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Abstract

This article aims to consider a new univariate nonparametric cumula-

tive sum (CUSUM) control chart for small shift of location based on both

change-point model and Mann-Whitney statistic. Some comparisons on the

performances of the proposed chart with other charts as well as the prop-

erties of the test statistic are presented. Simulations indicate that the pro-

posed chart is sensitive in detection of the small mean shifts of the process

by a high intensive accumulation of sample information when the underlying

variable is completely distribution-free.
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1 Introduction

Statistical process control (SPC) has been applied widely for monitoring various

industrial manufacturing processes, service processes and some special behavior

processes (see. Wetherill B. et al. [1], Montgomery [10]), in which control charts
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are the most widely used to detect changes in production process. In conventional

SPC, the monitored process variable is assumed to be modelled by the normal dis-

tribution, and based on such underlying distribution assumption, Shewhart chart,

EWMA (exponential weighted moving average) chart and CUSUM (cumulative

sum ) chart for variables data, p-chart or c-chart for attributes data, had been

proposed (see. Wetherill B. et al. [1]). It is well recognized however that in

many applications the underlying process distribution is not known (e.g. in phase

I of SPC) sufficiently to assume normality (or any other parametric distribution),

so that statistical properties of commonly used charts, designed to perform best

under the assumed distribution, could be highly affected. In situation like this,

development and application of control charts that do not depend on any specific

parametric distributional assumptions, seem highly desired. There are literatures

considering distribution-free charts or nonparametric charts for this purpose, an

extensive overview on univariate nonparametric control charts was presented by

Chakraborti [3]. While the average charts are probably the most widely used

in detection of large mean shift because of their simplicity, CUSUM procedures

are quite appropriate in view of the sequential nature of the process problem and

more sensitive to small shift in process mean. Based on the within group Wilcoxon

signed-rank statistic, Bakir and Reynold [2] proposed a nonparametric CUSUM

chart to track the shift of a location parameter µ from an in-control known value

µ0. McDonald [9] established some nonparametric CUSUM chart for detecting the

process mean shifts by using sequential rank test. Using cross-sectional antiranks

of the measurement as well as the order information of the sample, Qiu [12][13]

designed some nonparametric multivariate CUSUM control charts for detecting

process variability and process mean shifts, respectively. Recently, in the case of

having historical in-control data, Zhou et al. [16] established a nonparametric

EWMA control chart by using the Mann-Whitney statistic, which performed a

lower sensitivity than that of change point charts (see. Hawkins et al.[6]) hav-

ing known normal distribution, and a higher sensitivity and robustness than that

of change point charts (see. Hawkins et al.[6]) under non-normal distribution or
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distribution-free conditions. Chakraborti [4] also proposed a nonparametric aver-

age control chart-MW chart based on the Mann-Whitney statistic under condition

of available reference sample from the in control process by a phase I analysis,

which has a high sensitivity in detection of the large process mean shifts in a

completely distribution-free case. Das [5] presented a note on efficiency of non-

parametric control chart for monitoring process variability by using the rank-sum

statistic of Ansari and Bradley. Yang and Cheng [15] proposed a nonparametric

CUSUM mean chart based on the total number of univariate data exceeding the

in-control mean which is already known or estimated by the available in control

reference sample.

It is well known that the Mann-Whitney statistic is equivalent to the Wilcoxon

rank-sum statistic. Though the rank based CUSUM charts have been proposed,

there is no report on a nonparametric CUSUM chart based on the Mann-Whitney

statistic. In this research, we design such CUSUM chart under the condition

of having available in control reference sample like the cases of Zhou et al.[16],

Chakraborti [4] and Yang and Cheng [15], and a finite sequence of future observa-

tions with considering the concept of change-point for detection of small shifts of

the process mean (the location parameter). Some performance comparisons with

other change point chart and nonparametric charts are considered. The rest of

the paper is organized as follow. In Section 2, the concept of change-point and

the Mann-Whitney statistic have been recalled. In Section 3, the test statistic of

a nonparametric CUSUM chart based on the Mann-Whitney statistic is proposed,

and the relevant control limits and control rule are designed. In Section 4, some

performance comparisons of the designed chart with other charts are given.
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2 Change-point and the Mann-Whitney statistic

