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Abstract

We obtain sharp oracle inequalities for the empirical risk minimiza-
tion procedure in the regression model under the assumption that the
target Y and the model F are subgaussian. The bound we obtain is
sharp in the minimax sense if F is convex. Moreover, under mild as-
sumptions on F , the error rate of ERM remains optimal even if the
procedure is allowed to perform with constant probability. A part of
our analysis is a new proof of minimax results for the gaussian regres-
sion model.

1 Introduction and main results

Let D := {(Xi, Yi) : i = 1, · · · , N} be a set of N i.i.d random variables with
values in X × R. From a statistical stand point, each Xi can be viewed
as an input associated with an output Yi. For a new input X, one would
like to guess its associated output Y , assuming that (X,Y ) is distributed
according to the same probability distribution that generated the data D.
To that end, one may use D to construct a function f̂N (D, ·) = f̂N (·), and
the hope is that f̂N (X) is close to Y in some sense.

Here, we will consider the squared loss function ℓ : R × R 7→ R, defined
by ℓ(u, v) = (u− v)2, as a way of measuring the pointwise error ℓ(f(X), Y ).
The resulting squared risk is

R(f) = E
(

f(X)− Y
)2

and R(f̂N ) = E
((

f̂N(X) − Y
)2|D

)
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for any measurable function f : X 7→ R and any statistic f̂N .
In the classical statistics setup, one usually assumes that the regression

function of Y given X belongs to some particular function space (called
a model). In the Learning setup, on which we focus here, one is given a
function class (also called a model) and the goal is to construct a procedure
f̂N satisfying a sharp or exact oracle inequality : ensuring that with high
probability,

R(f̂N ) ≤ inf
f∈F

R(f) + residue, (1.1)

and one would like to make the residue as small as possible.
Thus, the procedure f̂N is a map from the set of N samples to L2, and

it performs with accuracy εN = εN (F) and confidence 1− δN = 1− δN (F),
if for every reasonable class F and any reasonable target Y , (1.1) is satisfied
on an event of measure at least 1− δN and a residue that is at most εN .

Clearly, the risk functional is unknown but its empirical version

Rn(f) =
1

n

n
∑

i=1

(

f(Xi)− Yi
)2

is. Thus, a natural procedure that comes to mind is minimizing the empirical
risk over F . This procedure is called empirical risk minimization (ERM )
and is defined by

f̂ ∈ argmin
f∈F

RN (f).

ERM has been studied extensively over the last 20 years (see, e.g. [26],
[13], [10]). The main focus has been to identify the connections between the
structure of F and the residual term for ERM.

In particular, one would like to study the following questions:

1. Given any 0 < δN < 1/2, what are the error rates εN that one may
obtain using ERM, and what features of F govern these rates?

2. Given any 0 < δN < 1/2, does ERM achieve the minimax rates for the
confidence level δN? In other words, is there an algorithm that can
yield a better accuracy than ERM, given the same confidence level?

The majority of results on the performance of ERM have been obtained
in the bounded case: when supf∈F |ℓ(Y, f(X))| ≤ b almost surely, or, alter-
natively, when the envelope function supf∈F |ℓ(Y, f(X))| is well behaved in
some weaker sense (e.g., has a sub-exponential tail).
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Our aim here is to go beyond the bounded case and proceed without
any assumption on the envelope of {ℓ(f(X), Y ) : f ∈ F}. Instead, we will
consider the subgaussian setup.

Recall that if X is distributed according to a probability measure µ, then
the ψ2-norm of a function f is defined by

‖f‖ψ2(µ)
= inf

{

c > 0 : E exp(f2(X)/c2) ≤ 2
}

,

and let Lψ2
= Lψ2(µ) be the space of all functions with a finite ψ2-norm.

Definition 1.1 A function class F is L-subgaussian with respect to the
probability measure µ if for every f, h ∈ F∪{0}, ‖f − h‖ψ2(µ)

≤ L ‖f − h‖L2(µ)
.

Our strategy for proving an oracle inequality for ERM is via the isomor-
phic method, introduced in [2]. Before presenting this method, recall that
the excess loss of f is

Lf (x, y) = ℓ(f(x), y)− ℓ(f∗(x), y) = (f(x)− y)2 − (f∗(x)− y)2, (1.2)

where we assume that f∗ (an oracle) is a fixed element in the set of true
minimizers argminf∈F R(f). Only minor changes are needed if the infimum
is not attained, an issue that will not be addressed here.

Set

PLf = ELf(X,Y ) and PNLf =
1

N

N
∑

i=1

Lf (Xi, Yi).

The isomorphic method is based on the following observation. Consider
the event Ω0, on which every function in the set {f ∈ F : PLf ≥ λN}
satisfies the isomorphic property

1

2
PLf ≤ PNLf ≤ 3

2
PLf . (1.3)

On Ω0,
R(f̂) ≤ inf

f∈F
R(f) + λN ,

because PNLf̂ ≤ 0, and thus f̂ 6∈ {f ∈ F : PLf ≥ λN}.
Therefore, to obtain an exact oracle inequality with a confidence pa-

rameter δN , it suffices to identify λN for which Ω0 has probability at least
1− δN .
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Clearly, this is equivalent to identifying the level λN for which the supre-
mum of the ratio process satisfies that

sup
{f∈F :PLf≥λN}

∣

∣

∣

1

N

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1
∣

∣

∣
≤ 1

2

with probability at least 1− δN .
We will assume that the classes in question have reasonable structure in

the following sense:

Definition 1.2 A class F is B-Bernstein relative to the target Y , if for
every f ∈ F ,

E
(

f(X)− f∗(X)
)2 ≤ BPL = BE

(

(Y − f(X))2 − (Y − f∗(X))2
)

. (1.4)

The class is star-shaped in f0 if for every f ∈ F ,

{λf0 + (1− λ)f : 0 ≤ λ ≤ 1} ⊂ F .

One may use the 2-convexity of L2 and show that if F is convex then for
any target Y ∈ L2, F is 1-Bernstein; and that F − F is star-shaped in all
its elements.

As in many other estimates on the performance of ERM (e.g. [25, 10,
13]), the choice or the residual term is driven by a fixed point argument.
Let dF (L2) be the diameter of F in L2(µ) and set {Gf : f ∈ F} to be the
canonical gaussian process indexed by F ; that is, with a covariance structure
endowed by L2(µ). Given a set F ′, denote by E‖G‖F ′ the expectation of
the supremum of {Gf : f ∈ F ′}. We will assume throughout that E‖G‖F ′

is finite for all the sets F ′ in question.

Definition 1.3 Let D be the unit ball in L2(µ). For every η > 0, let

s∗N (η) = inf
{

0 < s ≤ dF (L2) : E‖G‖sD∩(F−F) ≤ ηs2
√
N
}

, (1.5)

and for every Q > 0, set

r∗N (Q) = inf
{

0 < r ≤ dF (L2) : E‖G‖rD∩(F−F) ≤ Qr
√
N
}

.

In both cases, if the set is empty, set s∗N (η) = dF (L2) (resp. r∗N (Q) =
dF (L2)).
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If either s∗N(η) or r
∗
N (Q) are equal to dF (L2), the resulting upper bound is

trivial. Therefore, throughout we will assume without explicitly stating it,
that s∗N (η), r

∗
N (Q) < dF (L2), which is always the case if N is large enough.

One may show that if F − F is star-shaped in 0, s = s∗N(η) and r =
r∗N (Q), then E‖G‖sD∩(F−F) = ηs2

√
N and E‖G‖rD∩(F−F) = θr

√
N . In-

deed, the star-shape property implies that H(s) = s−1
E‖G‖sD∩(F−F) is

continuous from the left. Since E‖G‖sD∩(F−F) is increasing, the choice of
s∗N (η) leads to the equality. A similar argument proves the claim regarding
r∗N (Q).

Moreover, of s ≥ s∗N (η) then E‖G‖sD∩(F−F) ≤ ηs2
√
N , and if r ≥

r∗N (Q), E‖G‖rD∩(F−F) ≤ Qr
√
N .

With these definitions in place, one may formulate the upper bound on
the performance of ERM.

Theorem A. For every L ≥ 1 and B ≥ 1 there exist constants c1, c2, c3
and c4 that depend only on B and L for which the following holds. Let F be
an L-subgaussian and B-Bernstein class of functions relative to the target
Y . Assume that F − F is star-shaped in 0 and that ‖Y − f∗(X)‖ψ2

≤ σ.
Set η = c1/σ and Q = c2.

1. If σ ≥ c3r
∗
N (Q) then with probability at least 1−4 exp(−c4Nη2(s∗N (η))2),

R(f̂) ≤ inf
f∈F

R(f) + (s∗N (η))
2.

2. If σ ≤ c3r
∗
N (Q) then with probability at least 1− 4 exp(−c4NQ2),

R(f̂) ≤ inf
f∈F

R(f) + (r∗N (Q))2.

As mentioned above, if F is convex, the structural assumptions of The-
orem A hold for every Y ∈ L2.

We will show in what follows that the parameters involved have very
clear roles. r∗N is an upper estimate (that is often sharp but not always) on
the error rate one could have if there were no “noise” in the problem – that
is, if σ = 0. This intrinsic error occurs because it is impossible to distinguish
between f1, f2 ∈ F on the sample τ = (Xi)

N
i=1 if (f1(Xi))

N
i=1 = (f2(Xi))

N
i=1.

Once noise is introduced to the problem and passes a certain threshold,
it is no longer realistic to expect that an intrinsic parameter, that does not
depend on the noise level, can serve as an upper bound. And, indeed, s∗N (η)
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measures the interaction of the “noise” f∗ − Y with the class, through the
choice of η ∼ 1/σ. Beyond a trivial threshold on σ, s∗N (c/σ) becomes the
dominant term in the upper bound.

Of course, Theorem A is better justified if one can obtain matching
lower bounds, showing that ERM is an optimal procedure. To that end, it
seems natural to employ minimax theory, which is very well established in
Statistics (see, e.g., [22, 28, 29, 4, 3] for more details). Standard minimax
bounds are based on information-theoretical results such as Fano’s Lemma,
Assouad’s Lemma or Pinsker’s inequalities, but unfortunately, these results
do not yield lower bounds in the “high probability” realm, as needed to show
the optimality of the rate obtained in Theorem A.

