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Abstract

Estimation of covariance matrices or their inverses plays a central role in
many statistical methods. For these methods to work reliably, estimated
matrices must not only be invertible but also well-conditioned. In this paper
we present an intuitive prior that shrinks the classic sample covariance esti-
mator towards a stable target. We prove that our estimator is consistent and
asymptotically efficient. Thus, it gracefully transitions towards the sample
covariance matrix as the number of samples grows relative to the number of
covariates. We demonstrate the utility of our estimator in four standard situ-
ations – regression, canonical correlation analysis, discriminant analysis, and
EM clustering – when the number of samples is dominated by or comparable
to the number of covariates.

Keywords: Covariance estimation, Regularization, Condition number,
Canonical correlation analysis, Discriminant analysis, Clustering

1. Introduction

Estimates of covariance matrices and their inverses play a central role in
many core statistical methods, ranging from least squares regression to EM
clustering. In these applications it is crucial to obtain estimates that are not
just non-singular but also well-conditioned. It is well known that the sample
covariance matrix

S =
1

n

n∑
j=1

(yj − ȳ)(yj − ȳ)t

ar
X

iv
:1

30
5.

33
12

v1
  [

st
at

.M
E

] 
 1

4 
M

ay
 2

01
3



is the maximum likelihood estimates of the population variance Ω of a ran-
dom sample y1, . . . ,yn from a multivariate normal distribution. When the
number of components p of y exceeds the sample size n, the sample co-
variance S is no longer invertible. Even when p is close to n, S becomes
ill-conditioned and small perturbations in measurements can lead to dispro-
portionately large fluctuations in its entries. To deal with this dilemma and
to stabilize estimation generally, one can add a penalty that steers covariance
estimates towards well-conditioned values.

To motivate our choice of penalization, consider the eigenvalues of the
sample covariance matrix in a simple simulation experiment. We drew n
independent samples from a 10-dimensional multivariate normal distribution
yi ∼ N(0, I10). Figure 1 presents boxplots of the sorted eigenvalues of
the sample covariance matrix S over 100 trials for sample sizes n drawn
from the set {5, 10, 20, 50, 100, 500}. The boxplots descend from the largest
eigenvalue on the left to the smallest eigenvalue on the right. The figure
vividly illustrates the previous observation that the highest eigenvalues tend
to be inflated upwards (above 1) while the lowest eigenvalues are deflated
downwards (below 1) (Ledoit and Wolf, 2004, 2012). In general, if the sample
size n and the number of components p approach ∞ in such a way that the
ratio p

n
approaches τ ∈ (0, 1), then the eigenvalues of S tend to the Marĉenko-

Pastur law (Marĉenko and Pastur, 1967), which is supported on the interval
([1−

√
τ ]2, [1 +

√
τ ]2). Thus, the distortion worsens as τ approaches 1. The

obvious remedy is to pull the highest eigenvalues down and push the lowest
eigenvalues up.

In this paper, we introduce a novel prior which effects the desired adjust-
ment on the sample eigenvalues. Maximum a posteriori (MAP) estimation
under the prior boils down to a simple nonlinear transformation of the sample
eigenvalues. In addition to proving that our estimator has desirable theoreti-
cal properties, we also demonstrate its utility in extending four fundamental
statistical methods - linear regression, canonical correlation analysis, discrim-
inant analysis, and EM clustering - to contexts where the number of samples
n is either on the order of or dominated by the number of parameters p.

The rest of our paper is organized as follows. Section 2 discusses the
history of robust estimation of structured and unstructured covariance ma-
trices. Section 3 specifies our Bayesian prior and derives the maximum a
posteriori estimator under the prior. Section 4 proves that the estimator is
consistent and asymptotically efficient. Section 5 illustrates the estimator
for some common tasks in statistics. Finally, Section 7 discusses limitations,
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Figure 1: Boxplots of the sorted eigenvalues of the sample covariance matrix
S over 100 random trials. Here the number of components p = 10, and the
sample size n is drawn from the set {5, 10, 20, 50, 100, 500}.

generalizations, and further applications of the estimator.