The traditional change-point model can be illustrated as follows. Let {Xi, i =

1, 2, · · ·} be a sequence of independent random variables, and

Xi ∼







F (x;µ0, σ
2
0), i = 1, 2, · · · , τ ;

F (x;µ1, σ
2
1), i = τ + 1, τ + 2, · · ·

where F stands for a continuous distribution function with unknown types, µ0, µ1

stand for the process mean and σ2
0 , σ

2
1 the process variance. If it holds µ0 6= µ1

or σ2
0 6= σ2

1 , then τ is said to be a change-point. Detecting and finding out a

change-point for random process is an important issue since with which we can

predict properly the potential change in the observed process. The detection of

the mean shifts or variance change in process control is similar to the detection

of change-point in a process. Like Zhou et al. [16] we also consider a change-

point model based on sequence of finite independent random variables {Xi}, where

i = 1, 2, · · · , l.

In the nonparametric data analysis, a sort of change-point detection method

is the well-known Mann-Whitney two-sample test (see. Mann and Whitney [8]),

which is applied for inferring whether differences exist between the distributions

of two populations through two independent group samples. For any 1 6 t < l,

the Mann-Whitney statistic is defined as

MWt,l =
t

∑

i=1

l
∑

j=t+1

I(xj < xi) =
l

∑

j=t+1

I(xj < x1) + I(xj < x2) + · · ·+ I(xj < xt),

where

I(xj < xi) =







1, xj < xi,

0, xj > xi.

If µ0 = µ1, σ
2
0 = σ2

1, then it is said that the process is in-control state. In this

paper, we only consider the variation on the location parameter and let σ2
0 = σ2

1.

It is verified that (see. Mann and Whitney [8], Zhou et al.[16]), under in-control

state, the expectation and variance of MWt,l can be obtained as

E0(MWt,l) =
t(l − t)

2
, V ar0(MWt,l) =

t(l − t)(l + 1)

12
.
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The standardized Mann-Whitney statistic SMWt,l is defined by

SMWt,l =
MWt,l −E0(MWt,l)
√

V ar0(MWt,l)
.

Based on the proof of Mann-Whitney (see. Mann and Whitney [8]), when the

process is in-control state, the distribution of SMWt,l is symmetric about zero for

each t, and large values of SMWt,l indicate a negative mean shift, whereas small

values indicate a positive shift [16]. As explained in Zhou et al. [16], a test statistic

for detection of change-point about the mean (i.e. the hypotheses H0 : µ0 = µ1)

is proposed by Pettitt [11] as

Tl = max
16t6l−1

|SMWt,l|.

If Tl exceeds some critical value hl, then we conclude that there is a shift in the

mean. Otherwise, we conclude that there is no sufficient evidence of a shift. To

find a suitable critical values hl, we can use the limiting distribution of Tl given

by Pettitt [11] to make an approximation.

Note that for each t, SMWt,l can be modeled approximately by standard nor-

mal distribution N(0, 1) when l is large.

3 A nonparametric CUSUM chart

For detecting a small mean shift occurred at the change-point of the process as

soon as possible, CUSUM control chart is usually recommended. Assuming that

the occurred change-point indicates an upward mean shift, i.e., µ1 > µ0, then at

the change-point, the expectation of the Mann-Whitney statistic becomes larger

and the sample mean around the change-point might occurs a small upward shift.

In such case, it is hard to find shift quickly by using the statistic Tl, because it

only depends on the finite individual observations without considering all historical

sample information. Therefore, we desire to construct an upper side nonparametric

CUSUM control chart based on the standardized Mann-Whitney statistic SMWt,l.