We therefore establish a minimax bound that is based on the gaussian
shift theorem (and therefore on the gaussian isoperimetric inequality). It
allows one to obtain a high probability minimax bound, and, as will be
explained below, to recover the known constant probability minimax bound
as well.

Consider the gaussian model, in which (Xi, Yi)
N
i=1 is an independent

sample of
Yf = f(X) +W, (1.6)

where f ∈ F and W ∼ N (0, σ2) is a gaussian noise, independent of X.

Theorem A′. There exist absolute constants c1, c2 and c3 for which the
following holds. Let F ⊂ L2 be a class that is star-shaped in one of its
points. If f̃N is a statistic constructed from a sample of cardinality N of the
model (1.6) and has a confidence parameter δN , then its accuracy satisfies

εN ≥ c1σ
2 log(1/δN )

N
.

In particular, if δN = exp(−c2η2(s∗N (η))2N) for η ∼L,B 1/σ, (as is the case
in Theorem A when the noise level is ‘non-trivial’), then the best accuracy
that may be achieved by any procedure is

εN ≥ c3σ
2η2(s∗N (η))

2 ∼ (s∗N (η))
2.

Thus, ERM achieves the minimax rate for that confidence level.

The second question we wish to address is what happens when the desired
confidence is an absolute constant, say δN ∼ 1/2, still, when the noise level
is non-trivial.
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It is not clear whether the isomorphic method, used to prove Theorem A,
can yield a better accuracy if one is willing to accept a constant confidence.
The next result shows that the answer is negative.

Theorem B. Under mild assumptions on F , X, Y and η (see Defini-
tion 3.1),

E sup
{f∈F :PLf≥(s∗

N
(η))2}

∣

∣

∣

1

N

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1
∣

∣

∣
> 1.

This leads one to wonder if a better bound is possible at all, even if a
different procedure than ERM is used.

We will show that Theorem A (and in particular, the isomorphic method)
is optimal in a minimax sense under some regularity assumptions on F , even
for a confidence δN ∼ 1/2.

To formulate this observation, recall that if A and B are two subsets
of L2, then N(A, εB) is the minimal number of translates of εB needed to
cover A.

Consider the “Sudakov” analog of the gaussian-based parameter s∗N (η):
recall that by Sudakov’s inequality (see, for example, [11])

sup
ε>0

ε log1/2N((F − F) ∩ rD, εD) . E‖G‖(F−F)∩rD . (1.7)

Put C(r) = supf∈F r log
1/2N((F − f) ∩ 2rD, rD), and set

q∗N (η) = inf{s > 0 : C(s) ≤ ηs2
√
N}.

Theorem C. There exist absolute constants c1 and c2 for which the fol-
lowing holds. Let F be a class of functions, set W ∼ N (0, σ2) and for every
f ∈ F , put Yf = f(X) +W . If f̃N is a procedure for that has a confidence
parameter δN < 1/4, then its accuracy satisfies εN ≥ c1(q

∗
N (c2/σ))

2.

Theorem C is more classical and follows from Theorem 2.5 in [22] or
from [28], though the proof presented here is new, and we feel it is more
transparent than existing proofs. An added value is that it follows the same
path as the proof of Theorem A′, and thus gives a scheme that may be used
to prove lower bounds at every confidence level.

With Theorem A in mind, Theorem C shows that if the gaussian param-
eter s∗N(η) and the Sudakov-based one, q∗N (η), are equivalent for η ∼ 1/σ
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when σ & r∗N , the minimax rate in the constant probability realm is attained
by ERM.

Finally, let us consider the low-noise case, in which σ . r∗N . Although
r∗N need not be an optimal bound in that range (except when σ ∼ r∗N ), it is
not far from optimal.

Definition 1.4 Let F be a class of functions. For every sample τ = (X1, ...,XN )
and f ∈ F , set

K(f, τ) = {h ∈ F : (f(Xi))
N
i=1 = (h(Xi))

N
i=1},

the “level set” in F given by the values of f on the sample. Let D(f, τ) be
the L2 diameter of K(f, τ).

Clearly, if σ = 0 then for every sample τ , ERM selects f̂ ∈ K(f∗, τ).
And since Y ∈ F , R(f) = ‖f − f∗‖2L2

. Thus, R(f̂) ≤ D(f∗, τ). It is natural
to ask whether the reverse direction is true, and also, to try and identify the
correct rate when 0 < σ < r∗N .

The following result shows that the largest “typical” value of D(t, τ) is
a constant probability minimax bound, regardless of the choice of σ. It
combines a “compressed sensing” type of a minimax results (see, e.g., [7, 5])
and statistics ones (e.g. [22, 28, 29, 4, 3]).

Theorem D. For every f ∈ F and V independent of X, set Y f = f(X)+
V . Then, for any procedure f̃N ,

sup
f∈F

P

(

‖f̃N ((Y f
i ,Xi)

N
i=1)− f‖L2

≥ 1

4
D(f, τ)

)

≥ 1/2.

One natural example in which Theorem D may be used is when T is
a convex, symmetric subset of Rd and F is the class of linear functionals
{
〈

t, ·
〉

: t ∈ T}. Let X1, ...,XN be an independent sample selected according
to an isotropic probability measure on R

d. If (e1, . . . , eN ) is the canonical
basis of RN and Γ =

∑N
i=1

〈

Xi, ·
〉

ei, then D(0, τ) is the diameter of Ker(Γ)∩
T .

Recall that the Gelfand N -width of T is the smallest diameter of an
N -codimensional section of T , and denote it by cN (T ). Hence, for every
t0 ∈ T ,

cN (T ) ≤ diam (K(t0, τ)− t0) ≤ 2D(0, τ),

8



and cN (T )/8 is a lower estimate on a constant probability minimax bound.
In cases where r∗N ∼ cN (T ), it follows that for every 0 ≤ σ . r∗N , r

∗
N

is the minimax rate, and it is achieved by ERM. We will present one such
example in Section 5.

One should note that the lower bound of Theorem B and the ones in
Theorem A′, C and D are of different nature. Theorem B holds for any L-
subgaussian class, input and target that satisfy certain regularity conditions.
The others are minimax results and therefore hold only for the “worst”
possible distribution according to the model in question.

We end this introduction with a word about notation. Throughout,
absolute constants or constants that depend on other parameters are denoted
by c, C, c1, c2, etc., (and, of course, we will specify when a constant is
absolute and when it depends on other parameters). The values of these
constants may change from line to line. The notation x ∼ y (resp. x . y)
means that there exist absolute constants 0 < c < C for which cy ≤ x ≤ Cy
(resp. x ≤ Cy). If b > 0 is a parameter then x .b y means that x ≤ C(b)y
for some constant C(b) depending only on b.

Let ℓdp be R
d endowed with the norm ‖x‖ℓdp =

(
∑

j |xj |p
)1/p

. The unit

ball there is denoted by Bd
p and the unit Euclidean sphere in R

d is Sd−1.
The first three sections of this article are devoted to the proofs of the

four theorems. We then present two examples (regression in Bd
1 and low-

rank matrix inference) in which the rates established in Theorem A are
proved to be sharp. The last section is devoted to concluding remarks on
how the results may be extended to cases that are not covered here, and to
a comparison with previous results.

2 Learning subgaussian classes

Since subgaussian classes play a central role in this article, we begin this
section with a few examples of such classes. One may show that

‖f‖ψ2
∼ sup

p≥2

‖f‖Lp√
p
.

Thus, if F is an L-subgaussian class of functions, for every f, h ∈ F ∪ {0},
supp≥2 ‖f − h‖Lp/

√
p ≤ L‖f − h‖L2

.

A measure µ on R
d is L-subgaussian if for every t ∈ R

d, the linear
functional

〈

t, ·
〉

is L-subgaussian. Hence, every class of linear functionals on
R
d is L-subgaussian relative to the measure µ.
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1. Let x be a mean-zero, variance 1 real-valued random variable which is
L-subgaussian and let x1, . . . , xd be independent copies of x. It is straight-
forward to verify that for every a ∈ R

d,

∥

∥

∥

d
∑

i=1

aixi

∥

∥

∥

ψ2

. ‖a‖ℓd
2

‖x‖ψ2
.

Thus, the random vector X = (x1, ..., xd) is cL-subgaussian for a suitable
absolute constant c. Moreover, it is isotropic (that is, for every x ∈ R

d,
E|
〈

X,x
〉

|2 = ‖x‖2
ℓd
2

). Thus, for example, the uniform measure on {−1, 1}d

or on [−1, 1]d are isotropic and L-subgaussian for an absolute constant L.

2. The uniform measure on d1/pBd
p is also L-subgaussian for an absolute

constant L (see [1]), despite the fact that its coordinates are not independent.

3. Let X = (xi)
d
i=1 be an unconditional random vector, meaning that for

every choice of signs (εi)
d
i=1, (εixi)

d
i=1 has the same distribution as X. If

Ex2i ≥ c2 for every i and X is supported in RBd
∞ then it is L-subgaussian

for L . R/c. Indeed, by Khintchine’s inequality [11], for any p ≥ 2,

‖
〈

X, t
〉

‖pLp =E

∣

∣

∣

d
∑

j=1

xjtj

∣

∣

∣

p
= EXEε

∣

∣

∣

d
∑

j=1

εjxjtj

∣

∣

∣

p

≤pp/2EX
(

d
∑

j=1

x2j t
2
j

)p/2
≤ pp/2Rp‖t‖p

ℓd
2

.

Also,

‖
〈

X, t
〉

‖2L2
= EXEε

(

d
∑

i=1

εixiti

)2
= EX

d
∑

i=1

x2i t
2
i ≥ c2‖t‖2

ℓd
2

,

proving the claim.

