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Learning subgaussian classes : Upper and minimax
bounds
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Abstract

We obtain sharp oracle inequalities for the empirical risk minimiza-
tion procedure in the regression model under the assumption that the
target Y and the model F are subgaussian. The bound we obtain is
sharp in the minimax sense if F is convex. Moreover, under mild as-
sumptions on F, the error rate of ERM remains optimal even if the
procedure is allowed to perform with constant probability. A part of
our analysis is a new proof of minimax results for the gaussian regres-
sion model.

1 Introduction and main results

Let D :={(X;,Y;):i=1,--- , N} be a set of N i.i.d random variables with
values in X x R. From a statistical stand point, each X, can be viewed
as an input associated with an output Y;. For a new input X, one would
like to guess its associated output Y, assuming that (X,Y") is distributed
according to the same probability distribution that generated the data D.
To that end, one may use D to construct a function fn(D,") = fn(-), and
the hope is that fy(X) is close to Y in some sense.

Here, we will consider the squared loss function £ : R x R — R, defined
by £(u,v) = (u—v)?, as a way of measuring the pointwise error /(f(X),Y).
The resulting squared risk is

R(f) =E(f(X) —Y)? and R(fx) = E((fn(X) - Y)*D)
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for any measurable function f : X +— R and any statistic fN.

In the classical statistics setup, one usually assumes that the regression
function of Y given X belongs to some particular function space (called
a model). In the Learning setup, on which we focus here, one is given a
function class (also called a model) and the goal is to construct a procedure
fN satisfying a sharp or exact oracle inequality: ensuring that with high
probability,

R(fn) < ;Q;R(f) + residue, (1.1)

and one would like to make the residue as small as possible.
Thus, the procedure fN is a map from the set of N samples to Lo, and
it performs with accuracy ey = en(F) and confidence 1 — oy = 1 — oy (F),
if for every reasonable class F and any reasonable target Y, (L)) is satisfied
on an event of measure at least 1 — d and a residue that is at most .
Clearly, the risk functional is unknown but its empirical version

i=1

is. Thus, a natural procedure that comes to mind is minimizing the empirical
risk over F. This procedure is called empirical risk minimization (ERM)
and is defined by

f € argmin Ry (f).
feF
ERM has been studied extensively over the last 20 years (see, e.g. [20],
[13], [10]). The main focus has been to identify the connections between the
structure of F and the residual term for ERM.
In particular, one would like to study the following questions:

1. Given any 0 < oy < 1/2, what are the error rates ey that one may
obtain using ERM, and what features of F govern these rates?

2. Given any 0 < dy < 1/2, does ERM achieve the minimax rates for the
confidence level 657 In other words, is there an algorithm that can
yield a better accuracy than ERM, given the same confidence level?

The majority of results on the performance of ERM have been obtained
in the bounded case: when sup ez [((Y, f(X))| < b almost surely, or, alter-
natively, when the envelope function sup ¢z [¢(Y, f(X))| is well behaved in
some weaker sense (e.g., has a sub-exponential tail).



Our aim here is to go beyond the bounded case and proceed without
any assumption on the envelope of {¢(f(X),Y) : f € F}. Instead, we will
consider the subgaussian setup.

Recall that if X is distributed according to a probability measure i, then
the 19-norm of a function f is defined by

11l gy = Inf {e>0: Eexp(f3(X)/c?) < 2},
and let Ly, = Ly, (,) be the space of all functions with a finite ¢)9-norm.

Definition 1.1 A function class F is L-subgaussian with respect to the
probability measure p if for every f,h € FU{O}, |f = hlly, ) < LIF = Bl 1,00

Our strategy for proving an oracle inequality for ERM is via the isomor-
phic method, introduced in [2]. Before presenting this method, recall that
the excess loss of f is

Lyp(w,y) = Uf(x),y) = Lf*(2),9) = (f2) —9)* = (f(2) —p)*,  (1.2)

where we assume that f* (an oracle) is a fixed element in the set of true
minimizers argmin e » R(f). Only minor changes are needed if the infimum
is not attained, an issue that will not be addressed here.

Set

N
PL;=EL;(X,Y) and Psz:%sz(Xi,Yi).
1=1

The isomorphic method is based on the following observation. Consider
the event )y, on which every function in the set {f € F : PLy > Ay}
satisfies the isomorphic property

1 3
§Pﬁf < PN,Cf < §P,Cf. (1.3)

On QQ, R
R(f) < inf R(f) + An,
feF

because PyLy < 0, and thus fé{ferF: PLy> Ay}

Therefore, to obtain an exact oracle inequality with a confidence pa-
rameter dy, it suffices to identify An for which 2y has probability at least
1—46n.



Clearly, this is equivalent to identifying the level Ay for which the supre-
mum of the ratio process satisfies that

N
1 L L4(X, Y, 1
perpeany N PLy 2

with probability at least 1 — .
We will assume that the classes in question have reasonable structure in
the following sense:

Definition 1.2 A class F is B-Bernstein relative to the target Y, if for
every f € F,

E(f(X) ~ f*(X))" < BPL = BE((Y - f(X))* = (Y = f*(X))"). (1.4)
The class is star-shaped in fy if for every f € F,
{Ao+(1=Nf:0<A<1}CF.

One may use the 2-convexity of Ly and show that if F is convex then for
any target Y € Lo, F is 1-Bernstein; and that F — F is star-shaped in all
its elements.

As in many other estimates on the performance of ERM (e.g. [25] [10]
[13]), the choice or the residual term is driven by a fixed point argument.
Let dr(L2) be the diameter of F in La(u) and set {Gy : f € F} to be the
canonical gaussian process indexed by F; that is, with a covariance structure
endowed by Lo(p). Given a set F', denote by E|G||# the expectation of
the supremum of {Gy : f € F'}. We will assume throughout that E|G||
is finite for all the sets F’ in question.

Definition 1.3 Let D be the unit ball in Lo(u). For every n >0, let
si(n) =inf {0 < s < dp(La) 1 E|Glliprr—m S ns*VN},  (15)
and for every @ > 0, set
ry(Q) = inf {0 <1 < dr(Ls) : E|Gllprz—r) < QrVN |

In both cases, if the set is empty, set sy(n) = dr(La) (resp. ry(Q) =
dx(L2))



If either s}, (n) or 73 (Q) are equal to dz(L2), the resulting upper bound is
trivial. Therefore, throughout we will assume without explicitly stating it,
that siy(n), 7y (@) < dr(Lz), which is always the case if N is large enough.

One may show that if 7 — F is star-shaped in 0, s = s3(n) and r =
mv(Q), then E[|Glsprr—r) = ns*VN and E||G|l,pnF-r) = 0rVN. In-
deed, the star-shape property implies that H(s) = s 'E||G|spnr—z) is
continuous from the left. Since E[/G|spn(r—7) is increasing, the choice of
s (n) leads to the equality. A similar argument proves the claim regarding
(@),

Moreover, of s > sy (n) then E|G|;prr_r) < ns*V/N, and if r >
T?V(Q% E”G”T’Dﬁ(]—'—]—') < QT\/N

With these definitions in place, one may formulate the upper bound on
the performance of ERM.

Theorem A. For every L > 1 and B > 1 there exist constants c1,ca,c3
and ¢y that depend only on B and L for which the following holds. Let F be
an L-subgaussian and B-Bernstein class of functions relative to the target
Y. Assume that F — F is star-shaped in 0 and that ||Y — f*(X)|y, < 0.
Setn =c1/o and Q = ca.

1. If o > c3ry(Q) then with probability at least 1 —4exp(—caNn?(si(n))?),

R(f) < nf R(f)+ (55 (m))?

2. If o < c3r5(Q) then with probability at least 1 — 4exp(—caNQ?),

R(f) < inf R(f)+ (rx(Q)).

feF

As mentioned above, if F is convex, the structural assumptions of The-
orem A hold for every Y € Ls.