Zhou et al. [16] have done an improvement on statistic Tl and proposed the

SMW chart, which has a test statistic Tm,n = maxm6t<m+n |SMWt,(m+n)|. Fur-
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thermore, an EWMA chart has been given based on SMWt,(m+n), where m is the

number of in-control historical individual observations, n is the number of the

future observations, and m + n is the number of the total observations. Noting

that here the CUSUM chart has not been considered. Though both CUSUM chart

and EWMA chart performed quite well in the detection of the small shifts in mean

(see. Lucas and Saccucci [7]), CUSUM chart is usually slightly more sensitive than

EWMA chart when the average in control run length become large (see. Srivastava

and Wu [14]). Under the same condition of the SMW chart, we propose the test

statistic for our upper side CUSUM chart as

Sj(m,n) = max{0, Sj−1(m,n)+SMWj,(m+n)−k}, j = m−m0, m−m0+1, · · · , m−m0+n−1,

where 0 6 m0 6 m, Sm−m0−1(m,n) = 0, k = △

2
is the reference value, △ is the

shift size to be detected. Here we assume k = 1
2
. Set

Smax(m,n) = max
m−m06j6m+n−1

|Sj(m,n)| = max
m−m06j6m+n−1

Sj(m,n).

Our control rule is as follow,

(1)After the nth future sample is monitored, compute Smax(m,n).

(2)Let hm,n be the decision value, which is chosen to obtain the given in-control

average run length. If Smax(m,n) 6 hm,n, we conclude that there is no evidence of

a shift and continue to monitor the (n+1)st future sample. If Smax(m,n) > hm,n,

then an out-of-control signal is triggered.

Noting that, in the case of SMW chart (see. Zhou et al. [16]), we need to

calculate the maximum values of SMWt,(m+n) for each t, whereas for our CUSUM

chart, we calculate the maximum values of the cumulative sum Sj(m,n).

For the given type one error α, the decision value hm,n can be obtained by

solving following equations

Pr(Smax(m,n) > hm,n(α)|Smax(m, i) 6 hm,i(α), 1 6 i < n) = α, n > 1,

P r(Smax(m, 1) > hm,1(α)) = α.

Due to the intricacy of this conditional probability, it seems to be impossible

to solve it analytically. Therefore, similar to [16], we use one million sequences of
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length 500 which come from the standard normal distribution to estimate them.

The historical sample size is assumed to be larger than 10. Table 1 shows the

control limit of CUSUM chart for α values of 0.01, 0.005, 0.0027, and 0.002, cor-

responding to in control ARLs of 100, 200, 370, 500, for m=10 and 50, m0=4, and

n values in the range 1-490. As shown in Table 1, hm,n(α) increase initially, but

then stabilizes. We can obtain the optimal decision value using such approach of

estimation. Compare with the decision values hm,n(α) shown in Table 1 of Zhou et

al. [16] for their EWMA chart, the decision values of CUSUM chart seem slightly

smaller. Similar to Zhou et al.[16], it is not difficult to present an illustrative ex-

ample to introduce the implementation of our proposed CUSUM chart, we omit it

here.

The equivalence between the Wilcoxon rank-sum statistic Wt,l and the Mann-

Whitney statistic MWt,l is shown with the equality MWt,l = Wt,l −
t(t+1)

2
, where

Wt,l =
∑t

i=1Ri, and Ri denotes the rank of the ith observation xi in the total l

observations. We may use this equivalence to reduce the computational complexity

of the Mann-Whitney statistic.

4 A comparison between control charts

In this section, we present a simple performance comparison shown in Table 2

between our CUSUM chart and the change-point chart proposed by Hawkins et

al. [6] based on the available data from Zhou et al. [16]. Also we consider

some comparisons of the characteristics of our test statistic to other nonparametric

CUSUM statistic.

4.1 A comparison with change-point chart

In Table 2, δ denotes the coefficient of standard deviation for measuring the shift

size, τ denotes the change-point. We can found that

(1) As the increasing of the future observed in-control data, both charts become

more sensitive to the shift as the new observation updates the information already
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Table 1

