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Abstract: Regularity properties such as the incoherence condition, the

restricted isometry property, compatibility, restricted eigenvalue and ℓq

sensitivity of covariate matrices play a pivotal role in high-dimensional

regression and compressed sensing. Yet, like computing the spark of a

matrix, we first show that it is NP-hard to check the conditions involving

all submatrices of a given size.

This motivates us to investigate what classes of design matrices sat-

isfy these conditions. We demonstrate that the most general property,

ℓq sensitivity, holds with high probability for covariate matrices sam-

pled from populations with a suitably regular covariance matrix. The

probability lower bound and sample size required depend on the tail be-

havior of the random noise. We examine this for three important cases,

bounded, sub-Gaussian, and finite moment random noises.

We further show that ℓq sensitivity is preserved under natural opera-

tions on the data. Our work is particularly important for many statisti-

cal applications, in which the covariates are observational and correlated

and can be thought of as fixed in advance.
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1. Introduction

The analysis of high-dimensional data is a central topic of statistics, moti-
vated by advances in science, technology and engineering. Recent research
revealed that estimation in high dimensions may be possible if the problems
are suitably sparse. As a typical example, consider linear regression where
most of the coefficients of the parameter vector are vanishing. In this setting,
popular estimators include the Lasso (Chen, Donoho and Saunders, 2001;
Tibshirani, 1996), folded concave penalized least-squares such as SCAD (Fan
and Li, 2001), and the Dantzig selector (Candès and Tao, 2007). Sparsity
has been exploited in a number of other questions, for instance instrumental
variables regression in the presence of endogeneity (Gautier and Tsybakov,
2011).

The Lasso and Dantzig selector have small estimation error as long as
the matrix of covariates obeys one of a variety of conditions. The incoher-
ence condition of Donoho and Huo (2001) provides the earliest and simplest
example. Later Candès and Tao (2005) introduced the restricted isometry
property and showed its application to the Dantzig selector (Candès and
Tao, 2007). In subsequent work Bickel, Ritov and Tsybakov (2009) analyzed
the estimators under the weaker and more general restricted eigenvalue (RE)
condition. The compatibility conditions of van de Geer (2007) are closely re-
lated. See van de Geer and Bühlmann (2009) for the relationship between
these properties. Gautier and Tsybakov (2011) have recently introduced an
estimator for instrumental variables regression, along with the ℓq sensitivity
properties that guarantee small estimation error. ℓq sensitivity is the weakest
and most general of the above properties, and also applies to linear regres-
sion. It is closely related to the cone invertibility factors of Ye and Zhang
(2010).

We investigate in depth the conditions of the design matrices needed for
high-dimensional sparse estimation. We first deal with the computational
complexity of checking the properties on general design matrices. The loca-
tions of the non-vanishing coefficients of the regression parameter are un-
known, so we must make a non-degeneracy assumption uniformly over all
subsets of a given size. This suggests that the conditions may be hard to
check. We confirm this by showing that checking any of the restricted eigen-
value, compatibility, and ℓq sensitivity properties for general data matrices
is NP-hard. This implies that there is no efficient way to check them, un-
der the widely believed conjecture that P 6= NP. Our result builds on the
recent proof that computing the spark and checking the restricted isometry
property is NP-hard (Bandeira et al., 2013; Tillmann and Pfetsch, 2012).
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Verifying the needed matrix properties is an important problem, recog-
nized in a number of places in the literature. Tao (2007); Raskutti, Wain-
wright and Yu (2010); d’Aspremont and El Ghaoui (2011) discuss it as a
problem of interest. Verification leads to guarantees that the inference proce-
dure was successful. From a statistical point of view, the numerical values of
the regularity conditions yield confidence sets for the regression parameter.
The difficulty of their computation has already motivated several research
works. For instance convex relaxations have been proposed for approximat-
ing the restricted isometry contant (d’Aspremont, Bach and Ghaoui, 2008;
Lee and Bresler, 2008), and linear relaxations for the ℓq sensitivity (Gautier
and Tsybakov, 2011).

Incoherence conditions are easy to check in polynomial time, in contrast to
the hardness for the other properties. However they do not provide optimal
rate of convergence: they require the sample size n of quadratic order s2

(Bunea, 2007; Bandeira et al., 2012), while other conditions allow linear
order (see e.g. Candès and Tao, 2005; Raskutti, Wainwright and Yu, 2010).

As a way to address the problem of non-verifiability, we show that our
conditions hold with high probability if the covariate matrix is randomly
sampled from a suitably well-behaved distribution. This extends the well-
understood results for matrices with independent entries to correlated ob-
servation vectors, generated independently from a regular population. Pre-
vious results have been obtained for RIP (e.g. Rauhut, Schnass and Van-
dergheynst, 2008; Vershynin, 2010), and RE (Raskutti, Wainwright and Yu,
2010; Rudelson and Zhou, 2012). We establish new results for the more gen-
eral ℓq sensitivity, under three probability models: observations that are (1)
sub-gaussian, (2) bounded, and (3) have bounded moments. These results
are useful if a population covariance model is known and easier to analyze.
This is often the case, as illustrated by our examples, and those in van de
Geer and Bühlmann (2009); Raskutti, Wainwright and Yu (2010).

Finally, we show that the ℓq sensitivity property is preserved under sev-
eral natural operations on the data matrix. It is initially hard to ascertain
whether this crucial property holds, but then there is a range of transfor-
mations one can apply to the data while preserving it.

In Section 2, we give definitions and the setup of our problem. In Section
3 we present our results, which are proven in Section 5. We finish with
discussion in Section 4.
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2. Definitions and Setup

We start with some basic notation, and then introduce the problems and
notions we study: regression, associated estimators, regularity properties,
sub-gaussian variables, and computational complexity.

2.1. Some notation

We denote by |v|q the vector ℓq norm. An s-sparse vector has at most s
non-vanishing coordinates. For a set S ⊂ {1, . . . , p} we denote by |S| its
cardinality and Sc its complement. For a vector v = (v1, . . . , vp)

T and a sub-
set S, we denote vS = (v11{1∈S}, . . . , vp1{p∈S})

T , where 1{.} is the indicator
function. We denote by ‖M‖max the maximum absolute value of the entries
of matrix M . For two sequences an and bn of scalars, an = O(bn) means
that there is a constant c > 0, such that an ≤ cbn for all sufficiently large n.
an ≍ bn means that an = O(bn) and bn = O(an). For random variables Xn,
we write Xn = OP (1) if the collection Xn is bounded in probability, some-
times called uniformly tight. For two sequences of random variables Xn, Yn,
the notation Xn = OP (Yn) means that there is a sequence of random vari-
ables Rn = OP (1), such that Xn = RnYn .

2.2. Regression problems and estimators

In linear regression we want to explain a response variable y as a linear
function of p covariates x1, . . . , xp, up to a noise term ε, via the model
y =

∑p
i=1 xiβi+ε. To estimate β, we observe n independent samples: the n×1

response vector Y and the covariate vectors X1,X2, · · · ,Xp of dimension n,
forming the columns of an n × p matrix X. Hence now with a noise vector
ε with independent N(0, σ2) entries, we have the model

Y = Xβ + ε.