2. Related Work

Regularized estimation of covariance matrices and their inverses has been
a topic of intense scrutiny (Wu and Pourahmadi, 2003; Bickel and Levina,
2008), and the current literature reflects a wide spectrum of structural as-
sumptions. For instance, banded covariance matrices make sense for time
series and spatial data, where the order of the components is important. It is
also helpful to impose sparsity on a covariance matrix, its inverse, or its fac-
tors in a Cholesky decomposition or other factorization (Huang et al., 2006;
Rohde and Tsybakov, 2011; Cai and Zhou, 2012; Ravikumar et al., 2011; Ra-
jaratnam et al., 2008; Khare and Rajaratnam, 2011; Fan et al., 2011; Banerjee
et al., 2008; Friedman et al., 2008; Hero and Rajaratnam, 2011, 2012; Peng
et al., 2009).

In this current paper, we do not assume any special structure. Our sole
concern is to improve the condition number of the sample covariance matrix.
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Thus, we work in the context of rotationally-invariant estimators first pro-
posed by Stein (1975). If S = UDU t is the spectral decomposition of S,
then Stein suggests alternative estimators of the form

Σ̂ = U diag(d̂1, . . . , d̂p)U
t

that change the eigenvalues but not the eigenvectors of S. In particular,
Stein (1975); Haff (1991); Ledoit and Wolf (2004) and Warton (2008) study
the family

Σ̂ = (1− γ)S + γT (1)

of linear shrinkage estimators, where γ ∈ [0, 1] and T = ρI for some ρ > 0.
The estimator (1) obviously entails

d̂i = (1− γ)di + γρ.

Ledoit and Wolf (2004, 2012) show that linear shrinkage works well when
p
n

is large or the population eigenvalues are close to one another. On the
other hand, if p

n
is small or the population eigenvalues are dispersed, linear

shrinkage yields marginal improvements over the sample covariance. Nonlin-
ear shrinkage estimators are also possible (Dey and Srinivasan, 1985; Daniels
and Kass, 2001; Sheena and Gupta, 2003; Pourahmadi et al., 2007; Ledoit
and Wolf, 2012; Won et al., 2012). Our shrinkage estimator is closest in
spirit to the estimator of Won et al. (2012), who put a prior on the condition
number of the covariance matrix.

3. Maximum a Posteriori Estimation with a Novel Prior

Adding a penalty can be accomplished by imposing a prior π(Ω) on Ω.
The prior we advocate is designed to steer the eigenvalues of Ω away from
the extremes of 0 and ∞. The reasonable choice

π(Ω) ∝ e−
λ
2 [α‖Ω‖∗+(1−α)‖Ω−1‖∗],

relies on the nuclear norms of Ω and Ω−1, a positive strength constant λ,
and an admixture constant α ∈ (0, 1). This is a proper prior on the set of
invertible matrices because

e−
λ
2 [α‖Ω‖∗+(1−α)‖Ω−1‖∗] ≤ e−ηλ‖Ω‖F
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for some positive constant η by virtue of the equivalence of vector norms on
Rp2 . The normalizing constant of π(Ω) is irrelevant in the ensuing discussion.
Consider therefore minimization of the objective function

f(Ω) =
n

2
ln det Ω +

n

2
tr(SΩ−1) +

λ

2

[
α‖Ω‖∗ + (1− α)‖Ω−1‖∗

]
.

The maximum of −f(Ω) occurs at the posterior mode. In the limit as λ
tends to 0, −f(Ω) reduces to the loglikelihood. In the sequel we will refer to
our MAP covariance estimate by the acronym NECM (nuclear estimate of a
covariance matrix).

