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Abstract

In genome-wide association studies (GWAS), penalization is an important approach
for identifying genetic markers associated with trait while mixed model is successful in
accounting for a complicated dependence structure among samples. Therefore, penal-
ized linear mixed model is a tool that combines the advantages of penalization approach
and linear mixed model. In this study, a GWAS with multiple highly correlated traits
is analyzed. For GWAS with multiple quantitative traits that are highly correlated,
the analysis using traits marginally inevitably lose some essential information among
multiple traits. We propose a penalized-MTMM, a penalized multivariate linear mixed
model that allows both the within-trait and between-trait variance components si-
multaneously for multiple traits. The proposed penalized-MTMM estimates variance
components using an AI-REML method and conducts variable selection and point
estimation simultaneously using group MCP and sparse group MCP. Best linear unbi-
ased predictor (BLUP) is used to find predictive values and the Pearson’s correlations
between predictive values and their corresponding observations are used to evaluate
prediction performance. Both prediction and selection performance of the proposed
approach and its comparison with the uni-trait penalized-LMM are evaluated through
simulation studies. We apply the proposed approach to a GWAS data from Genetic
Analysis Workshop (GAW) 18.

Keywords: Multivariate linear mixed model; Penalization approach; Feature selection;
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GWAS.

1 Introduction

Genome-wide association studies (GWAS) help us better understand the genetic basis of

many complex traits [McCarthy et al., 2008]. A better understanding of the relationship

between phenotypic trait and genetic variation for these quantitative and complex traits will

yield insights that are essential to predict disease risk and develop personalized therapeutic

treatments for human-beings. At the beginning stage of GWAS, researchers mainly focused

on a single trait analysis [Burton et al., 2007]. Although GWAS have identified some of the

genetic risk variants [Visscher et al., 2012], those identified variants can only explain a small

fraction of phenotypic variance, which is known as the “missing heritability” problem [Mano-

lio et al., 2009]. Recent analysis suggested that a substantial proportion of heritability was

not missing but hidden in the common variants with small or moderate effects [Yang et al.,

2010, Makowsky et al., 2011].

On one hand, these results suggest that recruiting a large sample size will help to iden-

tify genetic risk variants but it could be very expensive. On the other hand, researchers

start to be interested in simultaneously analyzing multiple correlated traits recently to im-

prove the statistical power [Korte et al., 2012]. This is because the correlated traits may

share common genetic factors, which is known as pleiotropy [Sivakumaran et al., 2011]. For

example, a “pleiotropic enrichment” method was applied to analyze the GWAS data sets

of schizophrenia and cardiovascular disease. The power to detect schizophrenia-associated

common variants was shown to be improved by exploiting the pleiotropy between these two

phenotypes. More recently, a study on genome-wide SNP data for five psychiatric disorders

in 33,332 cases and 27,888 controls identified four significant loci (P < 5 × 10−8) affecting

†Co-first authors. ∗ To whom correspondence should be addressed.
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multiple disorders [Consortium, 2013]. It is expected that successfully taking account for

the pleiotropy structure will be helpful for identification of risk variants.

In this study, a GWAS from GAW 18 with multiple traits that are highly correlated is an-

alyzed. This type of data exposes an opportunity to integratively analyze multiple traits from

a GWAS. In this paper, we focus on GAW 18 data with two highly correlated traits – systolic

blood pressure (SBP) and diastolic blood pressure (DBP). We propose a unified framework

to simultaneously analyze multiple traits, in which we introduce a variance component to

account for sample relatedness or the confounding effects of population stratification, and

introduce some sparse penalties to detect risk variants. Our approach bridges the advantages

of multi-trait linear mixed models with penalized regression techniques. For the choice of

sparse penalties, we have two types of models — homogeneity and heterogeneity models.

Homogeneity model assumes that all trait-associated markers/variants are consistent across

all traits, while heterogeneity model assumes that a marker/variant may be associated with

some traits but not others. Depending on the assumption of homogeneity and heterogeneity,

group MCP and sparse group MCP can be used to conduct variable selection.

The rest of the article is organized as follows. In Section 2, we show the data structure

and review variance components model in genetics. The estimation of variance components,

predictions, penalized selection and method to collapse SNPs are described in Section 3.

Numerical studies, including simulation in Section 4 and data analysis in Section 5, are

conducted to investigate finite sample performance. The article concludes with discussion in

Section 6.
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2 Data and Model

2.1 GAW 18 Data

The genetic analysis workshop (GAW) 18 provides the type 2 diabetes genetic exploration

by next–generation sequencing in ethnic samples (T2D–GENES) consortium data set that

consists of 1,043 individuals from 20 Mexican American pedigrees enriched for type 2 diabetes

from San Antonio, TX. The study included subjects in two different groups, including the

San Antonio family heart study (SAFHS) and the San Antonio family diabetes/gallbladder

study (SAFDGS), which are together referred to as the San Antonio family studies (SAFS).