We wish to estimate the p-dimensional parameter vector β in the case n ≪ p.
We assume that most of the coordinates of β are vanishing, and that the

design matrix X is regular, as specified in the next section. The locations
of nonzero coordinates are unknown to us. In this setting the Lasso, or
ℓ1-penalized least squares, is a popular estimator (Tibshirani, 1996; Chen,
Donoho and Saunders, 2001):

β̂Lasso = argmin
β

1

2n
|Y −Xβ|22 + λ

p
∑

i=1

|βi|,
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for a given regularization parameter.
The Dantzig selector is another estimator for this problem, which for a

known noise level σ takes the form (Candès and Tao, 2007):

β̂Dantzig = argmin |β|1, subject to

∣

∣

∣

∣

1

n
XT (Y −Xβ)

∣

∣

∣

∣

∞
≤ σA

√

2 log(p)

n
,

where A is a tuning parameter.
In instrumental variables regression we also start with the model y =

∑p
i=1 xiβi + ε. Now some xi may be correlated with the noise, in which

case they are called endogeneous. Further, we have additional variables zi,
i = 1, . . . L, called instruments, that are uncorrelated with the noise. In
addition to X, we observe n independent samples of zi, which are arranged
in the n×L matrix Z. In this setting, Gautier and Tsybakov (2011) propose
the Self-Tuning Instrumental Variables (STIV) estimator, a generalization
of the Dantzig selector. In the case where the noise level σ is known, STIV
takes the form:

min
β∈I

|D−1
X β|1 (1)

with the minimum over the polytope

I = {β ∈ R
p :

∣

∣

∣

∣

1

n
DZZ

T (Y −Xβ)

∣

∣

∣

∣

∞
≤ σA

√

2 log(L)

n
}.

Here DX and DZ are the diagonal matrices with (DX)
−1
ii = maxk=1,...,n |xki|,

(DZ)
−1
ii = maxk=1,...,n |zki|.

2.3. Regularity properties

The cone (rather, union of cones) C(s, α) is the set of vectors such that the
ℓ1 norm is concentrated on some s coordinates:

C(s, α) = {v ∈ R
p : ∃S ⊂ {1, . . . , p}, |S| = s, α|vS |1 ≥ |vSc |1}.

The regularity properties discussed depend on a triplet of parameters
(s, α, γ). In all cases s is the sparsity size of the problem, α is the cone
opening parameter in C(s, α), and γ is the lower bound. They are all positive
numbers. The first matrix property is the Restricted Eigenvalue condition
from Bickel, Ritov and Tsybakov (2009); Koltchinskii (2009).



Dobriban and Fan/Regularity of Covariate Matrices 6

Definition 2.1. A matrix X obeys the Restricted Eigenvalue condition
RE(s, α, γ), if

|Xv|2
|vS |2

≥ γ, for all v ∈ C(s, α), α|vS |1 ≥ |vSc |1.

Bickel, Ritov and Tsybakov (2009) show that if the normalized data ma-
trix 1/

√
nX obeys RE(s, α, γ) and β is s-sparse, then the estimation error

is small:

|β̂ − β|2 = OP

(

1

γ2

√

s log p

n

)

for both the Dantzig and Lasso selectors. The ’cone opening’ α required in
the restricted eigenvalue property equals 1 for Dantzig; 3 for Lasso. Next,
we describe the compatibility condition from van de Geer (2007).

Definition 2.2. A matrix X obeys the compatibility condition with pos-
itive parameters (s, α, γ) if

√
s|Xv|2
|vS |1

≥ γ, for all v ∈ C(s, α), α|vS |1 ≥ |vSc |1.

The two conditions are very similar. The only difference is that the ℓ1
versus ℓ2 norm in the denominator. The inequality |vS |1 ≤ √

s|vS |2 imme-
diately implies that the compatibility conditions are formally weaker than
the RE assumptions. van de Geer (2007) provides an ℓ1 oracle inequality
for the Lasso under the compatibility condition. See also van de Geer and
Bühlmann (2009); Bühlmann and van de Geer (2011).

The third and last assumption analyzed in this paper is the ℓq sensitivity
property from Gautier and Tsybakov (2011).

Definition 2.3. Let q ≥ 1. The n× p matrix X and n×L matrix Z satisfy
the ℓq sensitivity property with parameters (s, α, γ), if

s1/q|n−1ZTXv|∞
|v|q

≥ γ, for all v ∈ C(s, α).

Gautier and Tsybakov (2011) show that ℓq sensitivity is weaker than the
restricted eigenvalue and compatibility conditions. In the case Z = X the
definition reduces to the cone invertibility factors of Ye and Zhang (2010).
We note that the definition in Gautier and Tsybakov (2011) differs in nor-
malization. We do not normalize for simplicity, to avoid the dependencies
introduced by this process. As shown in Theorem 2.4, our definition works for
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an un-normalized version of the STIV estimator. The argument is classical,
but more general than Candès and Tao (2007) due to the use of instruments
and ℓq sensitivity. Consider

β̂ = argmin
β∈I

|β|1 with I = {β ∈ R
p :

∣

∣

∣

∣

1

n
ZT (Y −Xβ)

∣

∣

∣

∣

∞
≤ σλ}. (2)

Theorem 2.4. Assume that zj, j = 1, . . . , L, and ε are mean zero sub-
gaussian variables with sub-gaussian norm at most σ, β is s-sparse, and
X,Z obey the ℓq sensitivity property with parameters (s, 1, γ). Then, with n

independent samples of data, taking λ = A
√

2 log(L)
n , the unnormalized STIV

estimator (2) obeys

‖β̂ − β‖q = OP

(

Aσs1/q

γ

√

log(L)

n

)

.

Finally, we introduce the incoherence condition and restricted isometry
property, which serve as contrasts with the above conditions. For an n × p
matrix X whose columns {Xj}pj=1 are normalized to length

√
n, the mutual

incoherence condition holds if XT
i Xj ≤ γ/s for some positive γ. Such a

notion was defined in Donoho and Huo (2001), and later used by Bunea
(2007) to derive oracle inequalities for the Lasso.

A matrix X obeys the restricted isometry property with parameters s and
δ if (1 − δ)|v|22 ≤ |Xv|22 ≤ (1 + δ)|v|22 for all s-sparse vectors v (Candès and
Tao, 2005).

2.4. Sub-gaussian vectors

The Lp norm of a random variable is ‖X‖p = (E|X|p)1/p. A random variable
X satisfying supp≥1 p

−1/2‖X‖p < ∞ is called sub-gaussian, and its sub-

gaussian norm is defined as ‖X‖ψ2
= supp≥1 p

−1/2‖X‖p (Vershynin, 2010).
The random vector X is sub-gaussian if all one-dimensional marginals are
sub-gaussian. The sub-gaussian norm of p-dimensional random vector X is
then defined as

‖X‖ψ2
= sup

x∈Sp−1

‖〈X,x〉‖ψ2
.

Here Sp−1 is the Euclidean unit sphere in R
p.
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2.5. Notions from computational complexity

In complexity theory, problems are classified according to the computational
resources - time and memory - needed to solve them on a Turing machine,
a model for the computer (Arora and Barak, 2009).

A well-known example of a complexity class is P, consisting of the prob-
lems decidable in polynomial time in the size of the input. For input encoded
in n bits, a yes or no answer must be found in time O(nk) for some fixed
k. Another important class is NP, the decision problems for which already
existing solutions can be verified in polynomial time. This is usually much
easier than solving the question itself in polynomial-time. For instance, the
subset-sum problem: ’Given a set of integers, does there exist a subset with
zero sum?’ is in NP, since one can easily check any purported solution - a
subset of the given integers - to see if it indeed solves the problem. However,
finding this subset seems harder: simply enumerating all subsets is not a
polynomial-time algorithm.

Formally, the definition of NP requires that if the answer is yes, then there
exists an easily verifiable proof. We have P ⊂ NP, since a polynomial-time
solution is a certificate verifiable in polynomial time. However, it is a famous
open problem to decide if P equals NP (Cook, 2000). It is widely believed in
the complexity community that P 6= NP.

To compare the computational hardness of various problems, one can
reduce known hard problems to the novel questions of interest, thereby
demonstrating the difficulty of the novel problems. Specifically, a problem
A is polynomial-time reducible to a problem B, if an oracle solving B - that
is an immediate solver for an instance of B - can be queried once to give
a polynomial-time algorithm to solve A. This is also variously known as a
polynomial-time many-one reduction, strong reduction or Karp reduction.
A problem is NP-hard if every problem in NP reduces to it, namely it is at
least as difficult as all other problems in NP. If one reduces a known NP-hard
problem to a new question, this demonstrates the NP-hardness of the new
problem.