We will show in what follows that the parameters involved have very
clear roles. 7} is an upper estimate (that is often sharp but not always) on
the error rate one could have if there were no “noise” in the problem — that
is, if o = 0. This intrinsic error occurs because it is impossible to distinguish
between f1, f2 € F on the sample 7 = (X;)¥, if (f1(X:))X, = (f2(X:)X,.

Once noise is introduced to the problem and passes a certain threshold,
it is no longer realistic to expect that an intrinsic parameter, that does not
depend on the noise level, can serve as an upper bound. And, indeed, s} (7)



measures the interaction of the “noise” f* — Y with the class, through the
choice of n ~ 1/0. Beyond a trivial threshold on o, s}(c/0) becomes the
dominant term in the upper bound.

Of course, Theorem A is better justified if one can obtain matching
lower bounds, showing that ERM is an optimal procedure. To that end, it
seems natural to employ minimax theory, which is very well established in
Statistics (see, e.g., [22] 28] 29] [, 3] for more details). Standard minimax
bounds are based on information-theoretical results such as Fano’s Lemma,
Assouad’s Lemma or Pinsker’s inequalities, but unfortunately, these results
do not yield lower bounds in the “high probability” realm, as needed to show
the optimality of the rate obtained in Theorem A.

We therefore establish a minimax bound that is based on the gaussian
shift theorem (and therefore on the gaussian isoperimetric inequality). It
allows one to obtain a high probability minimax bound, and, as will be
explained below, to recover the known constant probability minimax bound
as well.

Consider the gaussian model, in which (XZ,YZ)f\L ; is an independent
sample of

Yy = f(X) + W, (1.6)

where f € F and W ~ N(0,0?) is a gaussian noise, independent of X.

Theorem A’. There ewist absolute constants c1,co and c3 for which the
following holds. Let ' C Lo be a class that is star-shaped in one of its
points. If fn is a statistic constructed from a sample of cardinality N of the
model [I.0) and has a confidence parameter oy, then its accuracy satisfies
log(1/0n
EN > 0102%.
In particular, if Sn = exp(—can?(sy(n))?N) forn ~p g 1/0, (as is the case
in Theorem A when the noise level is ‘non-trivial’), then the best accuracy
that may be achieved by any procedure is

en > 30’ (sx (m)” ~ (sx(n))?.

Thus, ERM achieves the minimax rate for that confidence level.
The second question we wish to address is what happens when the desired

confidence is an absolute constant, say oy ~ 1/2, still, when the noise level
is non-trivial.



It is not clear whether the isomorphic method, used to prove Theorem A,
can yield a better accuracy if one is willing to accept a constant confidence.
The next result shows that the answer is negative.

Theorem B.  Under mild assumptions on F, X, Y and n (see Defini-
tion [31),

N
1 Z£ X, Y

> 1.
{feF:PLi>(s3 ()%} i=1 PLy

This leads one to wonder if a better bound is possible at all, even if a
different procedure than ERM is used.

We will show that Theorem A (and in particular, the isomorphic method)
is optimal in a minimax sense under some regularity assumptions on F, even
for a confidence dy ~ 1/2.

To formulate this observation, recall that if A and B are two subsets
of Lg, then N(A,eB) is the minimal number of translates of €B needed to
cover A.

Consider the “Sudakov” analog of the gaussian-based parameter s} (n):
recall that by Sudakov’s inequality (see, for example, [11])

supelog!/? N((F = F)NrD.eD) SE|Glpprp-  (L7)
€

Put C(r) = supfejfrlogl/2 N({(F - f)n2rD,rD), and set

g (n) =inf{s > 0: C(s) < ns*VN}.

Theorem C. There exist absolute constants ¢y and co for which the fol-
lowing holds. Let F be a class of functions, set W ~ N(0,02) and for every
feF, putYy=f(X)+W. If fn is a procedure for that has a confidence
parameter Sy < 1/4, then its accuracy satisfies en > c1(qk (c2/0))?.

Theorem C is more classical and follows from Theorem 2.5 in [22] or
from [28], though the proof presented here is new, and we feel it is more
transparent than existing proofs. An added value is that it follows the same
path as the proof of Theorem A’, and thus gives a scheme that may be used
to prove lower bounds at every confidence level.

With Theorem A in mind, Theorem C shows that if the gaussian param-
eter sy (n) and the Sudakov-based one, ¢x (n), are equivalent for n ~ 1/0



when o 2 r};, the minimax rate in the constant probability realm is attained
by ERM.

Finally, let us consider the low-noise case, in which o < 73%,. Although
ry need not be an optimal bound in that range (except when o ~ 7%, it is
not far from optimal.

Definition 1.4 Let F be a class of functions. For every sample 7 = (X1, ..., Xn)
and f € F, set

K(f,7)=1{he F: (f(Xi)X, = (X)X},

the “level set” in F given by the values of f on the sample. Let D(f,T) be
the Lo diameter of K(f,T).

Clearly, if 0 = 0 then for every sample 7, ERM selects f € K(f* ).
And since Y € F, R(f) = ||f — f*||7,- Thus, R(f) < D(f*,7). It is natural
to ask whether the reverse direction is true, and also, to try and identify the
correct rate when 0 < o < rj.

The following result shows that the largest “typical” value of D(t, 7) is
a constant probability minimax bound, regardless of the choice of o. It
combines a “compressed sensing” type of a minimax results (see, e.g., [7, [5])

and statistics ones (e.g. [22] 28], 29, [ 3]).

Theorem D. For every f € F and V independent of X, set Y= f(X)+
V. Then, for any procedure fn,

sup? (1A ((7F X0 = Flls > 7PU7) ) 2 172
feF

One natural example in which Theorem D may be used is when T is
a convex, symmetric subset of R? and F is the class of linear functionals
{<t, > :t € T}. Let Xq,..., Xy be an independent sample selected according
to an isotropic probability measure on R¢. If (e1,...,en) is the canonical
basis of RY and I' = Z£1<Xi, -Ye;, then D(0, 7) is the diameter of Ker(T') N
T.

Recall that the Gelfand N-width of T' is the smallest diameter of an
N-codimensional section of 7', and denote it by ¢y (7"). Hence, for every
toeT,

en(T) < diam (K (to,7) — to) < 2D(0,7),



and ¢y (7')/8 is a lower estimate on a constant probability minimax bound.

In cases where 73, ~ cny(T), it follows that for every 0 < o < 7}, ry
is the minimax rate, and it is achieved by ERM. We will present one such
example in Section

One should note that the lower bound of Theorem B and the ones in
Theorem A’, C and D are of different nature. Theorem B holds for any L-
subgaussian class, input and target that satisfy certain regularity conditions.
The others are minimax results and therefore hold only for the “worst”
possible distribution according to the model in question.

We end this introduction with a word about notation. Throughout,
absolute constants or constants that depend on other parameters are denoted
by ¢, C, c1, ca, etc., (and, of course, we will specify when a constant is
absolute and when it depends on other parameters). The values of these
constants may change from line to line. The notation z ~ y (resp. = < y)
means that there exist absolute constants 0 < ¢ < C for which cy <z < Cy
(resp. © < Cy). If b > 0 is a parameter then = < y means that x < C(b)y
for some constant C'(b) depending only on b.

Let ¢% be R? endowed with the norm ”x”zg = (Z] |25|P) YP " The unit

ball there is denoted by Bg and the unit Euclidean sphere in R? is %1,

The first three sections of this article are devoted to the proofs of the
four theorems. We then present two examples (regression in B{ and low-
rank matrix inference) in which the rates established in Theorem A are
proved to be sharp. The last section is devoted to concluding remarks on
how the results may be extended to cases that are not covered here, and to
a comparison with previous results.

2 Learning subgaussian classes

Since subgaussian classes play a central role in this article, we begin this
section with a few examples of such classes. One may show that

1 £llga ~ sup 112
p>2

VP

Thus, if F is an L-subgaussian class of functions, for every f,h € F U {0},
supy>2 [[f = hllz, /P < LIIf = bz,

A measure 1 on R? is L-subgaussian if for every t € R? the linear
functional <t, > is L-subgaussian. Hence, every class of linear functionals on
R? is L-subgaussian relative to the measure .