Fortunately, three of the four terms of f(Ω) can be expressed as functions
of the eigenvalues ei of Ω. The trace contribution presents a greater challenge.
Let S = UDU t denote the spectral decomposition of S with nonnegative
diagonal entries di ordered from largest to smallest. Likewise, let Ω = V EV t

denote the spectral decomposition of Ω with positive diagonal entries ei
ordered from largest to smallest. In view of von Neumann-Fan inequality
(Mirsky, 1975), we can assert that

− tr(SΩ−1) ≤ −
p∑
i=1

di
ei
,

with equality if and only if V = U . Consequently, we make the latter
assumption and replace f(Ω) by

g(E) =
n

2

p∑
i=1

ln ei +
n

2

p∑
i=1

di
ei

+
λ

2

[
α

p∑
i=1

ei + (1− α)

p∑
i=1

1

ei

]
using the cyclic permutation property of the trace function. At a stationary
point of g(E), we have

0 =
n

ei
− ndi + λ(1− α)

e2
i

+ λα.

The solution to this essentially quadratic equation is

ei =
−n+

√
n2 + 4λα[ndi + λ(1− α)]

2λα
. (2)

We reject the negative root as inconsistent with Ω being positive definite.
For the special case n = 0 of no data, all ei =

√
(1− α)/α, and the prior
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mode occurs at a multiple of the identity matrix. A simple rearrangement of
the right-hand side of equation (2) shows that ei depends on λ and n only
through the ratio λ

n
.

Holding all but one variable fixed in formula (2), one can demonstrate
after a fair amount of algebra that

ei = di +
λ(1− α− αd2

i )

n
+O

(
1

n2

)
, n→∞ (3)

ei =

√
1− α
α

+

[√
1− α
α

ndi
2(1− α)

− n

2α

]
1

λ
+O

(
1

λ2

)
, λ→∞.

These asymptotic expansions accord with common sense. Namely, the data
eventually overwhelms a fixed prior, and increasing the penalty strength for a
fixed amount of data pulls the estimate of Ω toward the prior mode. Choice
of the constants λ and α is an issue. To match the prior to the scale of the
data, we recommend determining α as the solution to the equation

p

√
1− α
α

= tr

(√
1− α
α

I

)
= tr(S).

Cross validation leads to a reasonable choice of λ. For the sake of brevity,
we omit further details. For a summary other approaches to this subject,
consult Ledoit and Wolf (2004).

Figure 2 shows the nonlinear shrinkage function (2) applied at four dif-
ferent values of λ

n
with α = 0.5. As λ

n
increases, the eigenvalue d is shrunk

towards the target eigenvalue 1. The rate of shrinkage, however, is nonlinear.
Eigenvalues greater than the target are pulled more aggressively towards the
target than eigenvalues less than the target.

4. Consistency and Asymptotic Efficiency

In proving consistency, we will need various facts. First, suppose A and
B are two p × p symmetric matrices with ordered eigenvalues {ai}pi=1 and
{bi}pi=1. Then one has

p∑
i=1

(ai − bi)2 ≤ ‖A−B‖2
F . (4)
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Figure 2: The nonlinear shrinkage function for four different values of λ/n
and α = 0.5.

This is a consequence of Fan’s inequality because
∑p

i=1 a
2
i = ‖A‖2

F and∑p
i=1 b

2
i = ‖B‖2

F . If the two matricesA = U diag(a)U t andB = U diag(b)U t

are simultaneously diagonalizable, then equality holds in inequality (4). We
will also need the inequalities

√
1 + x ≤ 1 +

x

2
and

√
1 + x ≥ 1 +

x

2
− x2

8
(5)

for nonnegative x. Verification will be left to the reader based on the fact that
the derivatives of

√
1 + x alternate in sign. Functions having this property

are said to be completely monotonic.
Let Sn be the sample covariance matrix with eigenvalues dn1 through dnp

for the first n sample points. The sequence Sn converges almost surely to
the true covariance matrix Ω with eigenvalues ω1 through ωp. Inequality (4)
therefore implies limn→∞

∑p
i=1(dni − ωi)2 = 0. On this basis we will argue

that limn→∞
∑p

i=1(eni − ωi)2 = 0 as well, where the eni are the transformed
eigenvalues of Sn. To make this reasoning rigorous, we must show that the
asymptotic expansion (3) is uniform as the eigenvalues dni converge to the
eigenvalues ωi. This is where the inequalities (5) come into play. Indeed, we
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have

λ(1− α)

n
− n

2λα

x2

8
≤ eni − dni ≤

λ(1− α)

n
(6)

x =
4λαdni
n

+
4λ2α(1− α)

n2
.