Whole genome sequence is being performed commercially at Complete Genomics, Inc and the

GAW 18 data set is based on the sequence data for the first 483 T2D–GENES. GWAS data

for 472,049 SNPs on odd numbered autosomes are provided for these 959 family members

(464 directly sequenced and the rest imputed [Howie et al., 2012]). A variety of different

phenotypic traits were measured at examination, e.g. systolic blood pressure (SBP), diastolic

blood pressure (DBP). Clearly, SBP and DBP are highly correlated traits. GAW 18 data set

brings a good opportunity to develop statistical models to handle multiple correlated traits

in the pedigree-based samples. We aim at identifying risk variants while accounting for the

correlation among multiple traits and the relatedness among the samples.

2.2 Variance Components Model in Genetics

Recently, mixed model has been extensively studied for correcting the genetic relatedness in

association mapping in genome-wide association studies (GWAS). The genetic relatedness

from population mixture and inbred strains can cause the problem of inflated false positive

rates. However, most of the existing methods fail to consider the mixed models with multiple

traits. Denote that in a GWAS, we have n subjects and p genes of genetic scores with m

traits. Assume that we have two traits—trait 1 and trait 2. Note that it can be relaxed to
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more than two traits. For each trait, the relatedness matrix (K) can be used to describe

the genetic relatedness. For multiple traits, we vectorize the multiple traits. When it comes

to the analysis of multiple traits, a natural extension is to use diag(K,K). Here, we still

miss a variance component describing the relatedness between/among multiple traits. Lee

et al. [2012] used the covariance components among random effects across multiple traits to

describe this relatedness. We go further on this direction including covariance components

among residuals across multiple traits. The variance covariance matrix for vectorized two

traits is given:

V C =

(
Kσ2

g(1)
+ Inσ

2
e(1)

Kσg(12) + Inσe(12)

Kσg(12) + Inσe(12) Kσ2
g(2)

+ Inσ
2
e(2)

)
, (1)

where σ2
g(1)

and σ2
g(2)

are variance components for random effects on trait 1 and trait 2, σg(12)

is the covariance of random effects between trait 1 and trait 2, σ2
e(1)

and σ2
e(2)

are variance

components for residuals on trait 1 and trait 2, and σe(12) is the covariance of residuals

between trait 1 and trait 2. We implement “Average information - restricted maximal

likelihood” method (AI-REML) [Gilmour et al., 1995] to estimate variance components.

With the variance components fixed, we may implement penalization methods to conduct

variable selection and point estimation simultaneously. More details are discussed in Section

3.

3 Variance Components and Penalized Regression

Let us first consider the linear mixed model (LMM) which is widely used in single-trait

analysis [Zhang et al., 2010, Kang et al., 2010, Lippert et al., 2011, Zhou and Stephens,

2012, Rakitsch et al., 2013] and then extend it to handle multiple correlated traits. Let n be

5



the sample size, the LMM can be written as:

yo = Wv +Xb+ g + e,

g ∼ N(0, σ2
gK),

e ∼ N(0, σ2
eI),

(2)

where yo ∈ Rn×1 is the response vector representing the trait, W ∈ Rn×q is the matrix of

covariates (fixed effect) including the intercept and other covariates such as age and gender,

b is the vector for regression coefficients of the covariates, X ∈ Rn×p is the genotype matrix

and b is the vector for the effect sizes of p SNPs (fixed effects), g is the random effect from

N(0, σ2
gK), and e is the residual error with variance σ2

e . Here the covariance matrix K is the

genetic relatedness matrix which describes the pedigree structure among the individuals and

σ2
g is the variance component of g. The covariance matrix K can be constructed according

to the known pedigree information or estimated from genome-wide SNP information. This

model can be interpreted as follows: The random effect g can be considered as a global

average of signals from the genetic background and the shared environmental influence and

we call it “average polygenic effect”. For those SNPs with large effects which are different

from the genetic background, they are put into the design matrix X and considered as fixed

effects. In this way, the markers with larger effects can be treated locally.