1. Let x be a mean-zero, variance 1 real-valued random variable which is
L-subgaussian and let x1,..., x4 be independent copies of z. It is straight-
forward to verify that for every a € R?,

I3 o

Thus, the random vector X = (z1,...,24) is cL-subgaussian for a suitable

absolute constant c¢. Moreover, it is isotropic (that is, for every z € R,

E(X,z)> = ||x||§d) Thus, for example, the uniform measure on {—1,1}¢
2

<
o, S lallglaln.

or on [—1,1]¢ are isotropic and L-subgaussian for an absolute constant L.

2. The uniform measure on dl/pB;,l is also L-subgaussian for an absolute
constant L (see [1]), despite the fact that its coordinates are not independent.

3. Let X = (:Ei)?zl be an unconditional random vector, meaning that for
every choice of signs (g;)%;, (e;2;)%, has the same distribution as X. If
Emf > ¢ for every i and X is supported in RBZ then it is L-subgaussian
for L < R/c. Indeed, by Khintchine’s inequality [11], for any p > 2,

d
p
> :Eﬂfjtj‘
i=1

d
p
&> :E‘ ijtj( — ExE.
j=1

d
p/2
<pPEx (D a33)" < PRV

j=1

Also,

d d

2

H<X,t>H%2 = ExEE< E Eixiti> = EX E x?t? Z Cz”t”?g,
i=1 i=1

proving the claim.

4. If z is a mean-zero, variance one, L-subgaussian random variable, and
X = (x;;) is a matrix whose coordinates are independent copies of z, then
X defines a cL subgaussian, isotropic measure on the space of matrices of the
“right” dimensions, relative to the natural trace-inner product. The same
holds if X has independent rows, distributed according to an isotropic, L-
subgaussian random vector. The proof of both facts follows the same path
as in example 1.

10



2.1 Proof of Theorem A

When considering the parameters ry and s3; that appear in the upper bound
on the error rate, what seems odd at first glance is the different normalization
in their definition — the first is linear and the second quadratic. The two
originate from the need to compare the behaviour of two processes. Indeed,
recall that

Li=(f=Y)?=([" =Y =(f-fP+2f - -Y)
The quadratic term is noise-free, and as we will explain below, 7}, measures
the lowest level 7 at which if ||f — f*||r, >, E(f — f*)2 ~ NT' SN (f -
2 (Xi).
In contrast, s} is designed for the multiplier process, originating from

the linear term (f — f*)(f* —Y). To compare the resulting “linear” term
with E(f — f*)2, one has to study

N
1 (f = )(Xi)
f e )~ vy
N U =) T g
which is the source of the rather less-natural normalization in the definition

of s3(n).

It goes without saying that an essential component of the proof of The-
orem A must be an accurate analysis of the quadratic and linear terms, and
both will be based on results from [20].

The first estimate we require is a bound on the squared empirical process:

Theorem 2.1 [20)] There exist absolute constants c1,co and cs for which
the following holds. If H is an L-subgaussian class, then for every t > cq,
with probability at least 1 — 2 exp(—cot?(E||G|l/Ldy(L2))?),

N
> RA(X;) - ER?
=1

sup

< oL (Pdu(L)E| Gl VN + 2(EI|G]n)?)
heH

Here is a simple application of Theorem [2.] that explains the role of r7}.
Lemma 2.2 There exist absolute constants ci,co and cg for which the fol-
lowing holds. Let F be an L-subgaussian class, assume that F — F is star-
shaped in 0 and set f* € F. If0 < Q <1 and r > r3(Q), then with
probability at least 1 — 2exp (— ¢ (EHGHTDQ(]:_]:)/(LT’))2),

sup < e LPr%Q. (2.1)

he(F—f*)nrD

1 N
~ > hA(X;) — ER?
i=1

11



Moreover, if Q < min{cz/L?, 1}, then with the same probability estimate,
for every f € F satisfying || f — f*||r, > 7,

1
2B - Z

NJIOJ

E(f —f*)

Proof. The first part of the claim is an immediate corollary of Theorem 2.1]
and the fact that if > r}3(Q), IEHGH(;_;)WD/\/N < Qr.

Even though the second part is known, we present it for the sake of
completeness. Denote by €y the event on which (1)) holds. Fix f € F for
which || f — f*||;, > randset h =r(f—f*)/[|f — f*|,- Since F—F is star-
shaped in 0, h € (F — F)NrD. Therefore, on Q, and if Q < min(c3/L?, 1),

1 N
~ > (X)) - ER?
i=1

< QL2 < g

The second ingredient we require is a bound on multiplier processes.

Theorem 2.3 [20)] There exist absolute constants ci,cy and c3 for which
the following holds. If H is an L-subgaussian class of functions and & € Ly,,
then for everyt > c1, with probability at least 1—2 exp(—cat?(E||G||3 /Ldy (L2))?),

sup
heH

Z@ — E¢h(X)

< 3LtV N |[é]| ., B[ Gl

Note that in Theorem 2.3lone does not assume that £ and X are independent,
a fact that will be significant in what follows.

Theorem A follows immediately from Theorem 2.4] and the isomorphic
method described in the introduction.

Theorem 2.4 For every L > 1 and B > 1 there exist constants cy,c1,co
and c3 that depend only on B and L, for which the following holds. Let
F be an L-subgaussian class which is B-Bernstein relative to the target Y .
Assume that F — F is star-shaped in 0 and that ||Y — f*(X)||y, < 0. Let
n=-ci/o and Q = cso.

1. Ifo > cory(Q), then with probability at least 1—4 exp (—esn?(si(n))*N) ,

IA

ﬁf (X, Y)) 1
sup E —1 —.
{f€f2P£fZ( N Pﬁf 2

12



2. If o < cory(Q), then with probability at least 1 — 4exp (—03Q2N),

Zﬁf X’la}/Z 1
N PL; 2

IN

{fE]:Pﬁf>(7"N(Q )2}
Proof. Let & = (f*(X) —Y) and observe that

Ly(X,Y) = (f = X)) +26(f = f)(X).

Fix A > 0 and set F) = {f € F : PL; > A}. Since F satisfies the Bernstein
condition, it follows that for every f € F, Hf—f*”%2 < BPLy,andif f € F)

" i <Baund‘f_f*2 <£<§ (2.2)
@2, = PL; |, = PL; |
Therefore,
N N
Sup |+ — 1| = sup |—=
rer | N PLy rer | N z:: Pﬁf
NIy [
< sup —— | (Xi) - E( >
feFs ; (pcf)W) (PLy)'?
N
1 f=r ES(f — f7)
+2 sup | sz«( )<X,.>_7 .
rer [N ; PLy PLy
> f—f f—f
Wy = _ : = L.
A {(Pﬁf)1/2 fef)\}a V)\ { Pﬁf fEf)\}7

and put H = (F—F)NVABD, where D = B(Ls). Since F—F is star-shaped
in 0, it follows from (22]) that

H
WAcﬁ(f ]—")ﬂ\/_Dcﬁ((}" F)NVABD) = >

and
Vm%(f—fm(\/?)z?cx((f F)nvaBp) =2

13



Fix Q = ¢p and 1 = ¢1/0 to be named later. Set A\ = (s3(n))?/B and
r =1r5(Q), and observe that

E|G|l(7—r)ywp = QrVN = o 777"2\/— > nr?V/'N,

provided that o > ¢;73(Q)/Q. Therefore, r3(Q) < sy(n) = s. Let Q <
1/L*B; by Lemma 22 and since E||G||(z—7nsp = ns*V'N,

w?(X;) — Ew?| < o L?QB <

2] =
]

sup
weWy

with probability at least 1 — 2exp(—csn?(si(n))?N).
Moreover, if n < 1/(Bo) then by Theorem 23] with the same probability

estimate,
Z &v(X;) — Bév

=1

]

sup
veVy

S LBon <

Thus, for every Q < 1/(L?B) and < o min{B~1,Q}, ifc = Q713 (Q)
then with probability at least 1 — 4 exp(—csn?(si(n))?N),

1 3
§P,Cf < PN,Cf < §P,Cf

on the set {f € F: PLy > \}.