3. Results

3.1. Computational Complexity

We first show that the common conditions needed for sparse estimation are
unfortunately NP-hard to verify. This builds on the recent results that com-
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puting the spark and checking restricted isometry are NP-hard (Bandeira
et al., 2013; Tillmann and Pfetsch, 2012).

Theorem 3.1. Let X be an n × p matrix, Z an n × L matrix, 0 < s < n,
and α, γ > 0. It is NP-hard to decide any of the following problems:

1. Does X obey the restricted eigenvalue condition with parameters (s, α, γ)?
2. Does X satisfy the compatibility conditions with parameters (s, α, γ) ?
3. Do X,Z obey the ℓq sensitivity property with parameters (s, α, γ)?

The proof of Theorem 3.1 is found in Section 5.2. The theorem implies
that there is no efficient way to check if a matrix is regular, provided P 6= NP.

Conditions like restricted isometry and restricted eigenvalue are central
to both high-dimensional statistics and compressed sensing. Our result has
more important implications for statistics. In signal processing and com-
pressed sensing, one has a choice of a suitable random matrix - for instance
with iid normal entries. Various random matrix ensembles appropriate for
signal processing applications are regular with high probability, obeying even
the restricted isometry property (Candès and Tao, 2005). Thus there may
not be an urgent need for verification.

In statistical applications, however, the data matrix is often observational
and correlated. The correlation between predictors is in many cases un-
known, and may be substantial. It can be hard to judge if the matrix is
regular. Therefore checking regularity conditions is a more important issue
for statistics than for signal processing.

3.2. ℓq sensitivity for correlated designs

Due to the hardness of verification of regularity conditions, it is of paramount
importance to provide sufficient conditions for ℓq sensitivity to hold for ran-
dom matrices sampled from a high-dimensional correlated random vector.
To this end, we first define a population version of ℓq sensitivity. Let X
and Z be p and L-dimensional zero-mean random vectors and denote by
Ψ = EZXT the L× p matrix of covariances with Ψij = E(ZiXj).

Definition 3.2. The L×p matrix of covariances Ψ satisfies the ℓq sensitivity
property for q ≥ 1 with parameters (s, α, γ) if

min
v∈C(s,α)

s1/q |Ψv|∞
|v|q

≥ γ.

Note that when Z = X, Ψ is the covariance matrix of X. In particular,
when Ψ = Ip, as in many designs of compressed sensing, it possesses the
ℓq-sensitivity. See also Example 3.7 below and its proof.
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Population ℓq sensitivity corresponds to the sample version with n = ∞.
It is a necessary and natural condition to impose. Together with tail condi-
tions it is sufficient to guarantee the regularity condition of random matrices
sampled from such a population. This is indeed shown in the following the-
orem, in three different models: sub-gaussian vectors, bounded coordinates,
and finite moments.

Theorem 3.3. Let X and Z be zero-mean random vectors, such that the
matrix of population covariances Ψ satisfies the ℓq sensitivity property, q ≥
1, with parameters (s, α, γ). Let a > 0 be fixed. Given n iid samples and
any δ > 0, the matrix Ψ̂ = 1

nZ
TX obeys ℓq sensitivity with parameters

(s, α, γ − δ), with high probability under each of the following settings:

1. If X and Z are sub-gaussian with fixed constants, then sample ℓq sen-
sitivity holds with probability at least 1 − (2pL)−a, provided that the
sample size is at least n ≥ cs2 log(2pL).

2. If the entries of the vectors are bounded by fixed constants, the prop-
erty also holds with probability at least 1 − (2pL)−a, whenever n ≥
cs2 log(2pL).

3. If the entries have bounded moments: E|Xi|4r < Cx < ∞, E|Zj |4r <
Cz < ∞ for some positive integer r and all i, j, then ℓq sensitivity
holds with probability at least 1− 1/na, assuming the sample size is at
least n1−a/r ≥ cs2(pL)1/r.

The constant c does not depend on n,L, p and s, only on the other pa-
rameters of each case. It is given explicitly in the proofs in Section 5.3. The
statements require n ≍ s2 within a logarithmic order for the first two cases,
and it would be interesting to know if the rate can be improved. Further,
note that bounded random vectors are formally also sub-gaussian, but the
sub-gaussian norm scales as

√
p. We get better results for bounded vectors

if we treat them directly.
Related results have been obtained for the restricted isometry property

(Rauhut, Schnass and Vandergheynst, 2008; Rudelson and Zhou, 2012) and
restricted eigenvalue condition (Raskutti, Wainwright and Yu, 2010; Rudel-
son and Zhou, 2012). We investigate the ℓq sensitivity property since it’s
weaker and more general, also applicable to instrumental variables regres-
sion.

Theorem 3.3 can be extended to the case of the mixture distributions
with different tail properties, i.e. (X,Z) is sampled from population P1 with
probability p1, and P2 with probability 1− p1. We show this in the simplest
case, a mixture of bounded and sub-gaussian random vectors. For k = 1, 2 let
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Ψk = EkZXT denote the matrix of covariances ofX and Z under population
Pk

Theorem 3.4. Suppose the distribution of random vectors X,Z is a mixture
of a sub-gaussian distribution P1 and a coordinate-wise bounded distribution
P2, with fixed mixture probability. Suppose further that either of the two
matrices of covariances Ψ1 or Ψ2 obeys the ℓq sensitivity with lower bound
γ and that ‖Ψ1 −Ψ2‖max ≤ δ/s. Then for each ν > 0, the matrix of sample
covariances of n independent samples of (X,Z) obeys ℓq sensitivity with
sparsity size s and lower bound γ − (δ + ν)(1 + α), with probability 1 −
4(2Lp)−ρ, if n ≥ cs2 log(2pL), for some constants ρ, c.

Again, ρ and c are constants that do not depend on n,L, p, s. We prove
Theorem 3.4 in Section 5.4. From the proof, one can see that the condition
on Ψ-matrices can be relaxed to the ℓq sensitivity of the matrix p1Ψ1+(1−
p1)Ψ2, where p1 is the probability of getting the sample from P1.

In addition to the uncorrelated covariance matrices that satisfy the ℓq
sensitivity (See Example 3.7 below and its proof), we introduce a more
general class of covariance matrices that possess such a property.

Definition 3.5. The L × p matrix Ψ is called s-comprehensive if for any
subset S ⊂ {1, . . . , p} of size s, and for each pattern of signs ε ∈ {−1, 1}S ,
there exists either a row w of Ψ such that sgn(wi) = εi for i ∈ S, and wi = 0
otherwise, or a row with sgn(wi) = −εi for i ∈ S, and wi = 0 otherwise.

Note that when L = p, diagonal matrices are 1-comprehensive. However,
when L 6= p, none of the other conditions are applicable. This illustrates that
ℓq sensitivity is the most general property. By simple counting, L ≥ 2s−1

(p
s

)

.
We show that an s-comprehensive covariance matrix obeys the ℓ1 sensitivity
property.

Theorem 3.6. Suppose the L×p matrix of covariances Ψ is s-comprehensive,
and that all non-vanishing entries in Ψ have absolute value at least c > 0.
Then Ψ obeys the ℓ1 sensitivity property with parameters s, α and γ =
sc/(1 + α).

The proof of Theorem 3.6 is found in Section 5.5. The theorem shows that
the larger the value s and hence the value L, the smaller c is required. It
presents an interesting tradeoff between the number of instruments L and
the strength of non-vanishing components of Ψ.

Finally, we give several examples to demonstrate that the ℓq sensitivity is
indeed weaker than other regularity conditions. The technical proofs of the
results in Examples 3.7 and 3.9 can be found in Section 5.6.