3.1 Computation of Variance Components

Now we extend single-trait model (2) to a multiple-trait model. Let yo be an n×m response

matrix with each row representing subject and each column representing a trait. Let g(=

(g(1), . . . , g(m))) and e(= (e(1), . . . , e(m))) be n×mmatrix of unobserved polygenic and random

residual effects, respectively. Denote W be n × q non-genetic covariates and X be n × p

genetic scores of candidate genes. Correspondingly, we denote V (= (v(1), . . . , v(m))) and

B(= (b(1), . . . , b(m))) the corresponding q ×m coefficient matrix for q non-genetic covariates
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and p × m coefficient matrix for p genetic scores in m traits. We denote y
(l)
o the lth trait

and further denote that v(l), b(l), g(l) and e(l) are the corresponding vectors of coefficient for

non-genetic effects, genetic effects, average polygenic effects and vector of random residual,

respectively, for l(= 1, . . . ,m). First, consider linear mixed model for lth trait:

y(l)
o = Wv(l) +Xb(l) + g(l) + e(l),

where g(l) ∼ N(0,Kσ2
g(l)

) and e(l) ∼ N(0, Inσ
2
e(l)

). σ2
g(l)

and σ2
e(l)

are variance components

describing relations among subjects. In order to account for the genetic correlation and

residual correlation for multiple traits, we introduce σg(l,k) and σe(l,k) to describe the covari-

ance of average polygenic effects and residual for lth and kth trait, respectively. Consider

the multivariate linear mixed model:

yo = WV +XB + g + e, (3)

where we assume that

1. vech(e) ∼ N(0, In ⊗ Σe) where Σe is a m ×m matrix describing covariance structure

among multiple traits.

2. vech(g) ∼ N(0,K ⊗ Σg) where Σg is m × m matrix describing covariance structure

among multiple traits. K is an n× n genetic relatedness matrix (twice of the kinship

matrix) and it can be calculated using genome-wide genetic markers [Yang et al., 2010]

or directly obtained from unknown pedigree information.

There is a difficulty in applying the model when q + p + m(m + 1) > n, when the

number of parameters exceeds the number of samples (d is the number of covariates, p is the

number of SNPs treated as fixed effects, m(m + 1) is the number of variance components).

In order to overcome this difficulty, we introduce sparse constraints on b to perform variable
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selection, such that model (3) is well defined. To incorporate the feature of homogeneity

and heterogeneity structure among traits, we propose to use group MCP and sparse group

MCP. We call this approach as “Penalized Multi-Trait Mixed Models (Penalized-MTMM)”.

For simplicity, here we only consider two traits (m = 2) but the framework for more

than two traits remains the same. For m = 2, we have Σe =

(
σ2
e(1)

σe(12)
σe(12) σ2

e(2)

)
and Σg =(

σ2
g(1)

σg(12)

σg(12) σ2
g(2)

)
. Denote that S = diag(W,W ), v = vech(V ), T = diag(X,X), b = vech(B),

y = vech(yo), g = vech(g) and e = vech(e). Model (3) becomes

y = Sv + Tb+ g + e,

g ∼ N(0,K⊗ Σg),

e ∼ N(0, In ⊗ Σe),

(4)

Integrating out g and e and we have y ∼ N(Sv + Tb,K⊗ Σg + In ⊗ Σe). The log-likelihood

can be analytically written as

L(v, b,Σg,Σe) = −1

2

[
2n log(2π) + log(|H|) + (y − Sv − Tb)TH(−1)(y − Sv − Tb)

]
. (5)

where H = K⊗Σg + In⊗Σe. Now we introduce sparse penalties on the coefficient b and the

penalized log-likelihood can be written as

L(v, b,Σg,Σe) = −1

2

[
2n log(2π) + log(|H|) + (y − Sv − Tb)TH(−1)(y − Sv − Tb)

]
− Pλ(b).

(6)

where λ is the regularization parameter.

Clearly, when b is fixed, the optimization of penalized log-likelihood function (6) can

be solved by the standard “Average information - restricted maximal likelihood” method

(AI-REML) [Gilmour et al., 1995]. When (v,Σg,Σe) are all known, we will show that

maximization of penalized log-likelihood becomes a penalized least square problem. We will

carefully discuss different penalties in next section.
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3.2 Computation of Penalized-MTMM

We begin with b = 0 and solve (6) by AI-REML. After obtaining (v,Σg,Σe), we can transform

the log-likelihood function (6) to penalized least square problem as follows. Let Ĥ and v̂ be

the estimate of H and v, given by AI-REML, respectively. Denote that ỹ = Ĥ
−1/2

(y − Sv̂),

and T̃ = Ĥ
−1/2

T . Ignoring some constants, the unpenalized log-likelihood (6) becomes

(L(b)=)‖ỹ− T̃ b‖2/2. Hence, the maximization of the regularized penalized log-likelihood (6)

is equivalent to the following optimization problem

min
b

1

n
L(b) + Pλ(b), (7)

where Pλ(b) is a penalty function on the effects of genetic variants.