Next, if o < Q73 (Q) (for the same choice of constants as above), set
A= (ry(Q))?/B. It follows from Lemma and Theorem 2.3 that with
probability at least 1 — 4 exp(—csQ>N),

1 N

2
sup —g w” (X,
wewy |V =

==

GngB
Lo
IN
| =

3 Lower bounds on the isomorphic method

The proof of the lower bound on the isomorphic method (formulated in
Theorem B) is based on several estimates from [20]. Let F be a convex,
symmetric class of functions (i.e., if f € F then —f € F). Thus F—F = 2F,

14



and sy (n) = inf{r > 0 : E[|G|2rwp < nr®V/N}. In addition, one may
consider scaled versions of 7 for every 1 <k < N and Q > 0, set

r(Q) = inf{r > 0 : E||Gllorrrp < Qrvk}.

The parameters r;(Q) measure the radii at which 2F N 7D has the same
“complexity” as a k-dimensional Euclidean ball of radius r. Let k% o be the
first integer larger than (E||G||7/Qdx(Lz2))?. Thus, it is the first integer k
for which r1(Q) exists. In what follows, we will sometimes write rj and k%
instead of 74(Q) and K .

Definition 3.1 A class of functions F is c-skeletal if for every k > k% there
is a subset F, C F N1 D of cardinality at most exp(k), for which

E|Gl zar,p < cE|G|| £,

The existence of a skeleton implies that E||G|| 7, p is exhibited by exp(k)
points. It turns out that under such an assumption, a typical subgaussian
projection of F NrpD of dimension larger than k inherits some of the struc-
ture of F NriD, since all the distances between the points of the skeleton
are essentially preserved by the projection (see more details in [20] and in
the proof of Theorem B3] below).

Among the examples of skeletal sets are convex, symmetric classes with
a regular modulus of continuity of the gaussian process {Gy : f € F}:

Lemma 3.2 [20] If H(r) = E||G||znyp and there are « <1 and 0 < B <
1/2 satisfying that for every 0 < r < dr(Ls),

H(ar) < BH(r), (3.1)
then F is a c1-skeletal set for c; = c1(a, B).
Another feature of classes that satisfy ([B.I)) is that at every scale r > 0,
log N(FNrD,arD) ~q 3 (E|G||7rrp /)%

and the estimate following from Sudakov’s inequality is sharp.
Indeed, let A be an ar-separated subset of F NrD and for every f € F,
let ay € A satisfy that ||af — f||z, < ar. Then

H(r) =E||G||zrrD <Esquf +E sup Gy, <EsupGy+E sup Gy
feFnrD feA fe2FnarD

<EsupGy+2E sup Gj= Esup Gy +2H(ar)
feA feFNnarD feA

<Esup Gy +28H(r).
feA
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Thus, Esupye 4 Gy > (1 —2B)H(r). On the other hand, since A C rD,
rlog'/? |A| > Esup e 4 Gy; hence

arlog!? N(F rD,ar) 2 a(l - 28)E]| G|l 7.

as claimed. ]

Another example of a skeletal set is F = {<t, > 1t e Bf}, assuming that
1 is an isotropic measure. One can show that

lOgN(Bil N TB(217 aTBg) ~a (EHGHBfﬂT’Bg/T)27

despite the fact that (3.I) does not hold for B{.
The main ingredient in the proof of the lower bound on the ratio estimate
is the following theorem.

Theorem 3.3 For every ¢, Q, R, L > 1 and q > 2, there exist constants
o, C1,Co and cg that depend only on ¢, Q, R, L and q for which the following
holds. Let F be a c-skeletal and symmetric set, assume that & € Lg is a
mean-zero, variance 1 random variable with |||z, < R. Assume further
that & satisfies the small-ball property P(|¢] < t) < cot.

Then for every N > c1k > k*ﬁQ’

E sup ‘ Z gi&i f(

feFN(rxD\cary D)

The proof is almost identical to the proof of Theorem 6.1 from [20]. We
will present full details of the minor differences between the two proofs and
outline the rest.

Proof. First, one may show that if V' C R" is a symmetric set, 0 < 0 < 1,
and for every 1 < p < 0m and every u,w € V,

m m
Yoelu—w)ll  Zp Y gilu—w)f
i=1 Ly =1 Ly

then

E. supzsm > copEy Sungm,
vEVZ 1 veV

where ¢y depends only on 6 (see Lemma 6.4 in [20]).

16



Second, it is well known that for every v € V, || 37" givillz, ~ v/Pllvllep,
and [I7] showed that

1/2

m
g €U
i=1

~ VB | )
i=1

Ly >p

where, given v € RY, (v})Y, is a monotone non-increasing rearrangement
of (o).

The next observation is that if F is skeletal, one may assume that the
skeleton Fy, is symmetric and is contained in F N (rpD\c17xD). Indeed, the
symmetry of Fj follows from the symmetry of F. For the second part, let
Fj, be a c-skeleton of F NrD, and let 0 < a < 1. By standard properties

of the gaussian process and the definition of rp = r¢(Q),

E  sup Gf<arglogt?|FL| < arVk
feF,NnarD

<(/Q)E sup Gy <2(a/cQ)E sup Gy.
fe2Fnr, D ferF,

Thus, for a sufficiently small o, Fj, = F}, N (rpD\ar D) satisfies that

E sup Gy > (1/2)E sup G > (¢/2)E|G| Far, D-
FE€FkK JeF,

Next, one may also show that if N > ¢y(L)k, then with probability at least
1 — 2exp(—ca(L)k), vectors in the set

PoFr = {(f(X)iLy : f € Fi}

have the following structure: for every f1, fo € F,

N 1/2
%Hfl — follL, < <% > (- f2)2(Xi)> < 5lf1 = foll Lo (3.2)
i=1

N W

and for every J C {1,..., N},

1/2

S (=R | Selfi = felle (VE+ VITTIog(eN/TD)

jed

17



Fix 0 < # < 1 to be named later and let I C {1,..., N}, |I| > (1= B)N. Set
u = P, f1, w = P, fy and observe that for every 1 <p < N,

1(Pr(u = w)isplley = lu—wllgy — [l = w)icy oy — N1t = w)icpn gy

2[lf1 = follLe (g —c3 (\/EeraX {\/I_ﬂog(%)’ \/BNTg(%)}>>

2VN|fi = follz.,
provided that p,k < ¢4(L)N and < ¢5(L). On the other hand,
1P = )l < llu—vllgy S VNI — follza.

Therefore, given fi, fo € Fr, p < ¢4 N, I C {1,..., N} of cardinality |I| >
(1—B)N and § < cs,

Zf‘fi(fl — f2)(Xy)

el

2P (Pr(Pofr = Pof2))izply 2 VPN (i = follp,

LP (;U's)

2 VB PH(Pofi = Pofo)llgy 2 ||D 9i(f1 = f2)(X0)

el

)

Lp(pg)

where p. and p, are the measures endowed by the random vectors (g;)Y,
and (gi)ﬁ\il respectively. Thus, recalling that F is symmetric, it follows
that on that event and for every such a subset I C {1,..., N},

E. sup Zeif(Xi) 2r Eg sup Zgif(Xi).

J€Fk et fe€Fk i1

By Slepian’s Lemma (see, e.g. [I1]), combined with ([3.2)), and since E||G|| £, 2.
E|GllFar.p,

Ey sup Zgif(Xi) >. VNE||G| 7. D-
FEP:ier

Next, recall that £ satisfies the small ball property P(|||| < t) < cgt. If
[ is as above, then by a binomial estimate,

PG+ 6l <2 63) < () el < )™

<exp (BN (log(e/B) — log(1/cst))) -

18



Hence, if t = ¢73, then with probability at least 1 — 2 exp(—cgSN),

{i: |&] < er}| < BN.