4. If x is a mean-zero, variance one, L-subgaussian random variable, and
X = (xi,j) is a matrix whose coordinates are independent copies of x, then
X defines a cL subgaussian, isotropic measure on the space of matrices of the
“right” dimensions, relative to the natural trace-inner product. The same
holds if X has independent rows, distributed according to an isotropic, L-
subgaussian random vector. The proof of both facts follows the same path
as in example 1.
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2.1 Proof of Theorem A

When considering the parameters r∗N and s∗N that appear in the upper bound
on the error rate, what seems odd at first glance is the different normalization
in their definition – the first is linear and the second quadratic. The two
originate from the need to compare the behaviour of two processes. Indeed,
recall that

Lf = (f − Y )2 − (f∗ − Y )2 = (f − f∗)2 + 2(f − f∗)(f∗ − Y ).

The quadratic term is noise-free, and as we will explain below, r∗N measures

the lowest level r at which if ‖f − f∗‖L2
≥ r, E(f − f∗)2 ∼ N−1

∑N
i=1(f −

f∗)2(Xi).
In contrast, s∗N is designed for the multiplier process, originating from

the linear term (f − f∗)(f∗ − Y ). To compare the resulting “linear” term
with E(f − f∗)2, one has to study

f → 1

N

N
∑

i=1

(f∗(Xi)− Yi) ·
(f − f∗)(Xi)

E(f − f∗)2
,

which is the source of the rather less-natural normalization in the definition
of s∗N (η).

It goes without saying that an essential component of the proof of The-
orem A must be an accurate analysis of the quadratic and linear terms, and
both will be based on results from [20].

The first estimate we require is a bound on the squared empirical process:

Theorem 2.1 [20] There exist absolute constants c1, c2 and c3 for which
the following holds. If H is an L-subgaussian class, then for every t ≥ c1,
with probability at least 1− 2 exp(−c2t2(E‖G‖H/LdH(L2))

2),

sup
h∈H

∣

∣

∣

∣

∣

N
∑

i=1

h2(Xi)− Eh2

∣

∣

∣

∣

∣

≤ c3L
2
(

t3dH(L2)E‖G‖H
√
N + t2(E‖G‖H)2

)

.

Here is a simple application of Theorem 2.1 that explains the role of r∗N .

Lemma 2.2 There exist absolute constants c1, c2 and c3 for which the fol-
lowing holds. Let F be an L-subgaussian class, assume that F − F is star-
shaped in 0 and set f∗ ∈ F . If 0 < Q ≤ 1 and r ≥ r∗N (Q), then with

probability at least 1− 2 exp
(

− c1
(

E‖G‖rD∩(F−F)/(Lr)
)2)

,

sup
h∈(F−f∗)∩rD

∣

∣

∣

∣

∣

1

N

N
∑

i=1

h2(Xi)− Eh2

∣

∣

∣

∣

∣

≤ c2L
2r2Q. (2.1)
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Moreover, if Q ≤ min{c3/L2, 1}, then with the same probability estimate,
for every f ∈ F satisfying ‖f − f∗‖L2

≥ r,

1

2
E(f − f∗)2 ≤ 1

N

N
∑

i=1

(f − f∗)2(Xi) ≤
3

2
E(f − f∗)2.

Proof. The first part of the claim is an immediate corollary of Theorem 2.1
and the fact that if r ≥ r∗N (Q), E‖G‖(F−F)∩rD/

√
N ≤ Qr.

Even though the second part is known, we present it for the sake of
completeness. Denote by Ω0 the event on which (2.1) holds. Fix f ∈ F for
which ‖f − f∗‖L2

≥ r and set h = r(f−f∗)/ ‖f − f∗‖L2
. Since F−F is star-

shaped in 0, h ∈ (F −F)∩ rD. Therefore, on Ω0, and if Q ≤ min(c3/L
2, 1),

∣

∣

∣

∣

∣

1

N

N
∑

i=1

h2(Xi)− Eh2

∣

∣

∣

∣

∣

≤ c2QL
2r2 ≤ r

2
.

The second ingredient we require is a bound on multiplier processes.

Theorem 2.3 [20] There exist absolute constants c1, c2 and c3 for which
the following holds. If H is an L-subgaussian class of functions and ξ ∈ Lψ2

,
then for every t ≥ c1, with probability at least 1−2 exp(−c2t2(E‖G‖H/LdH(L2))

2),

sup
h∈H

∣

∣

∣

∣

∣

N
∑

i=1

ξih(Xi)− Eξh(X)

∣

∣

∣

∣

∣

≤ c3Lt
√
N‖ξ‖Lψ2E‖G‖H.

Note that in Theorem 2.3 one does not assume that ξ andX are independent,
a fact that will be significant in what follows.

Theorem A follows immediately from Theorem 2.4 and the isomorphic
method described in the introduction.

Theorem 2.4 For every L ≥ 1 and B ≥ 1 there exist constants c0, c1, c2
and c3 that depend only on B and L, for which the following holds. Let
F be an L-subgaussian class which is B-Bernstein relative to the target Y .
Assume that F − F is star-shaped in 0 and that ‖Y − f∗(X)‖ψ2

≤ σ. Let
η = c1/σ and Q = c2.

1. If σ ≥ c0r
∗
N (Q), then with probability at least 1−4 exp

(

−c3η2(s∗N (η))2N
)

,

sup
{f∈F :PLf≥(s∗

N
(η))2}

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1

∣

∣

∣

∣

∣

≤ 1

2
.
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2. If σ ≤ c0r
∗
N (Q), then with probability at least 1− 4 exp

(

−c3Q2N
)

,

sup
{f∈F :PLf≥(r∗

N
(Q))2}

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1

∣

∣

∣

∣

∣

≤ 1

2
.

Proof. Let ξ = (f∗(X)− Y ) and observe that

Lf (X,Y ) = (f − f∗)2(X) + 2ξ(f − f∗)(X).

Fix λ > 0 and set Fλ = {f ∈ F : PLf ≥ λ}. Since F satisfies the Bernstein
condition, it follows that for every f ∈ F , ‖f−f∗‖2L2

≤ BPLf , and if f ∈ Fλ
then

∥

∥

∥

∥

f − f∗

(PLf )1/2
∥

∥

∥

∥

2

L2

≤ B and

∥

∥

∥

∥

f − f∗

PLf

∥

∥

∥

∥

2

L2

≤ B

PLf
≤ B

λ
. (2.2)

Therefore,

sup
f∈Fλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1

∣

∣

∣

∣

∣

= sup
f∈Fλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

Lf (Xi, Yi)− PLf
PLf

∣

∣

∣

∣

∣

≤ sup
f∈Fλ

∣

∣

∣

∣

∣

∣

N
∑

i=1

(

f − f∗
(

PLf
)1/2

)2

(Xi)− E

(

f − f∗

(PLf )1/2
)2
∣

∣

∣

∣

∣

∣

+2 sup
f∈Fλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

ξi

(

f − f∗

PLf

)

(Xi)−
Eξ(f − f∗)

PLf

∣

∣

∣

∣

∣

.

Set

Wλ =

{

f − f∗

(PLf )1/2
: f ∈ Fλ

}

, Vλ =

{

f − f∗

PLf
: f ∈ Fλ

}

,

and putH = (F−F)∩
√
λBD, whereD = B(L2). Since F−F is star-shaped

in 0, it follows from (2.2) that

Wλ ⊂ 1√
λ
(F − F) ∩

√
BD ⊂ 1√

λ

(

(F − F) ∩
√
λBD

)

=
H√
λ
,

and

Vλ ⊂ 1

λ
(F − F) ∩

(
√

B

λ

)

D ⊂ 1

λ

(

(F − F) ∩
√
λBD

)

=
H
λ
.
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Fix Q = c0 and η = c1/σ to be named later. Set λ = (s∗N (η))
2/B and

r = r∗N (Q), and observe that

E‖G‖(F−F)∩rD = Qr
√
N =

Q

rη
· ηr2

√
N ≥ ηr2

√
N,

provided that σ ≥ c1r
∗
N (Q)/Q. Therefore, r∗N (Q) ≤ s∗N (η) ≡ s. Let Q .

1/L2B; by Lemma 2.2 and since E‖G‖(F−F)∩sD = ηs2
√
N ,

sup
w∈Wλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

w2(Xi)− Ew2

∣

∣

∣

∣

∣

≤ c2L
2QB ≤ 1

4

with probability at least 1− 2 exp(−c3η2(s∗N (η))2N).
Moreover, if η . 1/(Bσ) then by Theorem 2.3, with the same probability

estimate,

sup
v∈Vλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

ξiv(Xi)− Eξv

∣

∣

∣

∣

∣

. LBση ≤ 1

4
.

Thus, for everyQ . 1/(L2B) and η . σ−1 min{B−1, Q}, if σ & Q−1r∗N (Q)
then with probability at least 1− 4 exp(−c3η2(s∗N (η))2N),

1

2
PLf ≤ PNLf ≤ 3

2
PLf

on the set {f ∈ F : PLf ≥ λ}.
Next, if σ . Q−1r∗N (Q) (for the same choice of constants as above), set

λ = (r∗N (Q))2/B. It follows from Lemma 2.2 and Theorem 2.3, that with
probability at least 1− 4 exp(−c4Q2N),

sup
w∈Wλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

w2(Xi)− Ew2

∣

∣

∣

∣

∣

≤ 1

4
and sup

v∈Vλ

∣

∣

∣

∣

∣

1

N

N
∑

i=1

ξiv(Xi)− Eξv

∣

∣

∣

∣

∣

≤ 1

4
.

3 Lower bounds on the isomorphic method

The proof of the lower bound on the isomorphic method (formulated in
Theorem B) is based on several estimates from [20]. Let F be a convex,
symmetric class of functions (i.e., if f ∈ F then −f ∈ F). Thus F−F = 2F ,

14



and s∗N (η) = inf{r > 0 : E‖G‖2F∩rD ≤ ηr2
√
N}. In addition, one may

consider scaled versions of r∗N : for every 1 ≤ k ≤ N and Q > 0, set

rk(Q) = inf{r > 0 : E‖G‖2F∩rD ≤ Qr
√
k}.