Similar to integrative analysis [Ma et al., In press], we can assume homogeneous or

heterogeneous structure across multiple traits. Homogeneity model assumes that both traits

share the same set of trait-associated covariates while heterogeneity model assumes that a

covariate can be associated with some of traits but not others. For homogeneity model, group

MCP has been demonstrated to conduct variable selection effectively, while sparse group

MCP can be used to conduct variable selection between- and within-groups for heterogeneity

model. Here, we choose to use minimax concave penalization (MCP) as basic penalty for

the variant selection, since comparing with its alternative, e.g. Lasso [Tibshirani, 1996]

and smooth clipped absolute deviation (SCAD) [Fan and Li, 2001], MCP belongs to the

family of quadratic spline penalties and leads to oracle selection results requiring weaker

conditions [Zhang, 2010]. We refer to Zhang [2010] and Mazumder et al. [2011] for detailed

discussion.

The MCP is defined as

ρ(t;λ, γ) = λ1

∫ |t|
0

(1− x/(γλ))+dx.
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Here λ is a penalty parameter, γ is a regularization parameter that controls the concavity of

ρ and x+ = x1{x≥0}. The MCP can be easily understood by considering its derivative, which

is

ρ̇(t;λ, γ) = λ1

(
1− |t|/(γλ)

)
+

sgn(t),

where sgn(t) = −1, 0, or 1 if t < 0,= 0, or > 0, respectively. As |t| increases from 0, MCP

begins by applying the same rate of penalization as Lasso, but continuously relaxes that

penalization until |t| > γλ, a condition under which the rate of penalization drops to 0. It

provides a continuum of penalties where the Lasso penalty corresponds to γ = ∞ and the

hard-thresholding penalty corresponds to γ → 1+. We note that other penalties, such as

Lasso or SCAD, can also be used to replace MCP. We choose MCP because it possesses

all the desirable properties of a penalty function and is computationally simple [Mazumder

et al., 2011, Zhang, 2010].

3.2.1 Group MCP

For the homogeneity model, group penalization methods can be implemented, e.g. group

Lasso, group bridge, group MCP. Here, we choose to use group MCP [Huang et al., 2012]

since comparing with its alternative, it possesses oracle properties with less conditions. We

have b = vech(B) where Bj is the jth row of B corresponding to the regression coefficients

of the jth gene on multiple traits, ‖Bj‖Σj = (B′jΣjBj)
1/2 and Σj = T̃ ′jT̃j/n is the empirical

covariance matrix for the jth group. We can write Σj = R′jRj for an m×m upper triangular

matrix Rj with positive diagonal entries via the Cholesky decomposition. Let Vj = T̃jR
−1
j

and βj = RjBj. With the transformation, the penalty function of group MCP is Pλ(β) =∑p
j=1 ρ (‖βj‖;

√
mλ, γ) and the objective function corresponding to group MCP [Huang et al.,

2012] can be written as:

LGM(β, λ) =
1

2n
‖ỹ −

p∑
j=1

Vjβj‖2 + Pλ(β), (8)
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where β = (β′1, . . . , β
′
p)
′.

The rationale behind the group MCP can also be understood by its univariate solution

with the jth group. Consider the linear regression of y upon xj (covariates on the jth group),

with unpenalized least squares solution zj = n−1x′jy (recall that xj has been standardized

so that x′jxj/n = In). For this linear regression problem, the group MCP estimator has the

following closed form:

β̂j =

{
γ
γ−1

S1(zj,
√
mλ), if ‖zj‖2 ≤ a

√
mλ

zj, if ‖zj‖2 > γ
√
mλ

,

where S1(z, λ) = (1− λ/‖z‖2)+ z. Then one can implement group coordinate descent (GCD)

algorithm to solve for the optimizer of objective function (8) [Huang et al., 2012].

3.2.2 Sparse Group MCP

For heterogeneity structure among traits, sparse group MCP can be applied to conduct

variable selection. We orthogonalize covariates within groups in the same fashion as the group

MCP. Denote λ = (λ1, λ2). Then, the penalty function of sparse group MCP is Pλ(β) =∑p
j=1 ρ (‖βj‖;

√
mλ1, γ)+

∑p
j=1

∑m
k=1 ρ (|βjk|;λ2, γ) and the objective function corresponding

to sparse group MCP [Liu et al., 2013] can be written as:

LSGM(β, λ) =
1

2n
‖ỹ −

p∑
j=1

Vjβj‖2 + Pλ(β). (9)

Similar to Zou and Li [2008], Breheny and Huang [2009], one can use local linear approxi-

mation (LLA) for the penalty function and iteratively solve the problem using the optimizer

in Friedman et al. [2010]. In Liu et al. [2013], they used a two-step strategy to solve for

the optimizer of objective function (9). In this way, GCD algorithm can be implemented

to solve (9) instead of solving objective function with LLA penalty function. Breheny and

Huang [2011] argued that GCD algorithm, alternative to LLA can be implemented with

more efficiency. Consider univariate group solution on the linear regression of y upon xj
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(covariates on the jth group), with unpenalized least squares solution zj = n−1x′jy (recall

that xj has been standardized so that x′jxj/n = In).