The identity

‖Sn −Ωn‖2
F =

p∑
i=1

(dni − eni)2

finishes the proof that Ωn tends to Ω.
Now consider the question of asymptotic efficiency. The scaled difference√
n(Sn−Ω) tends in distribution to a multivariate normal distribution with

mean 0 because the sequence of estimators Sn is asymptotically efficient
(Ferguson, 1996). The representation

√
n(Ωn −Ω) =

√
n(Sn −Ω) +

√
n(Ωn − Sn)

and Slutsky’s theorem (Ferguson, 1996) imply that
√
n(Ωn − Ω) tends in

distribution to the same limit. In this regard note that

‖
√
n(Ωn − Sn)‖2

F = n

p∑
i=1

(dni − eni)2

tends almost surely to 0 owing to the bounds (6) and the convergence of dni
to ωi.

5. Applications

Several common statistical procedures are potential beneficiaries of shrink-
age estimation of sample covariance matrices. Here we illustrate how NECM
applies to regression, canonical correlation analysis, discriminant analysis,
and clustering. In each setting we compare NECM to a few alternative co-
variance estimators. A comprehensive comparison of regularized estimators
is beyond the scope of this paper, and we simply document the fact that
NECM is competitive with representative existing methods.
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5.1. Covariance Regularized Regression

Consider the linear regression problem

b̂ = arg min
b

1

2
‖y −Xb‖2

2.

When the n × p design X has full column rank, the problem admits the
classical solution b̂ = (X tX)−1X ty. When the design X is singular or
nearly so, ridge regression is a reasonable remedy (Hoerl and Kennard, 1970).
Ridge regression minimizes the regularized criterion

1

2
‖y −Xb‖2

2 +
1

2
λ‖b‖2

2

and delivers the explicit solution b̂ = (X tX+λI)−1X ty. This is hardly the
only way to attack regression in problematic situations. Recall that when X
has full column rank, the sample precision matrix Θ exists, and the standard
regression estimator b̂ can be expressed in terms of the block structure

Θ =

(
Θxx Θxy

Θt
xy Θyy

)
.

as b̂ = −Θxy

Θyy
. This fact suggests that we substitute a regularized estimate

of the precision matrix in b̂ = −Θxy

Θyy
when X is either rank deficient or ill-

conditioned. The Scout method (Witten and Tibshirani, 2009) pursues this
strategy. Let S denote the sample covariance of the augmented data matrix
X̃ =

(
X y

)
, namely

S =

(
Sxx Sxy
Stxy Syy

)
.

The Scout method proceeds in two stages. Stage one computes a regu-
larized covariance estimate Θ̂xx of Θxx,

Θ̂xx = arg max
Θxx

log(det Θxx)− tr(SxxΘxx)− J1(Θxx), (7)

subject to a penalty J1(Θxx) that steers solutions toward sparsity or some
other desired structure. Stage two solves the optimization problem

Θ̂ = arg max
Θ

log(det Θ)− tr(SΘ)− J2(Θ) (8)

9



subject to the constraint Θxx = Θ̂xx, where J2(Θ) is a second penalty.
Witten and Tibshirani (2009) show that the Scout method generalizes a
variety of popular penalized regression methods such as ridge regression,
the elastic net (Zou and Hastie, 2005), and the lasso (Tibshirani, 1996), for
appropriate choices of J1 and J2. When J2(Θ) =

∑
ij ‖θij‖p2 for p2 = 1 or 2,

then the solution of the second stage is equivalent to the simpler optimization
problem (Witten and Tibshirani, 2009, Claim 1)

b̂ = arg min
b

btΘ̂
−1

xxb− 2Stxyb+ λ2‖b‖p2p2 . (9)

Although the two stage procedure is general, it is primarily motivated
by the choice J1(Θxx) =

∑
ij |θij|. This `1 (lasso) penalty shrinks elements

in Θxx toward zero. Recall that under a multivariate normal assumption,
θij = 0 if and only if the ith and jth variables are conditionally indepen-
dent. The Witten and Tibshirani method “scouts” for variables that are
truly correlated, conditional on all other variables. This motivation is rea-
sonable, for example in microarray data, where a large fraction of the big
pool of covariates are conditionally independent. Precision matrix estima-
tion is broken down into two stages because it is undesirable to shrink the
partial correlations between the covariate and response variables.