The parameters rk(Q) measure the radii at which 2F ∩ rD has the same
“complexity” as a k-dimensional Euclidean ball of radius r. Let k∗F ,Q be the

first integer larger than (E‖G‖F/QdF (L2))
2. Thus, it is the first integer k

for which rk(Q) exists. In what follows, we will sometimes write rk and k∗F
instead of rk(Q) and k∗F ,Q.

Definition 3.1 A class of functions F is c-skeletal if for every k ≥ k∗F there
is a subset Fk ⊂ F ∩ rkD of cardinality at most exp(k), for which

E‖G‖F∩rkD ≤ cE‖G‖Fk .

The existence of a skeleton implies that E‖G‖F∩rkD is exhibited by exp(k)
points. It turns out that under such an assumption, a typical subgaussian
projection of F ∩ rkD of dimension larger than k inherits some of the struc-
ture of F ∩ rkD, since all the distances between the points of the skeleton
are essentially preserved by the projection (see more details in [20] and in
the proof of Theorem 3.3, below).

Among the examples of skeletal sets are convex, symmetric classes with
a regular modulus of continuity of the gaussian process {Gf : f ∈ F}:

Lemma 3.2 [20] If H(r) = E‖G‖F∩rD and there are α < 1 and 0 < β <
1/2 satisfying that for every 0 < r ≤ dF (L2),

H(αr) ≤ βH(r), (3.1)

then F is a c1-skeletal set for c1 = c1(α, β).

Another feature of classes that satisfy (3.1) is that at every scale r > 0,

logN(F ∩ rD,αrD) ∼α,β (E‖G‖F∩rD/r)
2,

and the estimate following from Sudakov’s inequality is sharp.
Indeed, let A be an αr-separated subset of F ∩ rD and for every f ∈ F ,

let af ∈ A satisfy that ‖af − f‖L2
≤ αr. Then

H(r) =E‖G‖F∩rD ≤ E sup
f∈A

Gf + E sup
f∈F∩rD

Gf−af ≤ E sup
f∈A

Gf + E sup
f∈2F∩αrD

Gf

≤E sup
f∈A

Gf + 2E sup
f∈F∩αrD

Gf = E sup
f∈A

Gf + 2H(αr)

≤E sup
f∈A

Gf + 2βH(r).
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Thus, E supf∈AGf ≥ (1 − 2β)H(r). On the other hand, since A ⊂ rD,

r log1/2 |A| & E supf∈AGf ; hence

αr log1/2N(F ∩ rD,αr) & α(1− 2β)E‖G‖F∩rD ,

as claimed.

Another example of a skeletal set is F = {
〈

t, ·
〉

: t ∈ Bd
1}, assuming that

µ is an isotropic measure. One can show that

logN(Bd
1 ∩ rBd

2 , αrB
d
2 ) ∼α (E‖G‖Bd

1
∩rBd

2

/r)2,

despite the fact that (3.1) does not hold for Bd
1 .

The main ingredient in the proof of the lower bound on the ratio estimate
is the following theorem.

Theorem 3.3 For every c, Q, R, L ≥ 1 and q > 2, there exist constants
c0, c1, c2 and c3 that depend only on c, Q, R, L and q for which the following
holds. Let F be a c-skeletal and symmetric set, assume that ξ ∈ Lq is a
mean-zero, variance 1 random variable with ‖ξ‖Lq ≤ R. Assume further
that ξ satisfies the small-ball property P(|ξ| ≤ t) ≤ c0t.

Then for every N ≥ c1k ≥ k∗F ,Q,

E sup
f∈F∩(rkD\c2rkD)

∣

∣

∣

N
∑

i=1

εiξif(Xi)
∣

∣

∣
≥ c3

√
NE‖G‖F∩rkD.

The proof is almost identical to the proof of Theorem 6.1 from [20]. We
will present full details of the minor differences between the two proofs and
outline the rest.
Proof. First, one may show that if V ⊂ R

m is a symmetric set, 0 < θ < 1,
and for every 1 ≤ p ≤ θm and every u,w ∈ V ,

∥

∥

∥

∥

∥

m
∑

i=1

εi(u−w)i

∥

∥

∥

∥

∥

Lp

≥ ρ

∥

∥

∥

∥

∥

m
∑

i=1

gi(u− w)i

∥

∥

∥

∥

∥

Lp

,

then

Eε sup
v∈V

m
∑

i=1

εivi ≥ c0ρEg sup
v∈V

m
∑

i=1

givi,

where c0 depends only on θ (see Lemma 6.4 in [20]).
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Second, it is well known that for every v ∈ V , ‖∑m
i=1 givi‖Lp ∼

√
p‖v‖ℓm

2
,

and [17] showed that

∥

∥

∥

∥

∥

m
∑

i=1

εivi

∥

∥

∥

∥

∥

Lp

∼
p
∑

i=1

v∗i +
√
p





∑

i>p

(v2i )
∗





1/2

where, given v ∈ R
N , (v∗i )

N
i=1 is a monotone non-increasing rearrangement

of (|vi|)Ni=1.
The next observation is that if F is skeletal, one may assume that the

skeleton Fk is symmetric and is contained in F ∩ (rkD\c1rkD). Indeed, the
symmetry of Fk follows from the symmetry of F . For the second part, let
F ′
k be a c-skeleton of F ∩ rkD, and let 0 < α < 1. By standard properties

of the gaussian process and the definition of rk = rk(Q),

E sup
f∈F ′

k
∩αrkD

Gf . αrk log
1/2 |F ′

k| ≤ αrk
√
k

≤ (α/Q)E sup
f∈2F∩rkD

Gf ≤ 2(α/cQ)E sup
f∈F ′

k

Gf .

Thus, for a sufficiently small α, Fk = F ′
k ∩ (rkD\αrkD) satisfies that

E sup
f∈Fk

Gf ≥ (1/2)E sup
f∈F ′

k

Gf ≥ (c/2)E‖G‖F∩rkD.

Next, one may also show that if N ≥ c1(L)k, then with probability at least
1− 2 exp(−c2(L)k), vectors in the set

PσFk = {(f(Xi))
N
i=1 : f ∈ Fk}

have the following structure: for every f1, f2 ∈ Fk,

1

2
‖f1 − f2‖L2

≤
(

1

N

N
∑

i=1

(f1 − f2)
2(Xi)

)1/2

≤ 3

2
‖f1 − f2‖L2

, (3.2)

and for every J ⊂ {1, ..., N},




∑

j∈J
(f1 − f2)

2(Xj)





1/2

.L ‖f1 − f2‖L2

(√
k +

√

|J | log(eN/|J |)
)

.
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Fix 0 < β < 1 to be named later and let I ⊂ {1, ..., N}, |I| ≥ (1− β)N . Set
u = Pσf1, w = Pσf2 and observe that for every 1 ≤ p ≤ N ,

‖(PI(u− w))∗i≥p‖ℓN
2

≥ ‖u−w‖ℓN
2

− ‖(u− w)∗i≤p‖ℓN
2

− ‖(u− w)∗i≤βN‖ℓN
2

≥‖f1 − f2‖L2

(√
N√
2

− c3

(√
k +max

{√
p log(

eN

p
),

√

βN log(
e

β
)

})

)

&
√
N‖f1 − f2‖L2

,

provided that p, k ≤ c4(L)N and β ≤ c5(L). On the other hand,

‖PI(u− v)‖ℓN
2

≤ ‖u− v‖ℓN
2

.
√
N‖f1 − f2‖L2

.

Therefore, given f1, f2 ∈ Fk, p ≤ c4N , I ⊂ {1, ..., N} of cardinality |I| ≥
(1− β)N and β ≤ c5,

∥

∥

∥

∥

∥

∑

i∈I
εi(f1 − f2)(Xi)

∥

∥

∥

∥

∥

Lp(µε)

&
√
p
∥

∥(PI(Pσf1 − Pσf2))
∗
i≥p
∥

∥

ℓN
2

&
√

pN ‖f1 − f2‖L2

&
√
p ‖PI(Pσf1 − Pσf2)‖ℓN

2

&

∥

∥

∥

∥

∥

∑

i∈I
gi(f1 − f2)(Xi)

∥

∥

∥

∥

∥

Lp(µg)

,

where µε and µg are the measures endowed by the random vectors (εi)
N
i=1

and (gi)
N
i=1 respectively. Thus, recalling that Fk is symmetric, it follows

that on that event and for every such a subset I ⊂ {1, . . . , N},

Eε sup
f∈Fk

∑

i∈I
εif(Xi) &L Eg sup

f∈Fk

∑

i∈I
gif(Xi).

By Slepian’s Lemma (see, e.g. [11]), combined with (3.2), and since E‖G‖Fk &c

E‖G‖F∩rkD,

Eg sup
f∈Fk

∑

i∈I
gif(Xi) &c

√
NE‖G‖F∩rkD.

Next, recall that ξ satisfies the small ball property P(‖ξ‖ ≤ t) ≤ c6t. If
β is as above, then by a binomial estimate,

P(|{i : |ξi| ≤ t}| ≥ βN) ≤
(

N

βN

)

(P(|ξ| ≤ t))βN

≤ exp (βN(log(e/β) − log(1/c6t))) .
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Hence, if t = c7β, then with probability at least 1− 2 exp(−c8βN),

|{i : |ξi| ≤ c7}| ≤ βN.