By setting first order derivative of objective function be zero, we have:

− zj + g(βj)βj + t = 0, (10)

where zj = (z1
j , . . . , z

M
j )′, g(βj) =

(
1 + 1

||βj ||2

){√mλ1 − ‖βj‖2γ
, if ‖βj‖2 ≤ γ

√
mλ1

0, if ‖βj‖2 > γ
√
mλ1

. Denote

zkj as the kth element of zj. First, fix g(βj) at the current estimate β̃j, we use g short for

g(β̃j). The kth element in equation (10) can be rewritten as:

− zjk
g

+ βjk + sgn(βjk)

{
λ2
g
− |βjk|

γg
, if |βjk| ≤ γλ2

0, if |βjk| > γλ2

= 0. (11)

The solution to equation (11) is

ĝβjk =

{
S2(zjk,λ2)

1− 1
γg

, if |zjk| ≤ γλ2g

zjk, if |zjk| > γλ2g.

Here S2(z, λ) = sgn(z)(|z| − λ)+. For k = 1, . . . ,m, set uk = ĝβjk and u = (u1, . . . , um)′.

Taking u back into its definition,

βj +
βj
‖βj‖2

{√
mλ1 − ‖βj‖2a

, if ‖βj‖2 ≤ a
√
mλ1

0, if ‖βj‖2 > a
√
mλ1

= u. (12)

Expression (12) can be solved in a similar manner as with the gMCP, leading to

β̂j =

{
a
a−1

S1(u,
√
mλ1), if ‖u‖2 ≤ a

√
mλ1

u, if ‖u‖2 > a
√
mλ1

. (13)

To optimize the group MCP or sparse group MCP objective function, group coordinate

descent algorithm (GCD) can be implemented. Breheny and Huang [2011] explored coor-

dinate descent algorithms (CDA) for nonconvex penalized regression, including MCP and

SCAD. The extension of CDA to group level is natural, their details can be found in Huang

et al. [2012], Liu et al. [2013].
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3.2.3 Choice of tuning parameter

With MCP, there is one tuning parameter λ and one regularization parameter γ. Generally

speaking, smaller values of γ are better at retaining the unbiasedness of the MCP penalty

for large coefficients, but they also have the risk of creating objective functions with a

nonconvexity problem that are difficult to optimize and yield solutions that are discontinuous

with respect to λ. It is therefore advisable to choose a γ value that is big enough to avoid

this problem but not too big. Simulation studies in Breheny and Huang [2011] and Liu et al.

[2012] show that γ = 3 is a reasonable choice for group MCP and γ = 6 is a reasonable

choice for sparse group MCP, respectively. For group MCP, we search for tuning parameters

λ using V -fold cross validation (V = 5 in our numerical study). For sparse group MCP,

we fix the ratio of λ1 and λ2 to be 1. Then λ1 and λ2 can be searched through V -fold

cross validation. It is expected that tuning parameter cannot go down to very small values

which correspond to regions not locally convex. The cross validation criteria over non-locally

convex regions may not be monotone. More details regarding the choice of tuning parameter

for group MCP and sparse group MCP can be found in [Huang et al., 2012] and Liu et al.

[2012], respectively.

3.3 Genetic Scores on Collapsed SNPs

Recent GWAS have shown that common variants can only account for small proportion of

heritability. Among all potential explanations to this missing heritability, the large number

of variants of small effects and rare variants (possibly with large effects) can be partially

remedied using a weighted-sum method [Madsen and Browning, 2009]. We group SNPs at

gene level using this weighted-sum method. This process puts the analysis for genetic markers

at gene level and is capable of dealing with rare variants together with common variants.

The proposed approach can be easily implemented in GWAS with common variants only or
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longitudinal measurements on traits with independent samples.