Let I = {i:|&| > ¢7} and note that |I| > (1 — B)N. By the symmetry of
Fi and the contraction principle for Bernoulli processes (see, for example,
chapter 4 in [I1]), with probability at least 1 —2exp(—cok) — 2exp(—csSN),

E. sup Zazfz

fe}—k i=1 f kjerl

) > coV'NE| G| 7, D>

and cg depends only on L,q and ||{]|z, - |

Having established Theorem [B.3] one may turn to the proof of the lower
bound. Let F be a convex, symmetric, L-subgaussian and c-skeletal class.
Assume that the target Y has mean-zero and variance one, belongs to L,
for some ¢ > 2 and satisfies a small-ball property. Assume further that
Y is orthogonal to span(F), and thus f* =0 and £ = f*(X)—-Y = -Y.
Therefore,

Ly(X,Y) = (f = X)) +26(f - fX) = fAX) - 2Y f(X),

and PLy; = HfH%2 Clearly F — f* = F, and for every A > 0 the resulting
ratio process is

N LX)

—1
PL;

sup
{fG}—ZP[,fZA} i=1

i Lr(X,Yi)

_ (X)) o f(X)
Ef? ‘_{fe]-'Ef2>>\}Z< Ef? 1) 2 Ef?

= sup sup
(feFEP>A} |4 —

>2 sup Z Y — f 2 —1].
{feFEfP>A} |4 Ef {fe}" ]Ef2>)\} Ef

To upper bound the quadratic term, fix ) to be named later, consider
A = 13(Q) for some 1 < k < N and let H = {£/|fllzs : If e > r(Q)}.
Since F is star-shaped in 0, H C %(}" NrkD), and by Theorem [2T],

1 |k k
SL%'T]% N(Q+Q2) Sp @ N

1

E sup N h%(X;) — ER?

heH

1=1

provided that @ < 1.
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To lower bound the “linear” term, let Fp C F N (rxD\c1rxD) be the
corresponding skeleton of F at the level r;, and observe that by a sym-
metrization and contraction argument and Theorem [B.3]

N N
E sup Y;-f( 2) 2 E sup Z&?,Y;L;
{FEf22erri} [i=1 Ef JeFk =1 Ef
N
1 vVkEN
2 —E sup Z&Yzf(Xz) > C—z\/Erk\/N = ¢y K )
Ty feFr i=1 Tk Tk
Therefore,
N
X5, Y / /
E sup M_l > ¢4 i ﬁ_[ﬂQ ﬁ >1
(r:Pe;>ary = PLy e VN N

provided that 7,(Q) < c4Q+/k/N, and ¢4 depends only on L, ¢ and [|Y||z, .
Corollary 3.4 Let F and Y be as above, set

A= {k‘ > krg (@) < CoQ\/%}

for a constant ¢y that depends only on c, L, q and ||Y||r,, and put ki =
min A. Then for Q <1,

E sup

(FEC =12 (@)}

—1l > 1.
EL; 1'_1

To conclude the proof of Theorem B, one has to identify the connections
between s7 (1) and 7,(Q).

Lemma 3.5 Using the same notation as above, if n < 2/cq, 11, (Q)/2 <

sy(n) and if n > 1/co, 3, -1(Q) = si(n)-

Proof. Observe that for k € A, Vk > 7,(Q)VN/(coQ). If < 2/cy then
E|Gl 70 @)/20 = QVErE(Q)/2 > (1/2¢0)r2(Q)VN > nVNri(Q)/4,

implying that r(Q)/2 < si(n).
In the reverse direction, let 74(Q) be the largest fixed point satisfying
k(@) < sy(n). If k ¢ A then VEk < r(Q)VN /coQ. Therefore,

E|Gl 70w @ p < QVETH(Q) < m7(Q)VN /eo,
and if 1/¢o < 7 then s3,(n) < ri(Q), which is impossible. Hence, ry,_1(Q) >
|

s (n), as claimed.
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Combining Corollary [B.4] with Lemma shows that if @ < 1 and
1 > 1/co then
Ly(X5,Y5)

—1/>1
P,Cf '_7

E sup '
{f:PLy>s3(m)}

proving Theorem B and complementing the upper bound in Theorem 241

4 Minimax lower bounds

Here, we will study the gaussian model, given by Y = f(X) + W, where
F is a class of functions on a probability space (Q, ) and f € F. For any
7 = (z1,...,2n5) € QY and f € F, consider the conditional probability
measure vy, of (Y;|X; = x;)¥; given by

Iy - <f<xi>>£il|r§2w> Ly

202 (V2ro)N’

de,‘r(y) = exp <_

and set vy, ® pV to be the probability measure on (R ® Q)" that generates
the sample (V;, X;)¥, according to the model.
Let

B(f,r)={heF:EL, <r}={he F:E(f—h)*<r},

for the squared excess loss functional with Y = f(X)+W; namely, £;(X,Y) =
(Y = h(X))? — (V = F(X))2.

Note that if a procedure fy has accuracy e with a confidence parameter
Oy then for every f € F,

(vrr @) (731 (B(f:en))) = 1= dn.

In other words, the set of data points (y“xz)i\il that are mapped by the
procedure fy to the set {h € F : EL), < ey} is of vp, @ pV measure at
least 1 — .

The first estimate presented here is the “high probability” lower bound,
formulated in Theorem A’.

Theorem 4.1 There exists an absolule constant ci_for which the following
holds. If F is star-shaped in one of its points and fn is a procedure with a
confidence parameter oy < 1/4 then its accuracy satisfies

log(1 1
EN > min {Clo'zw, Zd}—(L2)} .

21



Theorem 1] shows that if a procedure has a confidence parameter oy =
exp(—coyN), then its accuracy is, at best, ey > cpo?y. Taking v =
n(s*N(n))2 for n ~ o~ proves the second part of Theorem A’, and shows
that ERM achieves the minimax rate for the confidence established in The-
orem A if the noise level is nontrivial.

The proof of Theorem [T requires several preliminary steps.

Let 7 = (z;)Y, € QY and consider the conditional probability mea-
sure vy, defined above. Put Ay = fy'(B(f,en)) and let Ay|7 denote the
corresponding fiber of Ay.

Lemma 4.2 For every f € F,
iV ({7 = @) vp (Al > 1—ax}) > 1 oy,
Proof. Fix f € F and let p(7) = vy (Ay|7). Then,
1 -0y <vpr@pN(Ap) =Ep(Xy, ..., XN).

Since ||p|l.. < 1 and Ep(r) > 1 — dn, by the Paley-Zygmund Theorem,
P(p(r) > ) > 1 —dn/(1 — x) for every & > 0. The result follows by
selecting © =1 — /0y [

Observe that for every f € F and 7 = (1,...,2n), Vyr is a gaussian
measure on RY with mean P.f = (f(7;))Y, and covariance matrix o2Iy.
Denote by t — ®(t) = P(g < t), the cumulative distribution function of a
standard gaussian random variable g on R.

Lemma 4.3 Let u,v € RY and consider two gaussian measures v, ~
N(u,0?In) and v, ~ N(v,0%Iy) on RN. If A is a measurable subset of
RN then

Up(A) > 1= (@M1 — vy (A)) + |Ju — qu@r/a).

The main component in the proof of Lemma [A3] is a version of the
gaussian shift theorem.

Theorem 4.4 [12] Let v be the standard gaussian measure on RN and con-
sider BC RN and w € RN, If H, = {x ¢ RV : <x,w> > b} is a halfspace
satisfying that v(Hy) = v(B), then v(w + B) > v(w + Hy).