The decision values h(m,n)(α) of CUSUM control chart, k = 1
2

m=10 m=50

ARL(0)

n 100 200 370 500 100 200 370 500

1 1.120 1.185 1.184 1.114 1.182 1.192 1.235 1.254

3 1.263 1.329 1.216 1.412 1.346 1.395 1.459 1.502

5 1.462 1.589 1.668 1.693 1.554 1.660 1.748 1.827

7 1.611 1.752 1.865 1.914 1.696 1.847 1.974 2.038

9 1.689 1.845 1.972 2.021 1.774 1.945 2.082 2.150

11 1.744 1.916 2.050 2.119 1.833 2.023 2.160 2.238

13 1.798 1.988 2.129 2.167 1.887 2.082 2.238 2.316

15 1.836 2.027 2.178 2.246 1.996 2.121 2.297 2.375

17 1.873 2.076 2.227 2.295 1.950 2.160 2.336 2.484

19 1.897 2.090 2.261 2.334 1.970 2.180 2.360 2.453

22 1.924 2.129 2.295 2.393 1.989 2.198 2.394 2.472

26 1.951 2.170 2.349 2.432 1.999 2.238 2.434 2.522

30 1.985 2.191 2.383 2.481 2.038 2.192 2.453 2.551

35 2,065 2.237 2.422 2.510 2.043 2.297 2.483 2.581

40 2.026 2.268 2.452 2.549 2.063 2.367 2.502 2.60

50 2.049 2.292 2.496 2.588 2.078 2.327 2.522 2.620

60 2.071 2.317 2.530 2.628 2.097 2.346 2.552 2.649

70 2.083 2.333 2.546 2.638 2.107 2.356 2.571 2.669

80 2.091 1.341 2.559 2.657 2.112 2.366 2.591 2.688

90 2.095 2.356 2.569 2.667 2.117 2.386 2.60 2.698

115 2.106 2.372 2.589 2.686 2.122 2.386 2.605 2.708

140 2.118 2.380 2.60 2.6906 2.127 2.390 2.610 2.718

165 2.152 2.388 2.608 2.706 2.129 2.395 2.655 2.727

190 2.136 2.405 2.628 2.726 2.142 2.415 2.63o 2.742

240 2.134 2.413 2.633 2.735 2.147 2.420 2.635 2.747

290 2.421 2.643 2.745 2.425 2.620 2.752

390 2.658 2.760 2.659 2.767

490 2.795 2.800
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Table 2

The ARL comparisons between CUSUM chart and C-PC (Change-Point Chart)

for N(0,1) data and m=10, α=0.005

τ=10 τ=50 τ=100 τ=250

δ CUSUM C-PC CUSUM C-PC CUSUM C-PC CUSUM C-PC

0.00 200.0 200.0 200.0 200.0 200.0 200.0 200.0 200.0

0.025 173.1 187.5 123.4 155.5 96.4 130.7 70.8 100.3

0.050 134.8 159.8 39.9 66.4 26.8 41.1 21.9 31.1

0.75 92.1 113.5 13.9 22.8 11.9 17.0 10.9 15.1

1.00 52.80 65.5 8.7 11.6 8.2 9.9 8.2 9.2

1.25 26.6 30.6 6.9 7.5 6.7 6.7 6.9 6.4

1.50 14.2 15.0 6.3 5.4 5.9 5.0 5.8 4.8

1.75 8.2 8.8 5.2 4.2 5.3 3.9 5.1 3.7

2.00 5.8 6.3 4.3 3.4 4.3 3.2 4.2 3.0

2.25 5.4 5.0 3.9 2.8 3.9 2.6 3.9 2.6

2.50 4.2 4.2 3.4 2.4 3.5 2.3 3.5 2.2

2.75 3.8 3.6 3.1 2.1 3.1 2.0 2.9 1.9

3.00 3.5 3.1 2.8 1.8 2.9 1.8 2.6 1.7

known.

(2) For detecting a relatively large shift in mean, the change-point chart proposed

by Hawkins et al. [6] is more sensitive than our CUSUM chart.

(3) Our CUSUM chart is faster than the change-point chart proposed by Hawkins

et al. [6] for detecting a small mean shift.

Similar to Zhou et al. [16], we may make other performance comparisons of

our CUSUM chart to other control charts having known underlying distribution,

we omit it here.