3.4 Trait Prediction

Given a training sample of genetic variants and traits, we can predict the unobserved traits

using a testing sample. According to best linear unbiased predictor (BLUP), the predictive

value of lth trait y
(l)
p is given by

y(l)
p = Wv̂(l) +Xb̂(l) +KttĤ

(l)−1
(y

(l)
t −Wv̂(l) −Xb̂(l)) (14)

where y
(l)
t is the lth trait of the training set, Ktt is the covariance matrix between the training

sample and the testing sample and Ĥ(l) is matrix of variance components corresponding

to lth trait. To evaluate estimates from the penalized-MTMM, we first extract variance

components and genetic effects corresponding to each trait. Then, we marginally evaluate

the prediction on each trait and calculate the Pearson’s correlation between the predictive

values and their corresponding observations. This procedure puts the comparison between

penalized-MTMM and uni-trait penalized-LMM methods on the same page.

4 Simulation Study

We conduct simulation to better gauge performance of the proposed methods. The genotype

data is excerpted from a T2D–GENES study with twenty pedigree families (Section 2). We

consider six scenarios of correlations. For all scenarios, we set n = 400, p = 5000 and m = 2.

We consider two traits in this study. The covariance among residual (Σe) and random effects

(Σd) in six scenarios are listed in Table 1. Scenario 1–3 represent the cases that Σe and

Σd is proportional with weak, moderate and strong correlation while scenario 4–6 represent

the cases that Σe and Σd is not proportional with multiple combination on Σe and Σd. We

also consider homogeneity and heterogeneity structure between two traits in this simulation
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study. In homogeneity structure, the index of important variants are (1–5, 16–20) for both

traits while the index of important variants are (1–5, 16–20) for trait 1 and (1–5, 21–25) for

trait 2 in heterogeneity structure.

We analyze simulated data using the proposed penalized-MTMM approach on multiple

traits. For comparison, we also consider penalized-LMM considering one trait at a time

and linear model on each trait without consideration of variance components adjusting for

relatedness among samples. For all scenarios on covariance components on both unobserved

random residual and polygenic effects, ROC curves for homogeneity and heterogeneity are

shown in Figure 1 and 2, respectively. We also calculate the partial area under the curve

(P-AUC) for each methods under each scenario (Table 2). One can observe that under

homogeneity structure, the area under the curve for group MCP and sparse group MCP

using penalized-MTMM is larger than that from uni-trait penalized-LMM using MCP and

uni-trait linear model. Under heterogeneity model, the P-AUC using penalized-MTMM is

larger for sparse group MCP in four scenarios but also comparable in other two scenarios.

The main reason for this phenomenon is that only two traits in the study. We postulate

if the number of traits is going up to three or four, the improvement of sparse gMCP over

gMCP in heterogeneity becomes more obvious. Furthermore, one can observe that uni-trait

penalized-LMM using MCP is consistently better than univariate linear model, since uni-

trait LMM-Pen takes into account the confounding relatedness in samples that is better in

identifying genetic variants. To better compare prediction, we compare the multi-trait and

uni-trait methods through simulation studies.

5 Analysis of GAW 18 data

We analyze GAW 18 data described in Section 2. GAW 18 T2D–GENES study provides a

GWAS data consisting of SNPs from odd autosomes. Totally, there are 472,049 SNPs over
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11 autosomes for 959 samples from 20 large pedigrees. Among those SNPs, 292,355 SNPs

are within the scope of gene. Using the collapsing techniques described in Section 3.3, SNPs

within gene scope are collapsed into genetic scores for 10,949 genes. After quality control,

849 samples with genetic scores for 10,549 genes are used for further analysis.

The variance components for residuals are

(
0.900 0.490
0.490 0.903

)
and the proportion between Σd

and Σe is (θ=) 0.100. One can deduce heritability for this data set that is θ/(1+θ) (=0.091).

The estimates and corresponding observed occurrence index (OOI) of the proposed approach

using group MCP and sparse group MCP are shown in Table 3 and 4. For comparison, we

conduct uni-trait analysis using MCP, the estimates and corresponding observed occurrence

index (OOI) are shown in Table 5. To evaluate prediction performance, we calculate the

correlation between the predictive values using BLUP in Section 3.4 and their correspond-

ing observations. We carry out this procedure via V-fold cross-validation. The mean (sd)

correlation is 0.152(0.057) and 0.186(0.084) for SBP and DBP, respectively using the pro-

posed method on group MCP. The mean correlation is 0.139(0.070) and 0.192(0.112) for SBP

and DBP, respectively using the proposed method on sparse group MCP. For comparison,

The mean correlation is 0.125(0.078) and 0.146(0.074) for SBP and DBP, respectively using

uni-trait method on MCP.

[Table 1 about here.]

[Figure 1 about here.]

[Figure 2 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Table 4 about here.]
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[Table 5 about here.]

6 Discussion

We have presented a penalized multi-trait mixed model (Penalized-MTMM) for detecting

pleiotropic genetic associations among multiple traits in the presence of pedigree structure.