Dobriban and Fan/Regularity of Covariate Matrices 12

Example 3.7. If Σ is a diagonal matrix with entries d1, d2, . . . , dp, then
restricted isometry property holds if 1 + δ ≥ di ≥ 1 − δ for all i. Restricted
eigenvalue only requires di ≥ γ. The same condition is required for com-
patibility. This example shows why restricted isometry is the most stringent
property. Further, ℓ1 sensitivity holds even if a finite number of di go to zero
at rate 1/s (shown in Section 5.6). In this latter case, all other regularity
conditions fail. This example shows that lq regularity is much weaker than
other regularity conditions.

The next examples further delineate between the various properties.

Example 3.8. For the equal correlations model Σ = (1 − ρ)Ip + ρeeT ,
restricted isometry requires ρ < 1/(s− 1). In contrast, restricted eigenvalue,
compatibility, and ℓq sensitivity hold with lower bound 1−ρ (see van de Geer
and Bühlmann (2009); Raskutti, Wainwright and Yu (2010)).

Example 3.9. If Σ has diagonal entries equal to 1, σ12 = σ21 = ρ, and all
other entries are equal to zero, then compatibility and ℓ1 sensitivity hold as
long as 1−ρ ≍ 1/s (proven in Section 5.6). In such a case, however, the re-
stricted eigenvalues are of order 1/s. This is an example where compatibility
and ℓ1 sensitivity hold but the restricted eigenvalue condition fails.

3.3. Operations preserving regularity

While it is difficult to check that a covariate matrix is regular, this property
is preserved under natural operations that do not change the covariance
structure by much. We show this for the ℓq sensitivity, in analogy to results
on restricted isometry property (eg. Bandeira et al. (2012) and references
therein).

We provide two theorems, both proven in Section 5.7. First we have a
theorem about linear transformations of the data matrix that preserve reg-
ularity. Let X and Z be covariate matrices as in the rest of the paper.

Theorem 3.10. 1. Perform the orthogonal transformation M on each
covariate: let X ′ = MX, Z ′ = MZ. Then (X ′, Z ′) obey the same ℓq
sensitivity properties as (X,M).

2. Let M be a cone-preserving linear transformation R
L → R

L, such that
for all v ∈ C(s, α) we have Mv ∈ C(s′, α′) and let X ′ = XM . Suppose
further that |Mv|q ≥ c|v|q for all v in C(s, α). If (X,Z) obeys the
ℓq sensitivity property with parameters (s′, α′, γ), then (X ′, Z) has ℓq
sensitivity with parameters (s, α, cγ).
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3. Let M be a linear transformation R
p → R

p such that for all v, |Mv|∞ ≥
c|v|∞. If we transform Z ′ = ZM , and (X,Z) obeys the ℓq sensitivity
property with lower bound γ, then (X,Z ′) obeys the same property with
lower bound cγ.

Our second result is about the additive operations on the covariate ma-
trix that preserve regularity. We use the induced matrix norms |M |a,b =
supv |Mv|b/|v|a. In particular, note that |M |1,1 is the maximum ℓ1 column
sum and |M |1,∞ is the maximum absolute entry denoted by ‖M‖max else-
where in the paper.

Theorem 3.11. 1. If Σ obeys ℓq sensitivity with lower bound γ, and
|∆|q,∞ ≤ δ/s1/q, then Σ + ∆ obeys ℓq sensitivity with lower bound
γ − δ.

2. Let (X1, Z1) and (X2, Z2) be such that (X1, Z1) has ℓq sensitivity with
lower bound γ. Further suppose |ZT

1 (X2 − X1)/n|q,∞ ≤ ε, |(Z2 −
Z1)

TX1/n|q,∞ ≤ δ and |(Z2 −Z1)
T (X2 −X1)/n|q,∞ ≤ c. Then [(X1 +

X2)/2, (Z1 + Z2)/2] has ℓq sensitivity with lower bound γ − s1/q(2ε +
2δ + c)/4.

4. Discussion

This paper presented an in-depth study of the matrix properties required for
high-dimensional sparse estimation. We considered the restricted eigenvalue
and compatibility properties, and the more general ℓq sensitivity condition,
also applicable to instrumental variables regression. First we showed that
they are unfortunately NP-hard to check. The results are important because
in statistical applications the data is typically observational, and one cannot
rely on the known regularity of iid random matrices.

For problems where a model of the covariance matrix is available, we have
formulated high probability sufficient conditions for ℓq sensitivity. Finally
we have established that several natural matrix operations preserve the ℓq
sensitivity.

Our work raises further questions about the interplay of estimation and
computation, specifically for sparse regression models. It would be interest-
ing to study if there are statistically efficient estimators relying on com-
putationally verifiable conditions. Specifically, can one devise an estimation
method for sparse linear regression with mean squared error of minimax
optimal order s log(p)/n, relying on a condition that is also efficiently ver-
ifiable? The current theory falls short: incoherence requires n ≍ s2 log(p)
samples to hold, and restricted eigenvalues are NP-hard to check. This is an
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important research area, as illustrated by the recent work Chandrasekaran
and Jordan (2013).

Finally, accurate and efficiently computable approximations to the values
of regularity constants could provide efficient confidence intervals. Previous
work on this problem has relied on convex relaxations, unfortunately leading
to confidence intervals that are wider by a factor s than those theoretically
possible (d’Aspremont, Bach and Ghaoui, 2008; Lee and Bresler, 2008; Gau-
tier and Tsybakov, 2011). Some recent progress involves significance testing
for adaptive linear models (Lockhart et al., 2013). Improvements in this
direction would be of significant theoretical and practical value.

5. Proofs

5.1. Proof of Theorem 2.4

Proof. From a classical argument (e.g. Candès and Tao, 2007) it follows that

max
i=1,...,L

n−1〈zi, ε〉 ≤ σA

√

2 log(L)

n

with high probability, which is equivalent to β ∈ I. From now on, assume
that this event holds. Then, as β̂ minimizes the ℓ1 norm over I, we have
|β̂|1 ≤ |β|1 or |δSc |1 ≤ |δS |1 with δ = β̂ − β. Hence δ is in the cone C(s, 1).
Further,

| 1
n
ZTXδ|∞ ≤ | 1

n
ZT (Y −Xβ)|∞ + | 1

n
ZT (Y −Xβ̂)|∞ ≤ 2σλ.

Therefore using the ℓq sensitivity we conclude

|δ|q ≤
s1/q

γ
| 1
n
ZTXδ|∞ ≤ 2σλs1/q

γ
.

This is the desired claim.

5.2. Proof of Theorem 3.1

The spark of a matrix X, denoted spark(X), is the smallest number of
linearly dependent columns. The proof of our complexity result, Theorem
3.1, consists of a polynomial-time reduction from the NP-hard problem of
computing the spark of a matrix (see Bandeira et al. (2013); Tillmann and
Pfetsch (2012) and references therein).
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Lemma 5.1. Given an n× p matrix with integer entries X, and a sparsity
size 0 < s < p, it is NP-hard to decide if the spark of X is at most s.

We also need the following technical lemma, which provides bounds on
the singular values of matrices with bounded integer entries. For a matrix
X, we denote by ‖X‖2 or ‖X‖ its operator norm. Furthermore, we denote
by XS the submatrix of X obtained by taking the columns with indices in
S.

Lemma 5.2. Let X be an n × p matrix with integer entries. Let M =
maxi,j |Xij |. Then,

‖X‖2 ≤ 2⌈log2(
√
npM)⌉.

Further, let 0 < s < n. If spark(X) > s, then for any S ⊂ {1, . . . , p},
|S| = s, we have:

λmin(X
T
SXS) ≥ 2−2n⌈log

2
(nM)⌉.