For the ridge penalty J1(Θxx) =
∑

ij θ
2
ij, the precision matrix estimator

is a Stein shrinkage estimator with the ith eigenvalue of the precision matrix
determined by

e−1
i =

−di +
√
d2
i + 8λ1/n

4λ1/n
.

Straightforward algebraic manipulations lead to the asymptotic expansions

e−1
i = d−1

i −
16λ1

d3
i

1

n
+O

(
1

n2

)
, n→∞

e−1
i = O

(
1√
λ1

)
, λ1 →∞.

Thus, the regularized precision estimates behave as desired as n → ∞. As
expected, the precision estimate is shrunk towards zero as λ1 →∞.

We now compare covariance regularized regression under the six scenarios
described in Witten and Tibshirani (2009), substituting NECM in the sec-
ond estimation stage (9) along with a lasso penalty. We specifically consider
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NECM, the elastic net, and Scout(1,1), and Scout(2,1), where Scout(p1, p2)
means that J1(Θxx) =

∑
ij |θij|p1 and J2(Θxx) =

∑
ij |θij|p2 . In all simula-

tions, data were generated via the model y = Xβ+σε with ε ∼ N(0, I). We
split our simulated data set into three partitions: training, validation, and
testing denoted by ·/ · /·. For a grid of λ1 and λ2 values, we estimated b̂ and
chose the b̂ corresponding to the pair (λ1, λ2) with the smallest prediction
error. We standardized both the responses and covariates. The six scenarios
were:

1. 20/20/200 observations, 8 predictors: β = (3, 1.5, 0, 0, 2, 0, 0, 0)t, σ = 3,
and X ∼ N(0,Σ), where Σij = 2−|i−j|.

2. Same as scenario 1 except βi = 0.85 for i = 1, . . . , 8.

3. 100/100/400 observations, 40 predictors: βi = 0 for i = 1, . . . , 10 and
i = 21, . . . , 30 and 2 otherwise, σ = 15, and X ∼ N(0,Σ), where
Σij = 0.5 for i 6= j and Σii = 1.

4. 50/50/400 observations, 40 predictors: βi = 3 for i = 1, . . . , 15 and 0
otherwise, and σ = 15. The first 15 predictors satisfy

xi =


z1 + εxi i = 1, . . . , 5

z2 + εxi i = 6, . . . , 10

z3 + εxi i = 11, . . . , 15

,

where z1, z2, z3 ∼ N(0, I) and εxi are i.i.d. N(0, 0.01I) for i = 1, . . . , 15.
The remaining predictors xi are i.i.d. N(0, I) for i = 16, . . . , 40.

5. 50/50/400 observations, 50 predictors: βi = 2 for i ≤ 8 and 0 otherwise,
σ = 6, and X ∼ N(0,Σ), where Σij = 0.5 for i 6= j and i, j ≤ 9,
Σij = 0 otherwise, and Σii = 1.

6. Same as scenario 1, except β = (3, 1.5, 0, 0, 0, 0,−1,−1)t.

In scenarios 1, 3, 4, 5, and 6, β is sparse. Scenarios 1, 2, 4, 5, and 6
have a sparse precision matrix. In scenario 4 there are three blocks of highly
correlated variables. Figure 3 shows box plots of the prediction error and
`2 distance between the true and estimated regression coefficients over 200
replicates for each of the six simulation scenarios. Despite the fact that most
of the simulation scenarios involve sparse precision matrices, all methods
perform similarly.
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(a) Prediction error for the six simulation scenarios.
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(b) `2 distance between the estimated and true regression coefficients.