The approach combines the advantages of mixed models that allow for elegant correction

for pedigree-based family data, integrative analysis of multiple traits that borrow strengths

across traits and joint multi-variant models that take the joint effects of sets of genetic vari-

ants into account rather than one single variant at a time. In the joint multi-variant models,

we consider both homogeneity and heterogeneity structure using group MCP and sparse

group MCP, respectively. We use ROC to evaluate selection performance for penalized-

MTMM comparing with penalized-LMM considering one trait at a time and a linear model.

To evaluate prediction performance, we use BLUP to find the predictive values and the

correlations of the predictive values and their corresponding observations are calculated

subsequently. Our numerical studies show that the proposed approach has satisfactory per-

formance.

Confounder effects and population structure induce spurious correlations between geno-

type and phenotype, complicating the genetic analysis. Mixed models accounting for the

presence of such structure are well studied and have been shown to greatly reduce the im-

pact of this confounding source of variability. For instance, EIGENSTRAT was built upon

the idea of extracting the major axes of population differentiation using a PCA decompo-

sition of the genotype data and subsequently including them into the model as additional

covariates [Price et al., 2006]. The penalized-MTMM can consider both of confounder effects

and population structure depending the choice of random effects. On the other hand, mixed

models also show its strength in coping with repeated measures in longitudinal studies. The

17



penalized-MTMM can handle data from longitudinal studies with multiple traits.

In the similar fashion, our method can be applied to conduct integratively analysis of

multiple GWAS with correlated traits.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 1: ROC plots for example 1–6 in homogeneity model.
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(a) Scenario 1 (b) Scenario 2 (c) Scenario 3

(d) Scenario 4 (e) Scenario 5 (f) Scenario 6

Figure 2: ROC plots for example 1–6 in heterogeneity model.
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Table 1: Six scenarios for Covariance on both unobserved random residual and polygenic
effects.

Σe Σd

Scenario 1

(
0.20 0.04
0.04 0.20

) (
0.40 0.08
0.08 0.40

)
Scenario 2

(
0.20 0.10
0.10 0.20

) (
0.40 0.20
0.20 0.40

)
Scenario 3

(
0.20 0.16
0.16 0.20

) (
0.40 0.32
0.32 0.40

)
Scenario 4

(
0.20 0.04
0.04 0.24

) (
0.40 0.24
0.24 0.40

)
Scenario 5

(
0.20 0.16
0.16 0.24

) (
0.40 0.04
0.04 0.40

)
Scenario 6

(
0.20 0.16
0.16 0.24

) (
0.40 0.24
0.24 0.40

)
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Table 2: Partial AUC (standard deviation) under 6 scenarios for all methods in both homo-
geneity and heterogeneity models.

Data Model MTMM LMM Linear Model
Penalty gMCP sparse gMCP MCP MCP
Scenario 1 Homogeneity 0.537(0.134) 0.484(0.140) 0.355(0.084) 0.344(0.062)
Scenario 2 Homogeneity 0.486(0.128) 0.468(0.115) 0.340(0.087) 0.372(0.067)
Scenario 3 Homogeneity 0.411(0.131) 0.452(0.125) 0.359(0.092) 0.355(0.071)
Scenario 4 Homogeneity 0.517(0.105) 0.471(0.130) 0.332(0.108) 0.359(0.063)
Scenario 5 Homogeneity 0.520(0.089) 0.487(0.102) 0.337(0.094) 0.367(0.063)
Scenario 6 Homogeneity 0.449(0.128) 0.460(0.128) 0.324(0.100) 0.357(0.055)
Scenario 1 Heterogeneity 0.540(0.089) 0.499(0.095) 0.351(0.082) 0.360(0.065)
Scenario 2 Heterogeneity 0.531(0.101) 0.501(0.106) 0.352(0.083) 0.375(0.062)
Scenario 3 Heterogeneity 0.558(0.093) 0.574(0.108) 0.324(0.102) 0.366(0.063)
Scenario 4 Heterogeneity 0.510(0.092) 0.521(0.104) 0.333(0.091) 0.350(0.072)
Scenario 5 Heterogeneity 0.489(0.103) 0.515(0.122) 0.324(0.095) 0.357(0.070)
Scenario 6 Heterogeneity 0.518(0.093) 0.558(0.090) 0.327(0.084) 0.342(0.058)
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Table 3: Gene selected by penalized-MTMM using gMCP.