Proof. The first claim follows from:

‖X‖2 ≤ √
np‖X‖max ≤ 2⌈log2(

√
npM)⌉.

For the second claim, let XS denote a submatrix of X with an arbitrary
index set S of size s. Then spark(X) > s implies that XS is non-singular.
Since the absolute values of the entries of X lie in {0, . . . ,M}, the entries
of XT

SXS are integers with absolute values between 0 and nM2, namely
‖XT

SXS‖max ≤ nM2. Moreover, since the non-negative and nonzero deter-
minant of XT

SXS is integer, it must be at least 1. Hence,

1 ≤
s
∏

i=1

λi(X
T
SXS) ≤ λmin(X

T
SXS)λmax(X

T
SXS)

s−1

≤ λmin(X
T
SXS)(s‖XT

SXS‖max)
s−1.

Rearranging, we get

λmin(X
T
SXS) ≥ (snM2)−s+1 ≥ (nM)−2n ≥ 2−2n⌈log

2
(nM)⌉.

In the middle inequality we have used s ≤ n. This is the desired bound.

For the proof we need the notion of encoding length, which is the size in
bits of an object. Thus, an integer M has size ⌈log2(M)⌉ bits. Hence the
size of the matrix X is at least np + ⌈log2(M)⌉: at least one bit for each
entry, and ⌈log2(M)⌉ bits to represent the largest entry. To ensure that the
reduction is polynomial-time, we must make sure in particular that the size
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in bits of the parameters involved is polynomial in the size of the input X.
As in standard treatments of computational complexity, the numbers here
are rational (Arora and Barak, 2009).
Proof of Theorem 3.1. It is enough to consider X with integer entries. For
each property and given sparsity size s, we will exhibit parameters (α, γ) of
a size in bits polynomial in that of the input X, such that:

1. spark(X) ≤ s =⇒ X does not obey the regularity property with
parameters (α, γ),

2. spark(X) > s =⇒ X obeys the regularity property with parameters
(α, γ).

Hence, any polynomial-time algorithm for deciding if the regularity property
holds for (X, s, α, γ), can, with just one call, in polynomial time decide if
spark(X) ≤ s. Here it is crucial that (α, γ) are polynomial in the size of X,
so that the whole reduction is polynomial in X.

Since deciding spark(X) ≤ s is NP-hard by Theorem 5.1, this shows the
desired NP-hardness of checking the conditions. For ℓq sensitivity, we in fact
show that the subproblem where Z = X is NP-hard, thus the full problem
is also clearly NP-hard.

Now we provide the required parameters (α, γ) for each regularity condi-
tion. Similar ideas are used when comparing the conditions.

For the restricted eigenvalue condition, the first claim follows any γ >
0, and any α > 0. To see this, if the spark of X at most s, there is a nonzero
s-sparse vector v in the kernel of X, and |Xv|2 = 0 < γ|vS |2, where S is
any set containing the nonzero coordinates. This v is clearly also in the cone
C(s, α), and so X does not obey RE with parameters (s, α, γ).

We now prove the second claim for the restricted eigenvalue. If spark(X)
> s, then for each index set S of size s, the submatrixXS is non-singular. We
now show that this implies a non-vanishing lower bound on the RE constant
of X. Indeed, consider a vector v in the cone C(s, α), and assume specifically
that α|vS |1 ≥ |vSc |1. Using the simple identity Xv = XSvS + XScvSc , we
have

|Xv|2 = |XSvS +XScvSc |2 ≥ |XSvS |2 − |XScvSc |2
≥

√

λmin(X
T
SXS)|vS |2 − ‖XSc‖2|vSc |2.

Further, since v is in the cone, we have

|vSc |2 ≤ |vSc |1 ≤ α|vS |1 ≤ α
√
s|vS |2. (3)
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Since XS is non-degenerate and integer-valued, we can use the bounds
from Lemma 5.2. Consequently, with M = ‖X‖max, we obtain

|Xv|2 ≥ |vS |2
(

√

λmin(X
T
SXS)− ‖XSc‖α

√
s

)

≥ |vS |2
(

2−n⌈log2(nM)⌉ − 2⌈log2(
√
npM)⌉α

√
s
)

.

By choosing, say, α = 2−2n⌈log
2
(npM)⌉, γ = 2−2n⌈log

2
(npM)⌉, we easily con-

clude after some computations that |Xv|2 ≥ γ|vS |2.
Moreover, the size in bits, or encoding length, of the parameters is poly-

nomially related to that of X. Indeed, the size in bits of both parameters is
2n⌈log2(npM)⌉, and the size of X is at least np + ⌈log2(M)⌉, as discussed
before the proof. Note that 2n⌈log2(npM)⌉ ≤ (np+ ⌈log2(M)⌉)2. Hence we
have showed both required conditions.

The argument for the compatibility conditions is nearly identical. In-
deed, the first claim is satisfied for any γ > 0: for any nonzero s-sparse
vector v in the kernel of X, with S containing the support of v, we have√
s|Xv| = 0 < γ|vS |1.
For the second claim we argue as above, and obtain

√
s|Xv|2
|vS |1

≥ |Xv|2
|vS |2

≥ 2−n⌈log2(nM)⌉ − 2⌈log2(
√
npM)⌉α

√
s.

Therefore the same choices of α, γ work in this case as well.
Finally, we deal with the ℓq sensitivity property. The first condition is

again satisfied for all α > 0 and γ > 0. Indeed, If the spark of X is at most
s, there is a nonzero s-sparse vector v in its kernel, and thus |XTXv|∞ = 0.

For the second condition, we note that

|Xv|22 = vTXTXv ≤ |v|1|XTXv|∞

For v in the cone, α|vS |1 ≥ |vSc |1 and hence

|v|2 ≥ |vS |2 ≥
1√
s
|vS |1 ≥

1√
s(1 + α)

|v|1.

Combination of the last two results gives

s|XTXv|∞
n|v|1

≥ s|Xv|22
n|v|21

≥ 1

n(1 + α)2
|Xv|22
|v|22

.
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Finally, since q ≥ 1, we have |v|1 ≥ |v|q, and as v is in the cone, |v|22 =
|vS |22 + |vSc |22 ≤ (1 + α2s)|vS |22, by inequality (3). Therefore,

s1/q|XTXv|∞
n|v|q

≥ s1/q−1

n(1 + α)2(1 + α2s)

|Xv|22
|vS |22

.

Hence we essentially reduced to restricted eigenvalues. From the proof of
that case, the choice α = 2−2n⌈log

2
(npM)⌉ gives

|Xv|2
|vS |2

≥ 2−2n⌈log
2
(npM)⌉.

Hence for this α we also have

s1/q|XTXv|∞
n|v|2

≥ 2−5(n+1)⌈log
2
(npM)⌉,

where we have applied a number of coarse bounds. Thus X obeys the
ℓq sensitivity property with the parameters α = 2−2n⌈log

2
(npM)⌉ and γ =

2−5n⌈log
2
(npM)⌉. As in the previous case, the size in bits of these parameters

are polynomial in the size in bits of X. This shows that both conditions
hold, and thus proves the correctness of the reduction for ℓq sensitivity. This
completes the proof of Theorem 3.1.

The values of (α, γ) used in the proof are outside the range where the
regularity properties lead to effective bounds for the estimation error. This
choice is essential for the current proof, but it is a question of interest to
extend it to the regime where α and γ are independent of n and p.

5.3. Proof of Theorem 3.3

The ℓq sensitivity property of random matrices relies on large deviation
inequalities for random inner products. After establishing such inequalities,
we finish the proofs quite directly, essentially by a union bound. We discuss
the three probabilistic settings one by one, proving the required lemmas
along the way. Thus, the proof of Theorem 3.3 is split into three parts:
5.3.1, 5.3.2, 5.3.3.