Figure 3: Comparison of NECM, the elastic net, and Scout(2,1) and
Scout(1,1) on 200 simulations for six scenarios.
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5.2. Canonical Correlation Analysis

Suppose we have two multidimensional random variables x ∈ Rp and
y ∈ Rq representing two sets of measurements on a common set of subjects.
The goal in canonical correlation analysis (CCA) is to determine a coordinate
system that maximizes the cross-correlation between the two sets of measure-
ments (Hotelling, 1936). In other words we seek the linear transformations
atx and bty that are maximally correlated subject to the constraint that atx
and bty have unit variance. If we denote the joint covariance matrix by

Σ =

(
Σxx Σxy

Σyx Σyy,

)
then we can succinctly define the CCA problem as maximizing the criterion

atΣxyb

[atΣxxa]
1
2 [btΣyyb]

1
2

.

Assuming that Σxx and Σyy are positive definite, the optimal a and b solve
the generalized eigenvalue problems

ΣxyΣ−1
yyΣyxa = υΣxxa

ΣyxΣ−1
xxΣxyb = υΣyyb.

Since CCA is invariant under affine transformations, without loss in gener-
ality, one can replace Σ by the sample correlation matrix R (Mardia et al.,
1979, Theorem 10.2.4).

To apply CCA to real data, we collect the x measurements into an n× p
matrix X and the y measurements into an n × q matrix Y . Provided n is
sufficiently large compared to p and q, the sample correlation matrix R is
a well conditioned estimate of Σ. When n < max{p, q}, as is typical with
modern high-throughput experiments, one or both of the sample correlation
matrices Rxx and Ryy will be singular. Early attempts to combat singular-
ity include the canonical ridge method (Vinod, 1976; Leurgans et al., 1993;
González et al., 2008), which replaces the sample correlation matrix R with(

Rxx + λ1I Rxy

Ryx Ryy + λ2I

)
.

Alternatively, one could estimate the correlation matrix using NECM.
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We now compare the CCA performance of NECM to ridge penalized es-
timates and the Ledoit-Wolf estimates on a study on the effects of nutrition
in mice (Martin et al., 2007). The goal of the study was to determine ge-
netic and dietary effects on the expression of liver genes involved in fatty
acid catabolism. Forty mice were studied. On each mouse, a panel of 120
gene expression levels and a panel of 21 liver fatty acid concentrations were
measured. Half of the mice were wild-type, while the other half were de-
ficient in the PPARα receptor, which is an important modulator of lipid
metabolism. Each half was divided into groups of four mice fed one of five
diets differentiated by oils with varying fatty acid profiles. In the context of
CCA we sought linear summaries of gene expression profiles and fatty acid
concentration profiles that are most correlated. Since there are more gene
expression measurements than study subjects, we had to resort to regular-
ized covariance estimates. We applied 5-fold cross validation to select λ1 and
λ2 for NECM and ridge penalization. The Ledoit-Wolf estimator does not
employ regularization parameters and required no tuning. Figure 4 shows
that the three methods identify very similar projections. In all three, the
first component, in both expression and fatty acid space, captures much of
the variation in genotype (wild-type versus PPARα deficient). In all three,
the first two components together capture quite a bit of the variation due to
diet.

5.3. Discriminant Analysis

Linear discriminant analysis is yet another area that stands to benefit
from shrinkage estimation of the sample covariance matrix. The classical
discriminant function

δk(x) = xtΣ−1µk − µtkΣ−1µk + ln πk,

incorporates the mean µk and prior probability πk of each class k. A new
observation x is assigned to the class k maximizing δk(x). If there are c
classes C1, . . . , Cc, then the standard estimator of Σ is

Σ̂ =
1

n− c

c∑
k=1

∑
i∈Ck

(xi − µ̂k)(xi − µ̂k)t,

where

µ̂k =
1

|Ck|
∑
i∈Ck

xi.
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Figure 4: Regularized CCA on mouse nutrition data: Each point is the
projection of a sample onto the first two CCA components. The left panel
shows projections of the gene expression space, and the right panel shows
the projections of the fatty acid space. The rows correspond to projections
under the three regularized covariances estimates (NECM, ridge, Ledoit-
Wolf). Samples are denoted by the concatenation of genotype (w: wild-type,
n: PPARα deficient) and diet (1: COC, 2: FISH, 3: LIN, 4: REF, 5:SUN).