Let I = {i : |ξi| ≥ c7} and note that |I| ≥ (1 − β)N . By the symmetry of
Fk and the contraction principle for Bernoulli processes (see, for example,
chapter 4 in [11]), with probability at least 1−2 exp(−c2k)−2 exp(−c8βN),

Eε sup
f∈Fk

∣

∣

∣

N
∑

i=1

εiξif(Xi)
∣

∣

∣
≥ c7Eε sup

f∈Fk

∑

i∈I
εif(Xi) ≥ c9

√
NE‖G‖F∩rkD,

and c9 depends only on L, q and ‖ξ‖Lq .
Having established Theorem 3.3, one may turn to the proof of the lower

bound. Let F be a convex, symmetric, L-subgaussian and c-skeletal class.
Assume that the target Y has mean-zero and variance one, belongs to Lq
for some q > 2 and satisfies a small-ball property. Assume further that
Y is orthogonal to span(F), and thus f∗ = 0 and ξ = f∗(X) − Y = −Y .
Therefore,

Lf (X,Y ) = (f − f∗)2(X) + 2ξ(f − f∗)(X) = f2(X)− 2Y f(X),

and PLf = ‖f‖2L2
. Clearly F − f∗ = F , and for every λ > 0 the resulting

ratio process is

sup
{f∈F :PLf≥λ}

∣

∣

∣

∣

∣

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1

∣

∣

∣

∣

∣

= sup
{f∈F :Ef2≥λ}

∣

∣

∣

∣

∣

N
∑

i=1

Lf (Xi, Yi)

Ef2
− 1

∣

∣

∣

∣

∣

= sup
{f∈F :Ef2≥λ}

∣

∣

∣

∣

∣

N
∑

i=1

(

f2(Xi)

Ef2
− 1

)

− 2Yi
f(Xi)

Ef2

∣

∣

∣

∣

∣

≥2 sup
{f∈F :Ef2≥λ}

∣

∣

∣

∣

∣

N
∑

i=1

Yi
f(Xi)

Ef2

∣

∣

∣

∣

∣

− sup
{f∈F :Ef2≥λ}

∣

∣

∣

∣

∣

N
∑

i=1

f2(Xi)

Ef2
− 1

∣

∣

∣

∣

∣

.

To upper bound the quadratic term, fix Q to be named later, consider
λ = r2k(Q) for some 1 ≤ k ≤ N and let H = {f/‖f‖L2

: ‖f‖L2
≥ rk(Q)}.

Since F is star-shaped in 0, H ⊂ 1
rk
(F ∩ rkD), and by Theorem 2.1,

E sup
h∈H

∣

∣

∣

∣

∣

1

N

N
∑

i=1

h2(Xi)− Eh2

∣

∣

∣

∣

∣

.L
1

r2k
· r2k
√

k

N
(Q+Q2) .L Q

√

k

N
,

provided that Q ≤ 1.
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To lower bound the “linear” term, let Fk ⊂ F ∩ (rkD\c1rkD) be the
corresponding skeleton of F at the level rk, and observe that by a sym-
metrization and contraction argument and Theorem 3.3,

E sup
{f :Ef2≥c1r2k}

∣

∣

∣

∣

∣

N
∑

i=1

Yi
f(Xi)

Ef2

∣

∣

∣

∣

∣

& E sup
f∈Fk

∣

∣

∣

∣

∣

N
∑

i=1

εiYi
f(Xi)

Ef2

∣

∣

∣

∣

∣

&
1

r2k
E sup
f∈Fk

∣

∣

∣

∣

∣

N
∑

i=1

εiYif(Xi)

∣

∣

∣

∣

∣

≥ c2
r2k

√
krk

√
N = c2

√
kN

rk
.

Therefore,

E sup
{f :PLf≥c1r2k}

∣

∣

∣

∣

∣

N
∑

i=1

Lf (Xi, Yi)

PLf
− 1

∣

∣

∣

∣

∣

≥ c3

(

1

rk

√

k

N
− L2Q

√

k

N

)

≥ 1

provided that rk(Q) ≤ c4Q
√

k/N , and c4 depends only on L, q and ‖Y ‖Lq .

Corollary 3.4 Let F and Y be as above, set

A =

{

k ≥ k∗F ,Q : rk(Q) ≤ c0Q

√

k

N

}

for a constant c0 that depends only on c, L, q and ‖Y ‖Lq , and put k1 =
minA. Then for Q ≤ 1,

E sup
{f :ELf≥r2k1(Q)}

∣

∣

∣

∣

Lf (Xi, Yi)

ELf
− 1

∣

∣

∣

∣

≥ 1.

To conclude the proof of Theorem B, one has to identify the connections
between s∗N (η) and rk(Q).

Lemma 3.5 Using the same notation as above, if η ≤ 2/c0, rk1(Q)/2 ≤
s∗N (η) and if η ≥ 1/c0, rk1−1(Q) ≥ s∗N (η).

Proof. Observe that for k ∈ A,
√
k ≥ rk(Q)

√
N/(c0Q). If η ≤ 2/c0 then

E‖G‖F∩(rk(Q)/2)D ≥ Q
√
krk(Q)/2 ≥ (1/2c0)r

2
k(Q)

√
N ≥ η

√
Nr2k(Q)/4,

implying that rk(Q)/2 ≤ s∗N (η).
In the reverse direction, let rk(Q) be the largest fixed point satisfying

rk(Q) < s∗N (η). If k 6∈ A then
√
k ≤ rk(Q)

√
N/c0Q. Therefore,

E‖G‖F∩rk(Q)D ≤ Q
√
krk(Q) ≤ r2k(Q)

√
N/c0,

and if 1/c0 ≤ η then s∗N (η) ≤ rk(Q), which is impossible. Hence, rk1−1(Q) ≥
s∗N (η), as claimed.
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Combining Corollary 3.4 with Lemma 3.5 shows that if Q < 1 and
η ≥ 1/c0 then

E sup
{f :PLf≥s∗N (η)}

∣

∣

∣

∣

Lf (Xi, Yi)

PLf
− 1

∣

∣

∣

∣

≥ 1,

proving Theorem B and complementing the upper bound in Theorem 2.4.

4 Minimax lower bounds

Here, we will study the gaussian model, given by Y = f(X) +W , where
F is a class of functions on a probability space (Ω, µ) and f ∈ F . For any
τ = (x1, . . . , xN ) ∈ ΩN and f ∈ F , consider the conditional probability
measure νf,τ of (Yi|Xi = xi)

N
i=1 given by

dνf,τ (y) = exp

(

−
‖y − (f(xi))

N
i=1‖2ℓN

2

2σ2

)

· dy

(
√
2πσ)N

,

and set νf,τ ⊗µN to be the probability measure on (R⊗Ω)N that generates
the sample (Yi,Xi)

N
i=1 according to the model.

Let

B(f, r) = {h ∈ F : ELh ≤ r} = {h ∈ F : E(f − h)2 ≤ r},

for the squared excess loss functional with Y = f(X)+W ; namely, Lh(X,Y ) =
(Y − h(X))2 − (Y − f(X))2.

Note that if a procedure f̃N has accuracy εN with a confidence parameter
δN then for every f ∈ F ,

(νf,τ ⊗ µN )
(

f̃−1
N (B(f, εN ))

)

≥ 1− δN .

In other words, the set of data points (yi, xi)
N
i=1 that are mapped by the

procedure f̃N to the set {h ∈ F : ELh ≤ εN} is of νf,τ ⊗ µN measure at
least 1− δN .

The first estimate presented here is the “high probability” lower bound,
formulated in Theorem A′.

Theorem 4.1 There exists an absolute constant c1 for which the following
holds. If F is star-shaped in one of its points and f̃N is a procedure with a
confidence parameter δN < 1/4 then its accuracy satisfies

εN ≥ min

{

c1σ
2 log(1/δN )

N
,
1

4
dF (L2)

}

.
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Theorem 4.1 shows that if a procedure has a confidence parameter δN =
exp(−c0γN), then its accuracy is, at best, εN ≥ c2σ

2γ. Taking γ =
η(s∗N (η))

2 for η ∼ σ−1 proves the second part of Theorem A′, and shows
that ERM achieves the minimax rate for the confidence established in The-
orem A if the noise level is nontrivial.

The proof of Theorem 4.1 requires several preliminary steps.
Let τ = (xi)

N
i=1 ∈ ΩN and consider the conditional probability mea-

sure νf,τ defined above. Put Af = f̃−1
N (B(f, εN )) and let Af |τ denote the

corresponding fiber of Af .

Lemma 4.2 For every f ∈ F ,

µN
({

τ = (xi)
N
i=1 : νf,τ (Af |τ) ≥ 1−

√

δN
})

≥ 1−
√

δN .

Proof. Fix f ∈ F and let ρ(τ) = νf,τ (Af |τ). Then,

1− δN ≤ νf,τ ⊗ µN (Af ) = Eρ(X1, ...,XN ).

Since ‖ρ‖L∞
≤ 1 and Eρ(τ) ≥ 1 − δN , by the Paley-Zygmund Theorem,

P(ρ(τ) ≥ x) ≥ 1 − δN/(1 − x) for every x > 0. The result follows by
selecting x = 1−√

δN .

Observe that for every f ∈ F and τ = (x1, ..., xN ), νf,τ is a gaussian
measure on R

N with mean Pτf = (f(xi))
N
i=1 and covariance matrix σ2IN .

Denote by t 7→ Φ(t) = P(g ≤ t), the cumulative distribution function of a
standard gaussian random variable g on R.

Lemma 4.3 Let u, v ∈ R
N and consider two gaussian measures νu ∼

N (u, σ2IN ) and νv ∼ N (v, σ2IN ) on R
N . If A is a measurable subset of

R
N then

νv(A) ≥ 1− Φ
(

Φ−1(1− νu(A)) + ‖u− v‖ℓN
2

/σ
)

.

The main component in the proof of Lemma 4.3 is a version of the
gaussian shift theorem.

Theorem 4.4 [12] Let ν be the standard gaussian measure on R
N and con-

sider B ⊂ R
N and w ∈ R

N . If H+ = {x ∈ R
N :

〈

x,w
〉

≥ b} is a halfspace
satisfying that ν(H+) = ν(B), then ν(w +B) ≥ ν(w +H+).

Proof of Lemma 4.3. Let ν be the standard gaussian measure on R
N . A

straightforward change of variables shows that

νu(A) = ν
(

(A− u)/σ
)

and νv(A) = ν
(

(A− v)/σ
)

.
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Let B = (A−u)/σ, w = (u− v)/σ and set ν(B) = α. Using the notation of
Theorem 4.4, the corresponding halfspace is

H+ = {x :
〈

x,w/‖w‖ℓN
2

〉

≥ Φ−1(1− α)},

and therefore, if w⊥ denotes the space of vectors orthogonal to w,

w +H+ = {(λ+ 1)w + w⊥ : λ ≥ Φ−1(1− α)/‖w‖ℓN
2

}.