5.3.1. Sub-gaussian variables

A random variable X is sub-exponential if supp≥1 p
−1‖X‖p < ∞, and the

sub-exponential norm (or constant) is then ‖X‖ψ1
= supp≥1 p

−1‖X‖p. We
use the following Bernstein-type inequality; see Corollary 5.17 in Vershynin
(2010).
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Lemma 5.3 (Bernstein for sub-exponential). If X1, . . . ,XN are independent
centered sub-exponential random variables, and K = maxi ‖Xi‖ψ1

, then for
every t ≥ 0, we have

P

(∣

∣

∣

∣

∣

1

N

N
∑

i=1

Xi

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp

(

−cN min

(

t2

K2
,
t

K

))

,

where c ≥ 1/(8e2) is a constant independent of N .

Bernstein’s lemma immediately implies a deviation inequality for inner
products. We state it separately for clarity. It is also an extension of a lemma
used in covariance matrix estimation (Bickel and Levina, 2008; Ravikumar,
2011).

Lemma 5.4 (Deviation of Inner Products for Sub-gaussians). Let X and
Z be zero-mean sub-gaussian random variables, with sub-gaussian norms
‖X‖ψ2

, ‖Z‖ψ2
respectively. Then, given n iid samples of X and Z, the sample

covariance satisfies the tail bound:

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

XiZi − E(XZ)

∣

∣

∣

∣

∣

≥ t

)

≤ 2 exp(−cnmin(t/K, t2/K2)).

where K := 4‖X‖ψ2
‖Z‖ψ2

.

Proof. The proof consists of a direct application of Bernstein’s inequality.
We only need to bound the sub-exponential norms of Ui = XiZi−E(XiZi). In
general if X,Z are sub-gaussian, then XZ is sub-exponential and moreover

‖XZ‖ψ1
≤ 2‖X‖ψ2

‖Z‖ψ2
. (4)

Indeed by the Cauchy-Schwartz inequality (E|XZ|p)2 ≤ E|X|2pE|Z|2p.
Hence also

p−1 (E|XZ|p)1/p ≤ 2(2p)−1/2
(

E|X|2p
)1/2p

(2p)−1/2
(

E|Z|2p
)1/2p

.

Taking the supremum over p ≥ 1/2 of both sides leads to the desired
inequality (4).

The Ui are iid random variables, and their sub-exponential norm is by the
triangle inequality, the norm inequality (4), and Cauchy-Schwartz, at most

‖Ui‖ψ1
≤ ‖XiZi‖ψ1

+ |EXZ| ≤ 2‖X‖ψ2
‖Z‖ψ2

+
(

EX2
EZ2

)1/2
.
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Further by definition
(

EX2
)1/2 ≤

√
2‖X‖ψ2

, hence the sub-exponential
norm is at most

‖Ui‖ψ1
≤ 4‖X‖ψ2

‖Z‖ψ2
.

Thus the result follows by a direct application of Bernstein’s inequality.

With these preparations, we now prove Theorem 3.3 for the sub-gaussian
case. By a union bound over the Lp entries of the matrix Ψ− Ψ̂

P (‖Ψ− Ψ̂‖max ≥ t) ≤
∑

i,j

P (|Ψi,j − Ψ̂i,j| ≥ t) ≤ Lpmax
i,j

P (|Ψi,j − Ψ̂i,j| ≥ t).

By Lemma 5.4 each probability is upper bounded by a term of the form
2 exp(−cnmin(t/K, t2/K2)), where K varies with i, j. The largest of these
bounds corresponds to the largest of the K-s. Hence the K in the largest
term is 4maxi,j ‖Xi‖Ψ2

‖Zj‖Ψ2
. By the definition of sub-gaussian norm, this

is at most 4‖X‖Ψ2
‖Z‖Ψ2

, where the X and Z are now p and L-dimensional
vectors, respectively.

Therefore we have the uniform bound

P (‖Ψ − Ψ̂‖max ≥ t) ≤ 2Lp exp(−cnmin(t/K, t2/K2)) (5)

with K = 4‖X‖Ψ2
‖Z‖Ψ2

.

We choose t such that (a+1) log(2Lp) = cnt2/K2, that is t=

√

K2(a+1) log(2Lp)
cn .

Since we can assume (a+ 1) log(2Lp) ≤ cn by the scaling in the statement,
the relevant term is the one quadratic in t: the total probability of error
is (2Lp)−a. From now on, we will work on the high-probability event that
‖Ψ− Ψ̂‖max ≤ t.

For any vector v

|Ψv|∞ −
∣

∣

∣
Ψ̂v
∣

∣

∣

∞
≤
∣

∣

∣
(Ψ− Ψ̂)v

∣

∣

∣

∞
≤ ‖Ψ− Ψ̂‖max|v|1 ≤ t|v|1.

That is, with high probability it holds uniformly for all v that:

∣

∣

∣
Ψ̂v
∣

∣

∣

∞
≥ |Ψv|∞ −R

√

log(2pL)

n
|v|1 (6)

for the constant R =

√

K2(a+1)
c .

For vectors v in C(s, α), we bound the ℓ1 norm by the ℓq norm, q ≥ 1, in
the usual way, to get a term depending on s rather than on all p coordinates:

|v|1 ≤ (1 + α)|vS |1 ≤ (1 + α)s1−1/q|vS |q ≤ (1 + α)s1−1/q|v|q. (7)
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Introducing this into (6) gives with high probability over all v ∈ C(s, α):

s1/q
∣

∣

∣
Ψ̂v
∣

∣

∣

∞
|v|q

≥ s1/q |Ψv|∞
|v|q

−R(1 + α)s

√

log(2pL)

n
.

If we choose n such that

n ≥ K2(1 + a)(1 + α)2

cδ2
s2 log(2pL),

then the second term will be at most δ. Further since Ψ obeys the ℓq sensitiv-
ity assumption, the first term will be at least γ. This shows that Ψ̂ satisfies
the the ℓq sensitivity assumption with constant γ − δ with high probability,
and finishes the proof.

To summarize, it suffices if the sample size is at least

n ≥ log(2pL)(a + 1)

c
max

(

1,
K2(1 + α)2

δ2
s2
)

. (8)

The key to the proof, inequality (6), is similar in spirit to the one used in
Raskutti, Wainwright and Yu (2010) to establish the Restricted Eigenvalue
condition for correlated designs. However, our argument also easily allows a
two-sided high-probability bound

∣

∣

∣
|Ψv|∞ −

∣

∣

∣
Ψ̂v
∣

∣

∣

∞

∣

∣

∣
≤ R

√

log(pL)

n
|v|1.

Hence, the population ℓq sensitivity property is both necessary and sufficient
for the sample version. This is not necessarily clear from the proofs for
the Restricted Eigenvalue condition (Raskutti, Wainwright and Yu, 2010;
Rudelson and Zhou, 2012).

5.3.2. Bounded variables

If the components of the vectors X,Z are bounded, then essentially the
same proof goes through. The sub-exponential norm of XiZj − E(XiZj) is
bounded - by a different argument - because |XiZj − E(XiZj)| ≤ 2CxCz,
hence ‖XiZj−E(XiZj)‖Ψ1

≤ 2CxCz. Hence Lemma 5.4 holds with the same
proof, where now the value of K := 2CxCz is different. The rest of the proof
only relies on Lemma 5.4, so it goes through unchanged. Therefore, with the
same sample requirement (8), the matrix of sample covariances obeys the ℓq
sensitivity with high probability.
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5.3.3. Variables with bounded moments

For variates with bounded moments, we also need a large deviation inequal-
ity for inner products. We were unable to find a reference for this specific
instance of a large deviation inequality, so we give a proof below. The general
flow of the argument is classical, and relies on the Markov inequality and
a moment-of-sum computation (e.g. Petrov (1995)). The closest result we
are aware of is a lemma used in covariance matrix estimation (Ravikumar,
2011). Our result can be viewed as an extension of theirs, and the proof is
shorter.