Proof of Lemma .3l Let v be the standard gaussian measure on RV, A
straightforward change of variables shows that

vu(A) =v((A—u)/o) and v,(A) = v((A —v)/0).
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Let B=(A—u)/o, w = (u—v)/o and set v(B) = a. Using the notation of
Theorem [£4], the corresponding halfspace is

Hy = {o: (aw/fwly) = 07 (1 - o)),
and therefore, if w' denotes the space of vectors orthogonal to w,
Wt Hy = {0+ Dw+wb s A= 071 = a)/fully )
Clearly,
v(w+Hy) =P(g > @711 —a) + [lwlly),
and the claim follows from Theorem [£.4] and the definition of w. [

Proof of Theorem [4.1l Let fN be a procedure with accuracy ey <
d%(L2)/4 and a confidence parameter dy. Shifting F if needed, and since
F is star-shaped in one of its points, one may assume that © = 0 € F and
that v € F satisfies that 4ey < [v[|7, < 8ex. By Chebyshev’s inequality,

IP’(||PTU||§§\; > 4N|v||,) < 1/4, and thus, for 7 = (X;)N, is a set of ulV-
probability at least 3/4, ||P7v||g§\r < e1V' Nz,
Consider the sets

Ao = [y (B(0,en)) and A, = fi'(B(v,en)),

which, by the choice of v, are disjoint. Since fN has accuracy €y and a
confidence parameter oy, VO,T®,uN(.A0) > 11—y and I/U7T®,uN(.AU) >1-6p.
Applying Lemma B2, with p/V-probability at least 1 — 2v/dn,

1,-(Ag|T) > 1 —1+/dn, and vy, -(Ay|T) >1—/0N. (4.1)

Let Qg be the set of samples 7 = (X;)¥, < QV for which ”PT'U”%V <

c1VN||v||z, and @I) holds. Hence, P(Q) > 3/4 — 2y/dx, and by Lemma
applied to the set Ag|T,

Vs (AoJ7) = 1= (S71(V/oN) + | Prollgy /o) = (+).
Observe that if 6y < 1/4 then ®~1(v/dx) < 0 and |~ 1(/dy)| ~ /log(1/0N).

Moreover, if ||PTU||€év < o|® 1(/dy)| then () > 1/2.
Since T € Q, HP—,—’UHZé\T < 1V N|v||1,; therefore, if

log(1/0n)

ol € oy =25,
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it follows that v, (Ag|7) > 1/2. On the other hand, Ap|r and A,|7r are
disjoint and vy, ;(A,|T) > 1 — /0N, which is impossible if 5 < 1/4.

Thus,
log(1/0n)

VN '

ol 2 o

and by the choice of v,
,2108(1/0n)
N )
as claimed. ]

8en > |vll7, 2

Next, we turn to the proof of Theorem C which is a straightforward
application of the next observation:

Theorem 4.5 There exists an absolute constant ¢y for which the following
holds. Let F and Y be as above, and assume that fx is a procedure with
accuracy ey = a?\, and a confidence parameter § < 1/4. Then, for any 6 > 4
and f € F, if A is a 2an-separated subset of F O (f + OanD),

Oan 2
log |A| S C(]N T .

Proof. Let a = ap, set D(f,r) ={h € F:||f—h|L, <r}and put A to be
a maximal 2a-separated set of F N (f + #aD) with respect to the Ly norm;
thus, (D(f,a): f € A) is a family of disjoint sets in F N (f + 0aD).
_ Recall that for any 7 = (z1,...,7n) € QN Ayl is the fiber of Ay =
fnH(D(f,a)) and since fy has accuracy a® with a confidence parameter
on=1—aq, forany f €A
Ervpr(Afl) = vpr @ 1 (4f) > .

If u#vin A and A € RY then by Lemma A3

Vur(A) >1— <I>((I>_1(1 — vy (A)) + || Pro — PTU”@’ /o).
Fix vg € A, and since (.AU]T, v E A) is a family of disjoint sets,

1> Z Vo, r (Ay|T)

vEA

>3 (1= @(@7 (1 = v (A7) + [ Prvo = Prollgy /o))

vEA

->/ :) ola)da,

vEA
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where ¢ is a density function of a the standard gaussian N(0,1) and
2, (v) = @1 — vy, (Ay| 7)) + || Prvg — PTUH@’ /o

Taking the expectation with respect to 7,

1>) E. / h o(z)dz, (4.2)

vEA zr(v)

and it remains to lower bound each expectation.
Since
Ervpqr((Ay]7)) <1—a < 1/4,

it follows from Chebyshev’s inequality that P- (v, (A7) > 3/4) < 1/3.
Therefore, with pV-probability at least 2/3,

(1 — vy (A7) = @7 (vr ((Au|7))) < @71(3/4) := B.

Another application of Chebyshev’s inequality shows that with ;/V-probability
at least 2/3,

1Prvo = Prolly < (3/2)V/N|Jvo = vl|1, < (3/2)0aV/N,
because v € D(vg, fa). Therefore, with p¥-probability at least 1/3,
2 (v) < B+ (3/2)VNba/o

and since 8+ (3/2)v/Nfa/o > 0,

e 00 2.2
IET/ o(z)dr > 1/ o(z)dr 2 exp < - w>
2 (v) 3 J8+(3/2)vNoay Jo o
Thus, by @2), 1 2 |Alexp ( — csN6%a?/0?), as claimed. ]

We conclude this section with the proof of Theorem D, which is presented
for a random design, though a proof for a deterministic design is almost
identical. The idea behind the proof is that if 7 = (X1, ..., Xn) and P.f; =
P, fa, then the two functions are indistinguishable on a sample (X;, ;)N
of a model Y/t = f1(X)+V. Therefore, it seems unlikely that one may find
a procedure that performs better than the “worse” typical Ly diameter of
sets

K(f,r)={h € F:P.-h=P.f},
which is denoted by D(f, 7).
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Fix f € F and let fN be a given procedure. Define an F-valued random
variable hy, as follows. Let hi,(f) and ho,(f) be almost Lo-diametric
points in K(f, 7). Let 0 be a {0, 1}-valued random variable with mean 1/2,
which is independent of X and V', and set

hy = (1= 08)h1-(f) + 6hor(f). (4.3)

Note that for every realization of 6, D(h¢,7) = D(f, 7). Let I(A) be the
indicator of the set A and observe that for every realization of the random
variable 6,

sup Py ([1f (i £(X0) + VOI) = fllza = D(f,7)/4)
feF
> sup Py (|1 (X hp(X0) + VL) = Byl = Dlhy, 7)/4)
fer
=sup Py (ILfn (X3 by (X) + VORL) = Byl = D 7)/4) = (+).
feF
Put
Ay = {IFn (Koo o (X3) + VORL) = bl = D7) /4
and

s = {IFn (Ko ho,r (X3) + VORL) = hoelln, = DS 7) /4

Taking the expectation in (x) with respect to 4,

Es() > sup ExvEs (i (X, hp(X0) + VA = Ayl = D(S,7)/4)
feF

1
= sup EX7V§(I(A1) + [(Ag))
fer

Note that for any sample 7, hy - (X;) + V; = ha - (X;) + Vi; therefore,
fn (X5, 17 (X3) + ‘/7,)5\;1) = fn ((Xi, hor (X3) + ‘/7,)5\;1) = fo.

Since hj , and hg, are almost diametric in K (f,7), either ||h1 . — follz, >
D(f,7)/4 or ||he,r — follL, = D(f,7)/4. Thus, I(A;) 4+ I(Az) > 1 almost
surely, and

sup Py (|1 (X, FO0) + Vi )a) = Fllz > D(f,7)/4) = 1/2,
fer

To conclude the proof, observe that the squared excess risk of fi\’ for the
model Y/ = f(X) + V is the square of the Lo distance between fy and f.
|
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Remark. It is straightforward to verify that if o = 0, then for every sample
7, ERM satisfies f € K (f*,7). Therefore, a typical value of D(f*,7) is the
minimax rate in the noise-free case.

As a generic example, let T C RY be a convex, symmetric set, put p
to be an isotropic, L-subgaussian measure and set F to be a class of linear
functionals, indexed by T'. Given a sample 7 = (X7, ..., Xn), Pt = I't for
the random operator I' = Z£1<XZ-, ->ei. Therefore,

K(vg,7) ={veT :Tv=Tuvy} =v9+ (T Nkerl),

and since T is convex, the largest diameter is attained for vg = 0.