Clearly,
ν(w +H+) = P

(

g ≥ Φ−1(1− α) + ‖w‖ℓN
2

)

,

and the claim follows from Theorem 4.4 and the definition of w.

Proof of Theorem 4.1. Let f̃N be a procedure with accuracy εN ≤
d2F (L2)/4 and a confidence parameter δN . Shifting F if needed, and since
F is star-shaped in one of its points, one may assume that u = 0 ∈ F and
that v ∈ F satisfies that 4εN ≤ ‖v‖2L2

≤ 8εN . By Chebyshev’s inequality,

P
(

‖Pτv‖2ℓN
2

≥ 4N‖v‖2L2

)

≤ 1/4, and thus, for τ = (Xi)
N
i=1 is a set of µN -

probability at least 3/4, ‖Pτv‖ℓN
2

≤ c1
√
N‖v‖L2

.
Consider the sets

A0 = f̃−1
N (B(0, εN )) and Av = f̃−1

N (B(v, εN )),

which, by the choice of v, are disjoint. Since f̃N has accuracy εN and a
confidence parameter δN , ν0,τ⊗µN(A0) ≥ 1−δN and νv,τ⊗µN(Av) ≥ 1−δN .
Applying Lemma 4.2, with µN -probability at least 1− 2

√
δN ,

ν0,τ (A0|τ) ≥ 1−
√

δN , and νv,τ (Av|τ) ≥ 1−
√

δN . (4.1)

Let Ω0 be the set of samples τ = (Xi)
N
i=1 ⊂ ΩN for which ‖Pτv‖ℓN

2

≤
c1
√
N‖v‖L2

and (4.1) holds. Hence, P(Ω0) ≥ 3/4 − 2
√
δN , and by Lemma

4.3 applied to the set A0|τ ,

νv,τ (A0|τ) ≥ 1− Φ
(

Φ−1(
√

δN ) + ‖Pτv‖ℓN
2

/σ
)

= (∗).

Observe that if δN < 1/4 then Φ−1(
√
δN ) < 0 and |Φ−1(

√
δN )| ∼

√

log(1/δN ).
Moreover, if ‖Pτv‖ℓN

2

≤ σ|Φ−1(
√
δN )| then (∗) > 1/2.

Since τ ∈ Ω0, ‖Pτv‖ℓN
2

≤ c1
√
N‖v‖L2

; therefore, if

‖v‖L2
. σ

√

log(1/δN )

N
,
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it follows that νv,τ (A0|τ) > 1/2. On the other hand, A0|τ and Av|τ are
disjoint and νv,τ (Av|τ) ≥ 1−

√
δN , which is impossible if δN < 1/4.

Thus,

‖v‖L2
& σ

√

log(1/δN )√
N

,

and by the choice of v,

8εN ≥ ‖v‖2L2
& σ2

log(1/δN )

N
,

as claimed.

Next, we turn to the proof of Theorem C which is a straightforward
application of the next observation:

Theorem 4.5 There exists an absolute constant c0 for which the following
holds. Let F and Y be as above, and assume that f̃N is a procedure with
accuracy εN = a2N and a confidence parameter δ ≤ 1/4. Then, for any θ ≥ 4
and f ∈ F , if Λ is a 2aN -separated subset of F ∩ (f + θaND),

log |Λ| ≤ c0N

(

θaN
σ

)2

.

Proof. Let a = aN , set D(f, r) = {h ∈ F : ‖f −h‖L2
≤ r} and put Λ to be

a maximal 2a-separated set of F ∩ (f + θaD) with respect to the L2 norm;
thus, (D(f, a) : f ∈ Λ) is a family of disjoint sets in F ∩ (f + θaD).

Recall that for any τ = (x1, . . . , xN ) ∈ ΩN , Af |τ is the fiber of Af =
f̃−1
N (D(f, a)) and since f̃N has accuracy a2 with a confidence parameter
δN = 1− α, for any f ∈ Λ

Eτνf,τ (Af |τ) = νf,τ ⊗ µN (Af ) ≥ α.

If u 6= v in Λ and A ⊂ R
N then by Lemma 4.3,

νu,τ (A) ≥ 1− Φ
(

Φ−1(1− νv,τ (A)) + ‖Pτv − Pτu‖ℓN
2

/σ
)

.

Fix v0 ∈ Λ, and since
(

Av|τ, v ∈ Λ
)

is a family of disjoint sets,

1 ≥
∑

v∈Λ
νv0,τ (Av|τ)

≥
∑

v∈Λ

(

1−Φ
(

Φ−1(1− νv,τ (Av|τ)) + ‖Pτv0 − Pτv‖ℓN
2

/σ
)

)

=
∑

v∈Λ

∫ ∞

zτ (v)
ϕ(x)dx,
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where ϕ is a density function of a the standard gaussian N (0, 1) and

zτ (v) = Φ−1(1− νv,τ (Av|τ)) + ‖Pτv0 − Pτv‖ℓN
2

/σ.

Taking the expectation with respect to τ ,

1 ≥
∑

v∈Λ
Eτ

∫ ∞

zτ (v)
ϕ(x)dx, (4.2)

and it remains to lower bound each expectation.
Since

Eτνv,τ
(

(Av|τ)c
)

≤ 1− α ≤ 1/4,

it follows from Chebyshev’s inequality that Pτ

(

νv,τ (Av|τ) ≥ 3/4
)

≤ 1/3.
Therefore, with µN -probability at least 2/3,

Φ−1
(

1− νv,τ (Av|τ)
)

= Φ−1
(

νv,τ
(

(Av|τ)c
))

≤ Φ−1(3/4) := β.

Another application of Chebyshev’s inequality shows that with µN -probability
at least 2/3,

‖Pτv0 − Pτv‖ℓN
2

≤ (3/2)
√
N‖v0 − v‖L2

≤ (3/2)θa
√
N,

because v ∈ D(v0, θa). Therefore, with µ
N -probability at least 1/3,

zτ (v) ≤ β + (3/2)
√
Nθa/σ

and since β + (3/2)
√
Nθa/σ > 0,

Eτ

∫ ∞

zτ (v)
ϕ(x)dx ≥ 1

3

∫ ∞

β+(3/2)
√
NθaN /σ

ϕ(x)dx & exp
(

− c2Nθ
2a2

σ2

)

.

Thus, by (4.2), 1 & |Λ| exp
(

− c3Nθ
2a2/σ2

)

, as claimed.

We conclude this section with the proof of Theorem D, which is presented
for a random design, though a proof for a deterministic design is almost
identical. The idea behind the proof is that if τ = (X1, ...,XN ) and Pτf1 =
Pτf2, then the two functions are indistinguishable on a sample (Xi, Yi)

N
i=1

of a model Y f1 = f1(X)+V . Therefore, it seems unlikely that one may find
a procedure that performs better than the “worse” typical L2 diameter of
sets

K(f, τ) = {h ∈ F : Pτh = Pτf},
which is denoted by D(f, τ).
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Fix f ∈ F and let f̃N be a given procedure. Define an F-valued random
variable hf , as follows. Let h1,τ (f) and h2,τ (f) be almost L2-diametric
points in K(f, τ). Let δ be a {0, 1}-valued random variable with mean 1/2,
which is independent of X and V , and set

hf = (1− δ)h1,τ (f) + δh2,τ (f). (4.3)

Note that for every realization of δ, D(hf , τ) = D(f, τ). Let I(A) be the
indicator of the set A and observe that for every realization of the random
variable δ,

sup
f∈F

PX,V

(

‖f̃N
(

(Xi, f(Xi) + Vi)
N
i=1

)

− f‖L2
≥ D(f, τ)/4

)

≥ sup
f∈F

PX,V

(

‖f̃N
(

(Xi, hf (Xi) + Vi)
N
i=1

)

− hf‖L2
≥ D(hf , τ)/4

)

= sup
f∈F

PX,V

(

‖f̃N
(

(Xi, hf (Xi) + Vi)
N
i=1

)

− hf‖L2
≥ D(f, τ)/4

)

= (∗).

Put

A1 =
{

‖f̃N
(

(Xi, h1,τ (Xi) + Vi)
N
i=1

)

− h1,τ‖L2
≥ D(f, τ)/4

}

,

and

A2 =
{

‖f̃N
(

(Xi, h2,τ (Xi) + Vi)
N
i=1

)

− h2,τ‖L2
≥ D(f, τ)/4

}

.

Taking the expectation in (∗) with respect to δ,

Eδ(∗) ≥ sup
f∈F

EX,V EδI
(

f̃N
(

(Xi, hf (Xi) + Vi)
N
i=1

)

− hf‖L2
≥ D(f, τ)/4

)

= sup
f∈F

EX,V
1

2
(I(A1) + I(A2)).

Note that for any sample τ , h1,τ (Xi) + Vi = h2,τ (Xi) + Vi; therefore,

f̃N
(

(Xi, h1,τ (Xi) + Vi)
N
i=1

)

= f̃N
(

(Xi, h2,τ (Xi) + Vi)
N
i=1

)

≡ f0.

Since h1,τ and h2,τ are almost diametric in K(f, τ), either ‖h1,τ − f0‖L2
≥

D(f, τ)/4 or ‖h2,τ − f0‖L2
≥ D(f, τ)/4. Thus, I(A1) + I(A2) ≥ 1 almost

surely, and

sup
f∈F

PX,V

(

‖f̂N
(

(Xi, f(Xi) + Vi, )
N
i=1

)

− f‖L2
≥ D(f, τ)/4

)

≥ 1/2.

To conclude the proof, observe that the squared excess risk of f̃N for the
model Y f = f(X) + V is the square of the L2 distance between f̃N and f .
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Remark. It is straightforward to verify that if σ = 0, then for every sample
τ , ERM satisfies f̂ ∈ K(f∗, τ). Therefore, a typical value of D(f∗, τ) is the
minimax rate in the noise-free case.