Lemma 5.5 (Deviation for Bounded Moments - Khintchine-Rosenthal). Let
X and Z be zero-mean random variables, and r a positive integer, such that
EX4r = Cx < ∞, EZ4r = Cz < ∞. Then, given n iid samples from X and
Z, the sample covariance satisfies the tail bound:

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

XiZi − E(XZ)

∣

∣

∣

∣

∣

≥ t

)

≤ 22rr2r
√
CxCz

t2rnr
.

Proof. Let Yi = XiZi − EXZ, and k = 2r. By the Markov inequality, we
have

P

(∣

∣

∣

∣

∣

1

n

n
∑

i=1

Yi

∣

∣

∣

∣

∣

≥ t

)

≤ E |
∑n

i=1 Yi|
k

(tn)k
.

We now bound the k-th moment of the sum
∑n

i=1 Yi using a type of
classical argument, often referred to as Kintchine’s or Rosenthal’s inequality.
We can write, recalling that k = 2r is even,

E

∣

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

∣

k

=
∑

i1,i2,...,ik∈{1,...,n}
E(Yi1Yi2 . . . Yik) (9)

By the mutual independence of Yi

E(Y a1
1 Y a2

2 . . . Y an
n ) = EY a1

1 EY a2
2 . . .EY an

n .

As EYi = 0, the summands for which there is a Yi singleton vanish. For the
remaining terms, we bound by Jensen’s inequality (E|Y |r1)1/r1 ≤ (E|Y |r2)1/r2
for 0 ≤ r1 ≤ r2. So a generic term is at most

(E|Y |k)a1/k(E|Y |k)a2/k . . . (E|Y |k)an/k = E|Y |k.

Above we have used that a1 + . . .+ an = k. Hence, each non-vanishing term
in the summation (9) was upper bounded by the same constant. To estimate
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the sum, we are left with the combinatorial problem of counting the number
of sequences of non-negative integers (a1, . . . , an) that sum to k, and such
that no term is 1. Here, if some ai > 0, then ai ≥ 2. Thus, there are at most
k/2 = r nonzero elements. Therefore, the number of such sequences is not
more than the number of ways to choose r places out of n, multiplied by the
number of ways to distribute 2r elements among those places:

(

n

r

)

r2r ≤ nrr2r.

Thus, we have proved that

E

∣

∣

∣

∣

∣

n
∑

i=1

Yi

∣

∣

∣

∣

∣

2r

≤ nrr2rE|Y |2r.

Further, we make an explicit bound in terms of the moments of X,Z. By
the Minkowski and Jensen inequalities

E|Y |k = E|XiZi − EXiZi|k ≤
(

(E|XiZi|k)1/k + E|XiZi|
)k

≤ 2kE|XiZi|k.

Further by Cauchy-Schwartz E|XiZi|k ≤
√

E|Xi|2kE|Zi|2k =
√
CxCz. Intro-

ducing this bound for the moment of sum in the Markov inequality leads to
the desired bound

P

(
∣

∣

∣

∣

∣

1

n

n
∑

i=1

Yi

∣

∣

∣

∣

∣

≥ t

)

≤ 22rr2r
√
CxCz

t2rnr
.

We are ready to prove Thm 3.3. By a union bound, the probability that
‖Ψ − Ψ̂‖max ≥ t is at most

Lp
22rr2r

√
CxCz

t2rnr
.

Since r is fixed, for simplicity of notation, we can denote C2r
0 = 22rr2r

√
CxCz.

Choosing t = C0(Lp)
1/2rn−1/2+a/(2r), the above probability is at most 1/na.

The bound

|Ψv|∞ −
∣

∣

∣
Ψ̂v
∣

∣

∣

∞
≤
∣

∣

∣
(Ψ− Ψ̂)v

∣

∣

∣

∞
≤ ‖Ψ− Ψ̂‖max|v|1.
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holds as before, so we conclude that with probability 1 − 1/na, for all v ∈
C(s, α):

s1/q
∣

∣

∣
Ψ̂v
∣

∣

∣

∞
|v|q

≥ s1/q |Ψv|∞
|v|q

− (1 + α)st.

From the choice of t, for sample size at least

n1−a/r ≥ C2
0 (1 + α)2

δ2
(Lp)1/rs2

the error term on the left hand side is at most δ. In this case Ψ̂ satisfies the
the ℓq sensitivity assumption with constant γ − δ with high probability.

5.4. Proof of Theorem 3.4

This result and Theorem 3.3 have closely related proofs, relying in essence
on the same large deviation inequalities. Let p1 and 1− p1 denote the mix-
ture probabilities. Then, the outcome of a sample from P1 corresponds to a
Bernoulli trial with success probability p1. The number of samples n1 from
P1 is a realization from a Binomial(n, p1) random variable. The first part of
the analysis is conditional on N1 = n1.

Let X and Z be the two matrices of observations, and let (Xi, Zi) denote
the matrices of the samples from distribution Pi. Without loss of generality,
assume that Ψ1 satisfies the ℓq sensitivity. Then we can write the matrix of
sample covariances as

Ψ̂ =
1

n
ZTX =

1

n

(

ZT
1 X1 + ZT

2 X2

)

,

which can be further decomposed as

n1

n

(

1

n1
ZT
1 X1 −Ψ1

)

+
n2

n

(

1

n2
ZT
2 X2 −Ψ2

)

+
n2

n
(Ψ2 −Ψ1) + Ψ1.

The main term is Ψ1, and the first three terms are error terms. The first
two are stochastic (call them M1,M2), and are bounded as in Theorem 3.3,
while the third term (call it N) is small because the Ψi are close to one
another.

In more detail, note that

|Ψ̂v|∞ ≥ |Ψv|∞ − (‖M1‖max + ‖M2‖max + ‖N‖max)|v|1
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We bound the ratios n1/n ≤ 1, n2/n ≤ 1 by the constant 1. The uniform
large deviation inequality (5) from the same theorem can be applied to both
samples, yielding bounds for ‖Mi‖∞:

P (‖Ψi − Ψ̂i‖max ≥ t) ≤ 2Lp exp(−cnimin(t/K, t2/K2))

with K = max (4‖X1‖Ψ2
‖Z1‖Ψ2

, 2C(X2)C(Z2)). Here we have assumed
without loss of generality that the first sample is sub-gaussian, and the
second one is bounded. K is the maximum of two expressions depending on
these norms, the same expressions as in Theorem 3.3.

We choose ti as in the proof of Theorem 3.3: ti =
√

K2(a+1) log(2Lp)
cni

. As

long as (a+ 1) log(2Lp) ≤ cni, the total probability of error is 2(2Lp)−a.
Now, for the first time in this proof, we consider the number of samples

n1 from the first distribution as random. Since it’s a Binomial(n, p1) random
variable, Hoeffding’s inequality holds:

Pp1,p2

{∣

∣

∣

n1

n
− p1

∣

∣

∣
≥ ε
}

≤ 2 exp(−2ε2n).

So with probability at least 1− 2 exp(−2ε2n), the deviation |n1/n− p1| ≤ ε,
and thus also |n2/n− p2| ≤ ε. We work on this event in what follows.

Let q = min(p1, p2), and choose ε = q/2. Then ni ≥ n(pi − ε) ≥ n(q − ε)
= nq/2. Hence the bounds simplify if we substitute for ni, and become

‖M1‖max + ‖M2‖max ≤ 2

√

2K2(a+ 1) log(2Lp)

qcn

with probability at least 1− 2(2Lp)−a, as long as

2(a+ 1) log(2Lp) ≤ qcn. (10)

Now we combine these in the main bound. By assumption ‖(Ψ2−Ψ1)‖max ≤
δ/s. Let t denote the bound obtained for ‖M1‖max+‖M2‖max. We thus have

|Ψ̂v|∞ ≥ |Ψv|∞ − (t+ δ/s)|v|1
which together with (7) leads to

s1/q|Ψ̂v|∞
|v|q

≥ s1/q|Ψv|∞
|v|q

− (ts+ δ)(1 + α).

