (A.8)
Thus by (A.7), it follows for n > 2,
EGY,(n) = E(Gn(n1) + Gmin, (n2))”

< E(Grn(m))? + E(Gmin, (n2))p
+ 47 (EGm (1) (Grnny (02))P ™ + (G (1))P Gy (n2)) . (A9)



Using Lemma A.1 and (A.8), we give the following stronger upper bound,

EGp, (”1)(Gm+n1 (”2))1)71
< E|Gin(n1)|E|Gign, (”2)|p71 + 10P2/p(Qm+n1)||Gm(”1)||;D||Gm+n1 (712)”271

< E|Gm(n1)|E|Grgn, (n2)|p_l + 1092/p(Qm+n1) ||Gm(n1)||£ + G mtn, (n2)||£}
Similarly, we have

E(Gm (nl))pile-i-m (n2)
< Bl (m)l" ™ E|Grn s (12)] 4 1052 (@) |G (00112 + |Gy (m2) 5]

Hence combining the estimations as above, we get

EGE,(n) < (1420 X 40/ (g .,)) | G, (n1) + BGE, .., (n2)]
+ B|G o (n1)[P E|Gragny (n2)] + B|Gon (1) | B|G ooy (n2) [P
< (1420 X 4702/ (g ,)) [ EIGon (m1) [ + B\ G, (m2)|7]
+ 1 G (1) 15211 Gy (n2) [l + 1| Gon (1) 2l G (n2) 1571

(ii) We next show for each n > 1,

m—+n

p/2
Eamn)smogzn)pl 3 p2<q(k/2>>||5k||%]
k=m-+1

m—+n m—+n 1/2

L(log2n)? l > 2P ak/2) 615 H > Palk/2))lIE
k=m-+1 k=m-+1

m—+n

L(log2n)” [ > e k/2))||§k||p] (A-10)

k=m-+1

To prove (A.10), we apply the induction method on n: If n = 1, it follows from Lemma A.1,
EGE,(1) = E[Gn(1)(Gm(1))P] < 100°(gm) | &mt Il Grm(1) 157" (A.11)

Then a standard calculation leads to
EG?,(1) < 100°(gm) [| Em+a |15 - (A.12)

Observe that p?(gm) < p* @~V (q,,) for I > 1, it is easy to see that (A.10) holds true.

Suppose that (A.10) is valid for any integer less than n, we next show that it is the case for
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n itself. On account of the induction hypothesis, EG,,(n)? is less than or equal to

m4ny p/2 m+n p/2
L(10g2n)p{[ PRI A > p2(q(/€/2))|§k||§] }

_l’_
k=m-+1 k=m+4ni+1

m-+n1 mny 1/2
+L(10g2n)p{[ > P (glk/2) 16D H > p2(q(/€/z))|§,€|§]

k=m+1 k=m+1
m+n m+tn 1/2
S A2 6 H > p2(Q(k/2))|§k||§] }
k=m+4ni+1 k=m+4ni+1
m+ni m4n
S A2 LY p2/<p1>(q(k/2))||€k|£]
k=m+1 k=m+ni+1
k+n 1/2
+4BPL{1ogl/2<2n>< 3 p2<q<k/2>>|sk|§> (log 2n)7~!
k=k+1
m-+n m—+n pTil
H S Dl | S p2<q<k/2>>||§k|§] }}
k=m+1 k=m+1
m+n p/2
L(log2n)p[ > P2(Q(k/2))||§k|%]
k=m+1
7:+n
L(log 2n)” l > P k/2)))|§k||5]
k=m-+1
m-+n m+n 1/2
L(log2n) l Yo 2D (ak/2)) 1Rl H > pQ(Q(k/2))||§k||§] :
k=m-+1 k=m-+1

Therefore the proof of (A.10) is complete.
(iii) We finally verify that (A.1) holds true for p = 2I. Observe that

m—+n m—+n 1/2
(10g2n)p[ > AP (ak/2))lIElI- H > pQ(q(k/2))||€k|§]

k=m-+1 k=m+1

m4n m4n 1/2
S(log?n)pl Y PV (ak/2))l1Ek- H > pz(q(k/2))||£k|§] -(A13)

k=m+1 k=m+1
Then by Lyapunov’s inequality, it follows that

m—+n m—+n

ST ANkl < S0 o PV (g(k/2) 161 P gk PP/ (A1)

k=m+1 k=m+1
Furthermore note that
2 2 2(p — 3)
p—1 p-2 (p-1p-2)
Therefore by the Holder inequality, the right hand side of (A.14) is less than or equal to

(A.15)

m4+n 1/(p—2) m+n (p—3)/(p—2)
> PQ(Q(’@/Q))HMS] l > P (q(k/2) 1k - (A.16)
k=m+1 k=m+1



On account of (A.14) and (A.16), the right hand side of (A.13) is controlled by

m-+n %+p_i2 m-+n 5_:2
(log2n)? | > p*(q(k/2))|1413 > p 0 (g(k/2) )16k
k=m+1 k=m+1
m-+n gxp_iz m-+n z_:g
= (log2n)?| > p*(a(k/2))l1&I13 > gk 2) 16k
k=m+1 k=m+1
m+n p/2 m+n
<(og2n)’S | Y pPak/2)IE3|  + Do PV (a(k/2) I - (A1T)
k=m+1 k=m+1

Step 8. Assume that p is an odd number. Clearly, there exists integer | > 2 such that

2] — 2 < p < 2I. Again using Lyapunov’s inequality and (A.8), we have

E|Gon ()] = |G (n)|%! (A.18)
< (EGm(n)QFQ)1/2(EGm(”)2l)1/2
< EGm(n)2l72 +EGm(n)2l- (A19)

According to the procedures as above, the proof of (A.1) is complete.
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