Gene Trait1 Trait2 OOI Gene Trait1 Trait2 OOI
DFFA 0.001 0.000 0.400 NCAM1 -0.017 -0.005 0.690
LOC390998 0.031 0.024 0.900 OR8A1 -0.002 -0.030 0.970
MOBKL2C -0.009 -0.002 0.440 FNDC3A 0.008 0.015 0.650
SLC16A4 -0.007 -0.000 0.550 INOC1 0.029 0.026 0.920
LCE1A 0.018 0.016 0.750 PIAS1 0.002 0.001 0.340
PYCR2 0.004 0.001 0.500 TLCD2 0.004 -0.001 0.520
ALCAM -0.002 -0.002 0.440 HS3ST3B1 0.012 0.004 0.660
EIF2B5 -0.001 -0.002 0.460 FLII -0.004 -0.005 0.360
ZCCHC10 0.019 0.011 0.680 RAMP2 -0.004 -0.011 0.540
ANKHD1 0.007 0.004 0.520 ANKRD40 -0.002 0.022 0.850
LOC100130230 -0.003 -0.005 0.540 C19orf38 -0.009 0.025 0.970
PAPOLB 0.015 0.016 0.820 NDUFA13 -0.002 0.001 0.370
RPA3 -0.032 -0.010 0.890 ZNF826 -0.006 0.020 0.900
ELMO1 -0.008 -0.001 0.430 SYT3 0.016 0.011 0.800
OGDH 0.040 0.037 0.990 ZNF611 -0.008 -0.017 0.770
EXOSC2 0.029 0.040 0.990 AIRE -0.004 -0.011 0.570
LOC390084 -0.008 -0.007 0.510
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Table 4: Gene selected by penalized-MTMM using sparse gMCP.

Gene Trait 1 Trait 2 Gene Trait 1 Trait 2
Est. OOI Est. OOI Est. OOI Est. OOI

AIRE -0.004 0.020 -0.007 0.450 MOBKL2C -0.006 0.510
ANKRD40 0.001 0.580 0.005 0.580 NCAM1 -0.012 0.750
C19orf38 -0.004 0.690 0.010 0.690 OGDH 0.024 0.810 0.031 0.980

CSF1 -0.005 0.030 -0.008 0.490 OR8A1 -0.004 0.770 -0.016 0.770
EIF2B5 -0.007 0.000 -0.010 0.490 PAPOLB 0.010 0.200 0.015 0.610
ELMO1 -0.009 0.610 PYCR2 0.004 0.510
EXOSC2 0.027 0.000 0.042 1.000 RAMP2 -0.005 0.050 -0.009 0.570

FLII -0.004 0.000 -0.006 0.550 RPA3 -0.018 0.810 -0.001 0.350
FNDC3A 0.017 0.000 0.026 0.710 SCYL1BP1 -0.001 0.530

HS3ST3B1 0.004 0.540 0.000 0.290 SLC16A4 -0.016 0.760
INOC1 0.009 0.560 0.010 0.600 TLCD2 0.007 0.650
LCE1A 0.001 0.320 0.001 0.420 ZNF611 -0.014 0.020 -0.022 0.880

LOC100130230 -0.007 0.000 -0.011 0.700 ZNF826 -0.001 0.540 0.003 0.540
LOC390998 0.013 0.700 0.012 0.700
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Table 5: Gene selected by uni-trait LMM using MCP separately on each trait.

Gene Trait 1 Trait 2 Gene Trait 1 Trait 2
Est. OOI Est. OOI Est. OOI Est. OOI

ANKHD1 0.017 0.710 NCAM1 -0.024 0.800
ARSB -0.007 0.490 OGDH 0.022 0.730 0.011 0.760

C1orf128 0.015 0.680 PIAS1 0.016 0.700
C3orf20 0.007 0.500 PYCR2 0.008 0.660
DFFA 0.005 0.450 RPA3 -0.030 0.900

HS3ST3B1 0.022 0.810 SFRS12 0.007 0.580
INOC1 0.019 0.760 0.004 0.540 SYT3 0.024 0.750
LCE1A 0.007 0.430 ZCCHC10 0.027 0.780

LOC390998 0.028 0.830 EXOSC2 0.038 0.980
MCM7 -0.001 0.410 FNDC3A 0.015 0.720

MKNK1 -0.002 0.270 ZNF611 -0.011 0.750

28


	1 Introduction
	2 Data and Model
	2.1 GAW 18 Data
	2.2 Variance Components Model in Genetics

	3 Variance Components and Penalized Regression
	3.1 Computation of Variance Components
	3.2 Computation of Penalized-MTMM
	3.2.1 Group MCP
	3.2.2 Sparse Group MCP
	3.2.3 Choice of tuning parameter

	3.3 Genetic Scores on Collapsed SNPs
	3.4 Trait Prediction

	4 Simulation Study
	5 Analysis of GAW 18 data
	6 Discussion