As a generic example, let T ⊂ R
d be a convex, symmetric set, put µ

to be an isotropic, L-subgaussian measure and set F to be a class of linear
functionals, indexed by T . Given a sample τ = (X1, ...,XN ), Pτ t = Γt for
the random operator Γ =

∑N
i=1

〈

Xi, ·
〉

ei. Therefore,

K(v0, τ) = {v ∈ T : Γv = Γv0} = v0 + (T ∩ kerΓ),

and since T is convex, the largest diameter is attained for v0 = 0.
Let dN = dN (ρ) satisfy that with probability at least 1−ρ, D(0, τ) ≥ dN .

Then, by Theorem D, any procedure with a confidence parameter δN ≤
1/2 + ρ has its accuracy parameter εN larger than dN (ρ)/4.

On the other hand, a straightforward application of Lemma 2.2 shows
that with probability at least 1 − 2 exp(−c1NQ2), D(0, τ) ≤ r∗N (Q). In
certain cases, cN (T ) ∼ r∗N (Q) for a suitable absolute constant Q. Thus,
with the same probability estimate,

r∗N (Q) . cN (T ) ≤ D(0, τ) ≤ r∗N (Q),

implying that if σ . r∗N (Q), the error rate obtained in Theorem A is sharp
in the minimax sense in the constant probability range.

5 Examples

Here, we will present two examples of problems in which our results may be
used. Although there are many other examples that follow the same path,
and for which the estimates of Theorem A are sharp, we will not present
them here for the sake of brevity.

5.1 Learning over the B
d
1 ball

Let F be a class of linear functionals, indexed by T = Bd
1 , the unit ball in ℓ

d
1.

Assume that µ is an isotropic, L-subgaussian measure on R
d, that Y ∈ Lψ2

and that ‖Y − f∗‖ψ2
≤ σ.

The upper bound of Theorem A is based on estimates on E‖G‖2F∩sD.
Because the measure µ is isotropic, the gaussian process is given by t →
∑d

i=1 giti, and D is the unit ball in ℓd2.
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One may show (see, for example, [9]) that for every 1/
√
d ≤ s ≤ 2,

E sup
t∈2Bd

1
∩sBd

2

∣

∣

∣

d
∑

i=1

giti

∣

∣

∣ ∼
√

log(eds2),

while if s ≤ 1/
√
d, sBd

2 ⊂ 2Bd
1 ∩ sBd

2 ⊂ 2sBd
2 , and thus

E sup
t∈2Bd

1
∩sBd

2

∣

∣

∣

d
∑

i=1

giti

∣

∣

∣
∼ s

√
d.

Therefore, setting η = c0/σ, it is straightforward to verify that

(s∗N (η))
2 ∼

{

σ

√

log(ed2σ2/N)
N if N ≤ σ2d2,

σ2d/N otherwise.

Also,

(r∗N (Q))2











∼Q
1
N log

(

ed
N

)

if N ≤ c1d,

.Q
1
d if c1d ≤ N ≤ c2d

= 0 if N > c2d,

where c1 and c2 are constants that depend only on Q. When N ∼ d, r∗N
decays rapidly from N−1/2 log1/2(ed/N) to 0. Thus, when c1d ≤ N ≤ c2d
one only has an upper estimate on r∗N , and we will only consider the cases
N ≤ c1d and N ≥ c2d.

Fix Q to be a constant depending on L and η = c0/σ, and let N ≤ c1d.
If σ ≥ r∗N then also σ2d2 & N . Hence,

(s∗N (c0/σ))
2 ∼ σ

√

log(ed2σ2/N)

N
.

Therefore, by Theorem A, if σ ≥ c3
√

log(ed/N)/N , then with probability
at least 1− 2 exp(−c4σ−1 log(ed2σ2/N)), ERM satisfies that

R(f̂) ≤ inf
f∈F

R(f) + c5σ

√

log(ed2σ2/N)

N
.

And, if σ ≤ c3
√

log(ed/N)/N , then with probability at least 1−2 exp(−c4N),
ERM satisfies that

R(f̂) ≤ inf
f∈F

R(f) +
c5
N

log

(

ed

N

)

,
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where c3, c4, c5 depend on L,B and the choice of Q.
In a similar fashion, ifN ≥ c2d then r

∗
N = 0, and thus σ ≥ r∗N . Therefore,

the error rate of ERM is determined solely by s∗N .
Turning to the lower estimate and as noted in Theorem A′, if f̃N is

a procedure with accuracy εN , that has to achieve the same confidence
obtained in Theorem A, then in the noisy case (σ & r∗N )

εN & σ2
log(1/δN )

N
= (s∗N (c/σ))

2.

Thus, ERM achieves the minimax rate in that regime.
Moreover, since T = Bd

1 is skeletal, then by Theorem B, the isomorphic
method cannot be used to improve the rate of (s∗N (c0/σ))

2 for σ sufficiently
small.

For a lower bound with constant probability, recall that to apply Theo-
rem C, one has to bound the covering numbers

logN(Bd
1 ∩ rBd

2 , θrB
d
2)

from below for some θ < 1.
Fix 1/

√
d ≤ r ≤ 1, and without loss of generality assume that k = 1/r2

is an integer. Given I ⊂ {1, ..., d}, let SI be the Euclidean sphere supported
on the coordinates I, and note that

⋃

|I|=k
rSI ⊂ Bd

1 ∩ rBd
2 .

Recall the well known fact (see, e.g., [14]) that there is a collection B of
subsets of {1, ..., d} of cardinality k, that is c1k separated in the Hamming
distance, and log |B| ≥ c2k log(ed/k). The set Λ = {r∑i∈I ei : I ∈ B} is a
c8r-separated subset of Bd

1 ∩ rBd
2 relative to the ℓd2 distance. Hence,

logN(Bd
1 ∩ rBd

2 , c8rB
d
2) ≥ c9

log(edr2)

r2
.

By Theorem C, given a procedure with a confidence parameter δN ≤ 1/4,
its accuracy εN = r2 ≥ 1/d satisfies

log(edr2)

r2
. logN(Bd

1 ∩ rBd
2 , c8rB

d
2) .

Nr2

σ2
.

Therefore,

εN & σ

√

log(ed2σ2/N)

N
,
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provided that d2σ2 ≥ N (otherwise, r ≤ 1/
√
d).

If r ≤ 1/
√
d, logN(Bd

1 ∩ rBd
2 , c10rB

d
2) & 2d, and

εN = r2 & σ2
d

N
,

if d2σ2 ≤ N . Thus, f̃N cannot outperform ERM in the noisy case, even if
allowed to succeed only with constant probability.

Finally, turning to the trivial noise level, one has to show that the esti-
mate of r∗N is sharp. Recall that by Theorem D it suffices to show that the
Gelfand N -width of Bd

1 satisfies cN (B
d
1) ∼ r∗N . By a result due to Garanaev

and Gluskin [8],

cN (B
d
1 ) ∼ min

{

1,

√

log(ed/N)

N

}

∼ r∗N .

Thus, for 0 ≤ σ . r∗N (Q), f̃N does not outperform ERM.

5.2 Low-rank matrix inference via the max-norm

In this type of problem, the goal is to explain an output Y by a linear
function of a low-rank (or approximately low rank) matrix. Since the rank
is not a convex constraint, one may consider the convex relaxation given by
the factorization-based norm

‖A‖max = min
A=UV ⊤

‖U‖2→∞ ‖V ‖2→∞ .

Let Bmax be the unit ball relative to that norm and set F = {fA =
〈

·, A
〉

:
A ∈ Bmax}. Thus,

ÂN ∈ argmin
‖A‖max≤1

1

N

N
∑

i=1

(

Yi −
〈

Xi, A
〉)2

.

A similar estimator has been studied in [21] for Y =
〈

A∗,X
〉

+W , a random
vector X that is selected uniformly from the canonical bases of Rp×q, a noise
vector W that is either gaussian or sub-exponential noise with independent
coordinates, and matrices in Bmax with bounded entries.

Assume that X is isotopic and L-subgaussian relative to the normalized
Frobenius norm

∥

∥

〈

X,A
〉∥

∥

L2

= (pq)−1/2 ‖A‖F ,
∥

∥

〈

X,A
〉∥

∥

ψ2

≤ L(pq)−1/2 ‖A‖F .
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It is straightforward to verify that if the X is not an isotropic vector,
but rather, only equivalent to an isotropic one, similar estimates to the ones
presented below hold, and the modifications required in the proofs are minor.

Let A∗ be the true minimizer of the squared loss in Bmax and set the
“noise parameter”

∥

∥Y −
〈

X,A∗〉∥
∥

ψ2

≤ σ. Since F is convex, the true mini-
mizer is unique and the Bernstein and star-shape conditions of Theorem A
are satisfied.

To apply Theorem A, one has to estimate the fixed points r∗N (Q) and
s∗N (η) for Q that depends only on L and η ∼L σ

−1.
Set BF to be the unit ball relative to the Frobenius norm and observe

that since X is isotropic, the relative L2 unit ball is

D = {fA : E|
〈

X,A
〉

|2 ≤ 1} = {
〈

·, A
〉

: A ∈ √
pqBF },

and the corresponding gaussian process has a covariance structure given by

EGfAGfB = (pq)−1
〈

A,B
〉

= (pq)−1Tr(A⊤B).

A simple application of Grothendieck’s inequality (see, e.g., [18]) shows that

conv
(

X±
)

⊂ Bmax ⊂ KGconv
(

X±
)

where KG is the Grothendieck constant and X± = {uv⊤ : u ∈ {±1}p, v ∈
{±1}q}.

Let G = (gij)1≤i≤p:1≤j≤q be a matrix with independent, centered gaus-
sian entries with variance (pq)−1. Thus, for every s > 0,

E ‖G‖(F−F)∩sD = E sup
A∈2Bmax∩s√pqBF

|
〈

G, A
〉

| ≤ 2E sup
A∈Bmax

|
〈

G, A
〉

|

≤ 2KGE sup
A∈conv(X±)

|
〈

G, A
〉

|.