Let dy = dn(p) satisfy that with probability at least 1—p, D(0,7) > dy.
Then, by Theorem D, any procedure with a confidence parameter oy <
1/2 4 p has its accuracy parameter ey larger than dy(p)/4.

On the other hand, a straightforward application of Lemma shows
that with probability at least 1 — 2exp(—c1NQ?), D(0,7) < ri(Q). In
certain cases, cy(T') ~ r3(Q) for a suitable absolute constant Q. Thus,
with the same probability estimate,

N (@Q) S en(T) <D(0,7) < ry(@Q),

implying that if o < 73,(Q), the error rate obtained in Theorem A is sharp
in the minimax sense in the constant probability range.

5 Examples

Here, we will present two examples of problems in which our results may be
used. Although there are many other examples that follow the same path,
and for which the estimates of Theorem A are sharp, we will not present
them here for the sake of brevity.

5.1 Learning over the B¢ ball

Let F be a class of linear functionals, indexed by T'= B{, the unit ball in £4.
Assume that y is an isotropic, L-subgaussian measure on R?, that Y € Ly,
and that ||Y — f*[|y, < o.

The upper bound of Theorem A is based on estimates on E||G||larqsD-
Because the measure p is isotropic, the gaussian process is given by ¢t —
Ele giti, and D is the unit ball in £4.
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One may show (see, for example, [J]) that for every 1/v/d < s <2,

~ +/log(eds?),

d
E s |t

te2B{nsBY '

while if s < 1/v/d, sB§ C 2B{ NsB¢ C 2sBY, and thus

d
E sup Zgiti ~ sVd.

te2B{nsBY '

Therefore, setting n = ¢y/0o, it is straightforward to verify that

(s (m)? ~ {J CECTED N < 0P,
o%d/N otherwise.
Also,
~q xlog () if N <ad,
(rv(@)* 4 <o 4 if c;d < N < eod
=0 if N > cod,

where ¢y and cp are constants that depend only on Q. When N ~ d, r}
decays rapidly from N~1/21log'/?(ed/N) to 0. Thus, when ¢;d < N < ¢yd
one only has an upper estimate on 73, and we will only consider the cases
N < cid and N > cod.

Fix @ to be a constant depending on L and n = ¢y/o, and let N < ¢1d.
If o > r3 then also 0?d? 2 N. Hence,

. log(ed?0? /N
(si(co/o))? ~ o BLTLY)

Therefore, by Theorem A, if o > c34/log(ed/N)/N, then with probability

at least 1 — 2exp(—cqo~ ' log(ed?c? /N)), ERM satisfies that

R(f) < }ngR(f) + cs0 w.

And, if 0 < e34/log(ed/N)/N, then with probability at least 1—2 exp(—cyN),
ERM satisfies that

. d
R < RO+ 20 (57).
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where c¢3, ¢4, ¢c5 depend on L, B and the choice of Q.

In a similar fashion, if N > cad then v}, = 0, and thus o > ry;. Therefore,
the error rate of ERM is determined solely by sj;.

Turning to the lower estimate and as noted in Theorem A’, if fy is
a procedure with accuracy ey, that has to achieve the same confidence
obtained in Theorem A, then in the noisy case (¢ 2 7%)

en 2 0B _ (i e/
Thus, ERM achieves the minimax rate in that regime.

Moreover, since T = B{l is skeletal, then by Theorem B, the isomorphic
method cannot be used to improve the rate of (s%(co/0))? for o sufficiently
small.

For a lower bound with constant probability, recall that to apply Theo-
rem C, one has to bound the covering numbers

log N(B{ nrBY,6rBS)

from below for some 6 < 1.

Fix 1/v/d < r < 1, and without loss of generality assume that k = 1/r?
is an integer. Given I C {1,...,d}, let ST be the Euclidean sphere supported
on the coordinates I, and note that

| 8" c B nrBY.
|I|=k

Recall the well known fact (see, e.g., [14]) that there is a collection B of
subsets of {1,...,d} of cardinality k, that is ¢1k separated in the Hamming
distance, and log [B| > cz2klog(ed/k). The set A = {r) ;. ;e;: I € B} is a
cgr-separated subset of B¢ N rBY relative to the ¢4 distance. Hence,

log(edr?)
g

log N(B{ nrBY,csrBY) > ¢ 5
r

By Theorem C, given a procedure with a confidence parameter éy < 1/4,
its accuracy en = r2 > 1/d satisfies

log(edr?) Nr?
— 2 < log N(Bfl N ng, 087"B§l) < 7
Therefore,
log(ed?02/N
ey 2 0[P
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provided that d?0? > N (otherwise, r < 1/+/d).
If < 1/v/d, log N(B{ N rBY,ciorBY) > 2%, and

d

— 2 > 27
EN r o N
if d202 < N. Thus, fy cannot outperform ERM in the noisy case, even if
allowed to succeed only with constant probability.

Finally, turning to the trivial noise level, one has to show that the esti-
mate of 7} is sharp. Recall that by Theorem D it suffices to show that the
Gelfand N-width of B{ satisfies ¢y (B{) ~ r%. By a result due to Garanaev
and Gluskin [§],

1 d/N
en(BY) ~ min {1, %} ~ TN

Thus, for 0 < o S 74(Q), fn does not outperform ERM.

5.2 Low-rank matrix inference via the max-norm

In this type of problem, the goal is to explain an output Y by a linear
function of a low-rank (or approximately low rank) matrix. Since the rank
is not a convex constraint, one may consider the convex relaxation given by
the factorization-based norm

HAHma:E = AI:nUiI\}'T ”U”2—>oo HVH2—>OO :

Let B,,q, be the unit ball relative to that norm and set F = {fs = <-, A> :
A € Bz} Thus,

N

Ay € argmin =3 (¥; — (X, 4))%
[All e <t % =1
A similar estimator has been studied in [21I] for Y = <A*, X > + W, a random
vector X that is selected uniformly from the canonical bases of RP*9, a noise
vector W that is either gaussian or sub-exponential noise with independent
coordinates, and matrices in B,,,, with bounded entries.
Assume that X is isotopic and L-subgaussian relative to the normalized
Frobenius norm

KX, ), = @) 2N Alp, (XA, < Lpa) ™ (1 All -
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It is straightforward to verify that if the X is not an isotropic vector,
but rather, only equivalent to an isotropic one, similar estimates to the ones
presented below hold, and the modifications required in the proofs are minor.

Let A* be the true minimizer of the squared loss in B, and set the
“noise parameter” HY — <X , A*>H " < ¢. Since F is convex, the true mini-
mizer is unique and the Bernstein and star-shape conditions of Theorem A
are satisfied.

To apply Theorem A, one has to estimate the fixed points 77} (Q) and
si(n) for Q that depends only on L and n ~p, o1

Set Br to be the unit ball relative to the Frobenius norm and observe
that since X is isotropic, the relative Lo unit ball is

D ={fa:E(X, ) <1} ={(-, A) : A € VpaBr},
and the corresponding gaussian process has a covariance structure given by
EG1,Gyy = (pa) (A, B) = (pg) ' Tr(A' B).
A simple application of Grothendieck’s inequality (see, e.g., [I8]) shows that
conv (Xi) C Binar C KGconv(Xi)

where K¢ is the Grothendieck constant and Xy = {uv' : u € {£1}P,v €
{139},

Let & = (gij)1<i<p1<j<q be a matrix with independent, centered gaus-
sian entries with variance (pg)~'. Thus, for every s > 0,

ENGll (7 rynsp = E sup (&, A)] <2E sup [(6,4)]
AEQBmaxﬂs\/]TqBF A€Bmax
<2KgE  sup  [(&,4)].
Aeconv(X4)

By standard properties of gaussian processes,

Al
E sup [(&,A4)] < max —=+/log|X:| < Vp+4q.
Acconv(Xy) < > AeXy /Pq

In the reverse direction, by Lemma 3.1 in [21], if

1

—— <2<
min(p, q)