4.2 A comparison with other nonparametric CUSUM charts

In the following, we also mention a rough comparison between our CUSUM chart

and other nonparametric CUSUM charts proposed by Bakir and Reynolds [2],

McDonald [9] and Yang and Cheng [15] based on the characteristics of the test

statistic.
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Bakir and Reynolds [2] consider a sequence of observations {xij , i = 1, 2, · · · ; j =

1, · · · , g}, each of size g = 4 or 5, and define a within group Wilcoxon signed rank

sum SRi =
∑g

j=1 sign(xij)Rij for each observation, where Rij denotes the rank of

|xij | in {|xi1|, · · · , |xig|}, and based on which they propose their CUSUM statistic

as
n

∑

i=1

(SRi − k)− min
06m6n

m
∑

i=1

(SRi − k),

or

max
06m6n

m
∑

i=1

(SRi + k)−
n

∑

i=1

(SRi + k).

From the structure of the statistic, we are not able to compare it straightforwardly

with our CUSUM statistic because the rank in Mann-Whitney is based on the

comparison of the total samples, whereas the rank in former statistic is only based

on comparison within group sample with its absolute values. If we restrict a

sequence of group sample of size g to finite l times observations, then we may

view them as a finite sequence of l× g independent random variables, and we may

assume the former m variables of the sequence are in-control state, so that we can

obtain our standardized Mann-Whitney statistic with a reference in-control data.

Noting that the rank involved in our CUSUM statistic is for total samples and

the rank in Bakir and Reynolds ’s CUSUM statistic [2] is only the within group

signed rank, the sum of the former ranks is obviously larger than the sum of the

later ranks. Therefore, for a fixed reference value k and a decision value h, our

CUSUM chart is clearly more sensitive than Bakir and Reynolds’s chart for small

mean shift.

For comparing our CUSUM chart with McDonald’s CUSUM chart [9], we note

that their sequential rank Ri is defined as Ri = 1 +
∑i−1

j=1 I(xj < xi) for the

observation {xi, i = 2, · · ·}, and the CUSUM statistic Tj = max{0, Tj−1+Uj − k},

where Ui =
Ri

i+1
. The Mann-Whitney statistic MWi,n can be written as

MWi,n = (Ri+1 − 1) +
n

∑

s=i+2

(I{x1 < xs}+ I{x2 < xs}+ · · ·+ I{xi < xs}),

i = 2, · · · , n−1. Therefore, MWi,n is obviously larger than Ri, which leads to that

the cumulative sample information of our CUSUM statistic is more rich than the
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cumulative sample information of Ti. So our CUSUM chart based on MWi,n is

more sensitive than the CUSUM chart based on Ri proposed by McDonald [9].

We now consider roughly to compare our CUSUM chart with Yang and Cheng’s

CUSUM chart [15]. Noting that their chart is based on statistic Mt =
∑t

j=1 I{xj >

µ} for the observations {xi, i = 1, 2, · · ·}, where µ is the in control mean of the

process. Obviously, the Mann-Whitney statistic MWi,n implies more information

than Mt, especially in the case where the unknown in control mean need to be

estimated by the available reference in-control samples. They only utilize the

average information like ¯̄x of the available reference in-control samples, whereas

in our CUSUM case, the m available reference in control samples are fully utilized

with an individually comparison. So our CUSUM chart is also relatively more

sensitive than Yang and Cheng’s CUSUM chart.

Conclusion remark The rank based statistical method is an important well-

known nonparametric approach for the case where the distribution of the under-

lying variable is completely unknown, in which the Mann-Whitney statistic is the

popular and powerful one. We establish a sort of nonparametric CUSUM chart

based on the standardized Mann-Whitney statistic for the detection of the small

location shifts quickly. Comparisons indicate that the proposed CUSUM chart

is slightly quicker than the nonparametric charts proposed by Zhou et al. [16],

Bakir and Reynolds [2], McDonals [9] and Yang and Cheng [15] in the detection

of the small mean shifts. However, the computation of our CUSUM statistic is

somewhat difficult, we need to solve it with the computer programming. It is also

to be pointed out that the nonparametric control charts is rest on the theoreti-

cal research only, of which the development of the practical applications is highly

desired.
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