In order for the term ts to be at most ν, we need

n ≥ 8K2(1 + a)

qcν2
s2 log(2pL).
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If this and (10) happens, then the previous display implies the statement
of the theorem, by the ℓq sensitivity of Ψ1. The probability of error is at
most 2(2Lp)−a + 2exp(−2q2n). Because of (10), the second probability is
also of the form 2(2Lp)−θ, where now θ = 4q(a + 1)/c. So we can choose
ρ = min(a, θ) to get the simpler form of the probability bound claimed in
the statement. This proves the theorem.

5.5. Proof of Theorem 3.6

To bound the term |Ψv|∞ in the ℓ1 sensitivity, we use the s-comprehensive
property. Indeed, let v ∈ C(s, α). By the symmetry of the s-comprehensive
property, we can assume without loss of generality that |v1| ≥ |v2| ≥ . . . ≥
|vp|. Then if S denotes the first s components, α|vS |1 ≥ |vSc |1.

Consider the sign pattern of the top s components of v: ε = (sgn(v1), . . . , sgn(vs)).
Since Ψ is s-comprehensive, it has a row w with matching sign pattern. Then
we can compute

〈w, v〉 =
∑

i∈S
|wi|sgn(wi)vi =

∑

i∈S
|wi|sgn(vi)vi =

∑

i∈S
|wi||vi|.

Hence the inner product is lower bounded by

min
i∈S

|wi|
∑

i∈S
|vi| ≥ c

∑

i∈S
|vi|.

Combining the above, the ℓ1 sensitivity is at least:

s|〈w, v〉|
|v|1

≥ sc|vS |1
(1 + α)|vS |1

=
cs

(1 + α)
.

This proves the stated thesis.

5.6. Proof of claims in Examples 3.7, 3.9

We must bound the ℓ1 sensitivity for the two specific covariance matrices
Σ. We first verify the claim in Example 3.7. For the diagonal matrix with
entries d1, . . . , dp > 0, we have

m = |Σv|∞ = max(|d1v1|, . . . , |dpvp|).

Then summing |vi| ≤ m/di for i in any set S with size s:

|vS |1 ≤ m
∑

i∈S
1/di.



Dobriban and Fan/Regularity of Covariate Matrices 27

We want to bound this for v ∈ C(s, α), so let S be the subset of dominating
coordinates for which |vSc |1 ≤ α|vS |1. It follows that

|v|1 ≤ (1 + α)|vS |1 ≤ (1 + α)m
∑

i∈S
1/di.

Therefore

s|Σv|∞
|v|1

≥ s

(1 + α)
∑

i∈S 1/di
≥ 1

(1 + α)s−1
∑s

i=1 1/d(i)
,

where {d(i)}pi=1 is the order of {di}pi=1, arranged from the smallest to the
largest. The harmonic average in the lower bound can be bounded away
from zero even several di-s are of order O(1/s). For instance if d(1) = · · · =
d(k) = 1/s and d(k+1) > 1/c for some constant c and integer k < s, then the
ℓ1 sensitivity is at least

s|Σv|∞
|v|1

≥ 1

(1 + α)(k + (1− k/s)c)
,

which is bounded away from zero whenever k is bounded. In this setting the
smallest eigenvalue of Σ is 1/s , so only the ℓ1 sensitivity holds out of all
regularity properties.

We now consider Example 3.9. For this specific covariance matrix,

m = |Σv|∞ = max(|v1 + ρv2|, |v2 + ρv1|, |v3|, . . . , |vp|).

The coordinate v1 can be bounded as follows:

|v1| =
∣

∣

∣

∣

1

1− ρ2
(v1 + ρv2)−

ρ

1− ρ2
(ρv1 + v2)

∣

∣

∣

∣

≤ m

(

1

1− ρ2
+

ρ

1− ρ2

)

leading to |v1| ≤ m/(1 − ρ). Similarly |v2| ≤ m/(1 − ρ). Furthermore, For
each i 6∈ {1, 2}, we have |vi| ≤ m. Thus, for any set S,

|vS |1 ≤ m

(

2

1− ρ
+ s− 2

)

.

For any v ∈ C(s, α),

|v|1 ≤ (1 + α)|vS |1 ≤ (1 + α)m

(

2

1− ρ
+ s− 2

)

Hence we obtain the lower bound on the ℓ1 sensitivity

s|Σv|∞
|v|1

≥ s

(1 + α)(2/(1 − ρ) + s− 2)
.
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If 1− ρ = 1/s, this bound is at least 1/3(1 + α), showing that ℓ1 sensitivity
holds. However, the smallest eigenvalue is also 1 − ρ = 1/s, so the other
regularity properties (restricted eigenvalue, compatibility), fail to hold as
s → ∞.

5.7. Proofs from Section 3.3

For the first claim of Theorem 3.10, note that (Z ′)TX ′ = (MZ)TMX =
ZTX since M is orthonormal. ℓq sensitivity of the pair of matrices (X,Z)
only depends on the matrix ZTX, which is preserved under the orthonor-
mal transformation. Hence, the transformed matrices inherit the regularity
property.

For the second claim, note (Z ′)TX ′v = ZTX(Mv). If v is any vector in
the cone C(s, α), we have Mv ∈ C(s′, α′) by the cone-preserving property.
Hence by the ℓq sensitivity of X,Z

s1/q|1/nZTX(Mv)|∞
|Mv|q

≥ γ.

Further by the condition on M : |Mv|q ≥ c|v|q . Multiplying these two in-
equalities yields the ℓq sensitivity for X ′, Z.

For the last claim, we write (Z ′)TX ′v = MZTXv. By the ℓq sensitivity
of X,Z, for all v ∈ C(s, α),

s1/q|1/nZTXv|∞
|v|q

≥ γ.

However, |M(1/nZTXv)|∞ ≥ c|1/nZTXv|∞ by the assumption on M . Mul-
tiplying these inequalities gives the desired ℓq sensitivity ofX,Z ′, completing
the proof of Theorem 3.10.

Finally, for the proof of Theorem 3.11, note the following inequality, which
has already been used in the paper:

|(Σ +∆)v|∞ ≥ |Σv|∞ − |∆v|∞ ≥ |Σv|∞ − |∆|q,∞|v|q.

Since |∆|q,∞ ≤ δ/s1/q , we have, using the assumed ℓq sensitivity of Σ, that
s|(Σ +∆)v|∞/|v|q ≥ γ − δ, as required.

For the second part, we start by letting U = X2 −X1, V = Z2 − Z1, so
that (X1 +X2, Z1 + Z2) = (2X1 + U, 2Z1 + V ), and

(Z1 + Z2)
T (X1 +X2) = 4ZT

1 X1 + 2V TX1 + 2ZT
1 U + V TU.
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Using the triangular inequality |(Z1 + Z2)
T (X1 + X2)v|∞ ≥ |4ZT

1 X1|∞ −
(|2V TX1v|∞+ |2ZT

1 Uv|∞+ |V TUv|∞). We can bound the three error terms
as follows:

|V TX1v|∞ ≤ |V TX1|q,∞|v|q,
and similarly for the other two terms. Combining them yields

s1/q|1/n(Z1 + Z2)
T (X1 +X2)v|∞

|v|q
≥ 4

s1/q|1/nZT
1 X1v|∞

|v|q
− c,

where c = s1/q/n(|V TX1|q,∞ +2|ZT
1 U |q,∞ + |V TU |q,∞). Dividing by 4 gives

the desired ℓq sensitivity for (Z1 + Z2)
T (X1 +X2)/4.
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