)

then
510g"/% N (Bynaz N s7/PgBF, $7v/pq/2Br) = /D + q. (5.1)
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Hence, in that range of s,

ElGll(r—rnsp ~ VP + 4,

and
(sh(c/o))? ~ oy E2L (ri(@))? ~ 24

Applying Theorem A, if o 20 1, \/(p+ ¢)/N then with probability at least
1 —2exp(—c1\/N(p+ q)/o), ERM satisfies that

E(Y — (A, X)) < inf E(Y_<A’X>)2+62(Q’L)U\/])NE’

T A€Bmag

and if o Sg.r, /(p+ ¢)/N, then with probability at least 1 — 2exp(—c1 V),

_ 2 - _ 2 pP+4q
E(Y — (A, X)) gAelgme(Y (A, X))” +c2(Q, L) N

To see that this estimate is sharp in the minimax sense when o 2 /(p + ¢)/N,
consider the gaussian regression model Y = <A*, X > + W and observe that
Theorem A’ implies that ERM achieves the minimax rate for the confi-
dence parameter dy S exp(—ci\/N(p+ q)/0o). Moreover, by Theorem C
and (B.0]), any procedure with confidence parameter oy < 1/4 has accuracy

EN 2, 04/ p—;\r,q, matching the upper bounds in the noisy regime.

6 Concluding remarks and comparisons with ex-
isting results

Subgaussian classes of functions play a central role in our presentation. The
reason for focusing on such classes is that, on one hand, there are many nat-
ural examples that fall within the subgaussian framework, and on the other,
because the substantial technical machinery needed to establish Theorem A
and B is not known in general. Perhaps surprisingly, the difficult part in
developing such a theory is not the slow decay of tails of individual class
members, but rather, the lack of a framework that captures the “global”
complexity of the class — as E[|G||r does in the subgaussian case.

There are cases, though, in which such a theory exists (e.g., uncondi-
tional, log-concave vectors in R?) and one may prove analogous results to
the ones presented here. Since the technical cost is rather substantial and
would obscure the main message of this article, we decided to leave these
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generalizations to future work. For more details on these directions, we refer
the reader to [16] [15].

The results presented in this article are sharp in many cases, but not in
every case. First, in the “high probability” range, Theorem A and Theorem
A’ show that when o 2 7} the result is sharp in the minimax sense. How-
ever, 0 < T, it is known to be sharp only when o = 0 (the error rate is
a typical value of D?(f*,7)) or if o ~ r%, where the error rate is ~ (%)%
A sharp estimate for o € (0,7%) is not known, although there are many
examples in which 73 is equivalent to the “width” of the class, and then
ERM is optimal in the minimax sense in that range as well.

In the constant probability regime, the situation is even less clear. In
the noisy case, when o > 7%, the upper bound of (s (c/c))? is sharp only
if the gaussian parameter s (c/o) and the Sudakov-based one, ¢x (c/o) are
equivalent. Unfortunately, this is not even true for F = {<t, > 1t e B;,l} for
1+ 1/logd < p < 2. In the “low-noise” case (i.e. o <)), the situation is
as described above.

Therefore, he have shown that for the gaussian noise, ERM achieves the
minimax rate of convergence max ((sk(c/0))?, (ry(Q))?) in the constant
probability regime for both ranges of noise, if F is a convex subgaussian
class, satisfying

1. gy log!/? N(FN2yD,qyD) ~ E ”GHFWZTVD — meaning that there is
no gap in the Sudakov inequality at scale g5 = gx(c/0);

2. en(F) ~ ri(F) — meaning that v/ Ney(F N ri D) ~ E”G”]—‘mr;*VDv
and there is no gap in the Pajor-Tomczak-Jaegermann estimate on
the N-Gelfand width. (see [19]).

It seems unlikely that these conditions on the regularity of F are nec-
essary; the second one if less likely than the first, as an estimate on the
“random” width rather than the minimal one suffices for the lower bound.
Another issue is that the isomorphic method only leads to an upper bound on
the performance of ERM, which is another possible reason for a suboptimal
estimate in the constant probability regime. Since f minimizes f +— P,Ly
in 7, ERM selects a point in the “sphere” {f : PLy = r} that minimizes

N

N
NG ONEEFRIORS DICEETRE) IS

{f:PLy=r} P

If 7 2 7y, the first term in (@) is essentially ||f — f*[7,, and when
the noise level is high, one expects the minimum to be attained by r 2 773.
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Thus, the problem of identifying the minimum is restricted to obtaining
sharp upper and lower estimates on the multiplier process. On the other
hand, for a low noise level, the minimum is likely to be below r};, where
there is an additional source of difficulty — that there is no clear way of
estimating the quadratic term, making the problem much harder.

The parameter s}, is comparable with the ones used in [23], 4, 24] 25],
where the fixed points have been associated with a Dudley’s entropy integral
for localized sets of the class. In [], it has been shown that if the noise
level is large enough and there is no gap in both Sudakov’s AND Dudley’s
inequalities at the correct level (given by the fixed point), ERM is a minimax
procedure in expectation. Theorem A improves that result, because the
complexity measure used here is based on the gaussian mean width, which
is always smaller than Dudley’s entropy integral. Moreover, no restrictions
on the noise level have been imposed.

In this exposition, we tried to underline that the study of the gaussian
regression model requires the analysis of two regimes: high and low noise
levels (regardless of the desired estimates on the probability). This reveals
the two different sources of statistical complexity that are intrinsic to this
model. When estimating f in Lo from the data (X,-,Y;-)ﬁil, one source of
an error is that f is known only through its coordinate projection P, f =
(f(X;))X,, while the other is that only a noisy version of this projection is
observed. The two, projection and noise, lead to different complexity terms
and are associated with two different empirical processes: the quadratic,
studied in Theorem 21l and the multiplier, studied in Theorem

One issue that has been neglected in this article is the geometry of the
class, which is as important as its metric complexity.

We believe ERM is an optimal procedure if and only if the class is con-
vex, and the importance of convexity has been obscured by the assumption
that the class satisfies a Bernstein condition. However, as we show next,
a uniform Bernstein condition implies that the class is convex, at least for
classes with an error rate that converges to zero.

Indeed, observe that if F C Lo(u) is closed but not locally compact in
Lo(p) then the minimax rate of Y = f(X) + W does not tend to 0 as the
sample size tends to infinity. This in an immediate outcome of Theorem C
and the fact that there is some r > 0 and f € F for which f + rD contains
an infinite set that is /4 separated in Lo(u). Thus, one may restrict oneself
to classes that are locally compact, and, in which case, one has the following;:

Theorem 6.1 Let p be a probability measure and set X to be a random
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variable distributed according to p. If F is a locally compact subset of La(p),
the following statements are equivalent:

i) for any real valued random variable Y € Lo, there exists a unique min-
imizer in F of the functional E(Y — f(X))2. If f* is that minimizer,
then and for every f € F,

E(f(X) = [*(X)* <E((Y = F(X)? = (Y = [*(X))?).  (6.2)
it) F is convex.

Proof. If F is a nonempty, closed and convex subset of a Hilbert space, the
metric projection onto F exists and is unique. And, by its characterization,
(f(X) = f*(X),Y — f*(X)) <0 for every f € F. Therefore,

E((Y = f(X)? = (Y = f1(X))?)
= |£(X) = FH(X)I5 +2(f*(X) = Y, f(X) = f(X))

> I£(X) = (X3

and F is 1—Bernstein.

In the reverse direction, if F is locally compact, the set-value metric
projection onto F exists, and since it is 1-Bernstein for any Y, the metric
projection is unique. Indeed, if f, f5 € F are minimizers then by the
Bernstein condition,

(X)) — f3(X0))3 < BE((Y — f3(X))? — (Y - f{(X))?) =0,

and f7 = f3 in Lo(p).

Thus, any Y € Lo has a unique best approximation in F, making F a
locally compact Chebyshev set in a Hilbert space. By a result due to Vlasov
[27], (see also [6], Chapter 12), F is convex. |
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