By standard properties of gaussian processes,

E sup
A∈conv(X±)

|
〈

G, A
〉

| . max
A∈X±

‖A‖F√
pq

√

log |X±| .
√
p+ q.

In the reverse direction, by Lemma 3.1 in [21], if

1

min(p, q)
. s2 . 1,

then
s log1/2N(Bmax ∩ s

√
pqBF , s

√

pq/2BF ) &
√
p+ q. (5.1)
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Hence, in that range of s,

E ‖G‖(F−F)∩sD ∼ √
p+ q,

and

(s∗N (c/σ))
2 ∼ σ

√

p+ q

N
, (r∗N (Q))2 ∼ p+ q

N
.

Applying Theorem A, if σ &Q,L

√

(p+ q)/N then with probability at least
1− 2 exp(−c1

√

N(p+ q)/σ), ERM satisfies that

E(Y −
〈

Â,X
〉

)2 ≤ inf
A∈Bmax

E(Y −
〈

A,X
〉

)2 + c2(Q,L)σ

√

p+ q

N
,

and if σ .Q,L

√

(p + q)/N , then with probability at least 1− 2 exp(−c1N),

E(Y −
〈

Â,X
〉

)2 ≤ inf
A∈Bmax

E(Y −
〈

A,X
〉

)2 + c2(Q,L)
p+ q

N
.

To see that this estimate is sharp in the minimax sense when σ &
√

(p+ q)/N ,
consider the gaussian regression model Y =

〈

A∗,X
〉

+W and observe that
Theorem A′ implies that ERM achieves the minimax rate for the confi-
dence parameter δN . exp(−c1

√

N(p+ q)/σ). Moreover, by Theorem C
and (5.1), any procedure with confidence parameter δN ≤ 1/4 has accuracy

εN & σ
√

p+q
N , matching the upper bounds in the noisy regime.

6 Concluding remarks and comparisons with ex-

isting results

Subgaussian classes of functions play a central role in our presentation. The
reason for focusing on such classes is that, on one hand, there are many nat-
ural examples that fall within the subgaussian framework, and on the other,
because the substantial technical machinery needed to establish Theorem A
and B is not known in general. Perhaps surprisingly, the difficult part in
developing such a theory is not the slow decay of tails of individual class
members, but rather, the lack of a framework that captures the “global”
complexity of the class – as E‖G‖F does in the subgaussian case.

There are cases, though, in which such a theory exists (e.g., uncondi-
tional, log-concave vectors in R

d) and one may prove analogous results to
the ones presented here. Since the technical cost is rather substantial and
would obscure the main message of this article, we decided to leave these
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generalizations to future work. For more details on these directions, we refer
the reader to [16, 15].

The results presented in this article are sharp in many cases, but not in
every case. First, in the “high probability” range, Theorem A and Theorem
A′ show that when σ & r∗N the result is sharp in the minimax sense. How-
ever, σ . r∗N , it is known to be sharp only when σ = 0 (the error rate is
a typical value of D2(f∗, τ)) or if σ ∼ r∗N , where the error rate is ∼ (r∗N )

2.
A sharp estimate for σ ∈ (0, r∗N ) is not known, although there are many
examples in which r∗N is equivalent to the “width” of the class, and then
ERM is optimal in the minimax sense in that range as well.

In the constant probability regime, the situation is even less clear. In
the noisy case, when σ & r∗N , the upper bound of (s∗N (c/σ))

2 is sharp only
if the gaussian parameter s∗N (c/σ) and the Sudakov-based one, q∗N (c/σ) are
equivalent. Unfortunately, this is not even true for F = {

〈

t, ·
〉

: t ∈ Bd
p} for

1 + 1/ log d < p < 2. In the “low-noise” case (i.e. σ . r∗N ), the situation is
as described above.

Therefore, he have shown that for the gaussian noise, ERM achieves the
minimax rate of convergence max

(

(s∗N (c/σ))
2, (r∗N (Q))2

)

in the constant
probability regime for both ranges of noise, if F is a convex subgaussian
class, satisfying

1. q∗N log1/2N(F ∩ 2q∗ND, q
∗
ND) ∼ E ‖G‖F∩q∗

N
D – meaning that there is

no gap in the Sudakov inequality at scale q∗N = q∗N (c/σ);

2. cN (F) ∼ r∗N (F) – meaning that
√
NcN (F ∩ r∗ND) ∼ E ‖G‖F∩r∗

N
D,

and there is no gap in the Pajor-Tomczak-Jaegermann estimate on
the N -Gelfand width. (see [19]).

It seems unlikely that these conditions on the regularity of F are nec-
essary; the second one if less likely than the first, as an estimate on the
“random” width rather than the minimal one suffices for the lower bound.
Another issue is that the isomorphic method only leads to an upper bound on
the performance of ERM, which is another possible reason for a suboptimal
estimate in the constant probability regime. Since f̂ minimizes f 7→ PnLf
in F , ERM selects a point in the “sphere” {f : PLf = r} that minimizes

inf
{f :PLf=r}

( 1

N

N
∑

i=1

(f − f∗)2(Xi) +
1

N

N
∑

i=1

ξi(f − f∗)(Xi)
)

. (6.1)

If r & r∗N , the first term in (6.1) is essentially ‖f − f∗‖2L2
, and when

the noise level is high, one expects the minimum to be attained by r & r∗N .
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Thus, the problem of identifying the minimum is restricted to obtaining
sharp upper and lower estimates on the multiplier process. On the other
hand, for a low noise level, the minimum is likely to be below r∗N , where
there is an additional source of difficulty – that there is no clear way of
estimating the quadratic term, making the problem much harder.

The parameter s∗N is comparable with the ones used in [23, 4, 24, 25],
where the fixed points have been associated with a Dudley’s entropy integral
for localized sets of the class. In [4], it has been shown that if the noise
level is large enough and there is no gap in both Sudakov’s AND Dudley’s
inequalities at the correct level (given by the fixed point), ERM is a minimax
procedure in expectation. Theorem A improves that result, because the
complexity measure used here is based on the gaussian mean width, which
is always smaller than Dudley’s entropy integral. Moreover, no restrictions
on the noise level have been imposed.

In this exposition, we tried to underline that the study of the gaussian
regression model requires the analysis of two regimes: high and low noise
levels (regardless of the desired estimates on the probability). This reveals
the two different sources of statistical complexity that are intrinsic to this
model. When estimating f in L2 from the data (Xi, Yi)

N
i=1, one source of

an error is that f is known only through its coordinate projection Pσf =
(f(Xi))

N
i=1, while the other is that only a noisy version of this projection is

observed. The two, projection and noise, lead to different complexity terms
and are associated with two different empirical processes: the quadratic,
studied in Theorem 2.1, and the multiplier, studied in Theorem 2.3.

One issue that has been neglected in this article is the geometry of the
class, which is as important as its metric complexity.

We believe ERM is an optimal procedure if and only if the class is con-
vex, and the importance of convexity has been obscured by the assumption
that the class satisfies a Bernstein condition. However, as we show next,
a uniform Bernstein condition implies that the class is convex, at least for
classes with an error rate that converges to zero.

Indeed, observe that if F ⊂ L2(µ) is closed but not locally compact in
L2(µ) then the minimax rate of Y = f(X) +W does not tend to 0 as the
sample size tends to infinity. This in an immediate outcome of Theorem C
and the fact that there is some r > 0 and f ∈ F for which f + rD contains
an infinite set that is r/4 separated in L2(µ). Thus, one may restrict oneself
to classes that are locally compact, and, in which case, one has the following:

Theorem 6.1 Let µ be a probability measure and set X to be a random
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variable distributed according to µ. If F is a locally compact subset of L2(µ),
the following statements are equivalent:

i) for any real valued random variable Y ∈ L2, there exists a unique min-
imizer in F of the functional E(Y − f(X))2. If f∗ is that minimizer,
then and for every f ∈ F ,

E
(

f(X)− f∗(X)
)2 ≤ E

(

(Y − f(X))2 − (Y − f∗(X))2
)

. (6.2)

ii) F is convex.

Proof. If F is a nonempty, closed and convex subset of a Hilbert space, the
metric projection onto F exists and is unique. And, by its characterization,
〈

f(X)− f∗(X), Y − f∗(X)
〉

≤ 0 for every f ∈ F . Therefore,

E
(

(Y − f(X))2 − (Y − f∗(X))2
)

= ‖f(X)− f∗(X)‖22 + 2
〈

f∗(X)− Y, f(X)− f∗(X)
〉

≥ ‖f(X)− f∗(X)‖22 .

and F is 1−Bernstein.
In the reverse direction, if F is locally compact, the set-value metric

projection onto F exists, and since it is 1-Bernstein for any Y , the metric
projection is unique. Indeed, if f∗1 , f

∗
2 ∈ F are minimizers then by the

Bernstein condition,

‖f∗1 (X) − f∗2 (X)‖22 ≤ BE
(

(Y − f∗2 (X))2 − (Y − f∗1 (X))2
)

= 0,

and f∗1 = f∗2 in L2(µ).
Thus, any Y ∈ L2 has a unique best approximation in F , making F a

locally compact Chebyshev set in a Hilbert space. By a result due to Vlasov
[27], (see also [6], Chapter 12), F is convex.
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[27] P.L. Vlasov. Čebyšev sets in banach spaces. Sov. Math. Dokl., 2:1373–1374, 1961.

[28] Yuhong Yang and Andrew Barron. Information-theoretic determination of minimax
rates of convergence. Ann. Statist., 27(5):1564–1599, 1999.

[29] Bin Yu. Assouad, Fano, and Le Cam. In Festschrift for Lucien Le Cam, pages
423–435. Springer, New York, 1997.

37


	1 Introduction and main results
	2 Learning subgaussian classes
	2.1 Proof of Theorem A

	3 Lower bounds on the isomorphic method
	4 Minimax lower bounds
	5 Examples
	5.1 Learning over the B1d ball
	5.2 Low-rank matrix inference via the max-norm

	6 Concluding remarks and comparisons with existing results