15



One can obviously shrink Σ̂ to moderate its eigenvalues. In quadratic dis-
criminant analysis, a separate covariance matrix Σk is assigned to each class
k. These are estimated in the usual way, and eigenvalue shrinkage is likely
even more beneficial than in linear discriminant analysis. Friedman (1989)
advocates regularized discriminant analysis (RDA), a compromise between
linear and quadratic discriminant analysis that shrinks Σk toward a common
Σ via a convex combination αΣk + (1− α)Σ. Although Friedman also sug-
gests shrinking toward class specific multiples of the identity matrix, we do
not consider his more complicated version here. Guo et al. (2007) shrink co-
variance estimates towards the identity matrix and also apply lasso shrinkage
on the centroids to obtain improved classification performance in microar-
ray studies. The main difference between NECM and these methods is that
NECM performs nonlinear shrinkage of the sample eigenvalues.

Since we are primarily interested in the case where all or most of the pre-
dictors are instrumental in grouping, we consider only Friedman’s method in
a comparison on three data sets from the UCI machine learning repository
(Bache and Lichman, 2013). In the case of the E. Coli data set, we restricted
analysis to the five most abundant classes. We split each data set into train-
ing and testing sets. In each experiment we used 1/5 of the data for training
and 4/5 for testing. Table 1 records the number of samples per group in each
set. In these data poor examples, even linear discriminant analysis is not
viable since a common sample covariance estimate will be ill-conditioned if
not singular. Nonetheless, out results show that the combination of separate
covariances with regularization works well. We modeled a separate covari-
ance for each class and used 5-fold cross validation to select k regularization
parameters for NECM and a single α parameter for (Friedman, 1989). The
testing errors in Table 1 demonstrate that NECM performs well in compari-
son with RDA. Even when it does not perform as accurately, its drop off is
small.

6. Covariance Regularized EM Clustering

We now show how NECM stabilizes estimation in the standard EM clus-
tering algorithm (McLachlan and Peel, 2000). Let φ(y | µ,Σ) denote a
multivariate Gaussian density with mean µ and covariance Σ. EM cluster-
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Table 1: Comparison of NECM and RDA on three data sets from the UCI
machine learning repository. The fourth column indicates the number of
parameters (mean and covariance) per group in the QDA model. The fifth
and sixth columns breakdown the number of samples per group. The last
two columns report the classification success rate in the test set.

data p c p(p+3)
2 samples (train) samples (test) NECM RDA

wine 13 3 104 13/13/10 46/58/38 0.859 0.627
seeds 7 3 35 14/15/13 56/55/57 0.929 0.935
ecoli 7 5 35 30/17/7/3/9 113/60/28/17/43 0.670 0.705

ing revolves around the admixture density

h(y | Ξ) =
c∑

k=1

πk φ(y | µk,Σk)

with parameters Ξ = {µk,Σk, πk}ck=1. The πk are nonnegative admixture
weights summing to 1. We are given n independent observations y1, . . . ,yn
and wish to estimate Ξ. If zik is the indicator function of the event that
observation i comes from cluster k, then the complete data loglikelihood
plus logprior amounts to

`(Ξ) =
n∑
i=1

c∑
k=1

zik [lnπk + lnφ(yi | µk,Σk)]−
λ

2

[
α‖Σk‖∗ + (1− α)‖Σ−1

k ‖∗
]
.

Straightforward application of Bayes rule yields the conditional expectation

wik = E[zik | Y ,Ξ] =
πkφ(yi | µk,Σk)∑c
l=1 πlφ(yi | µl,Σl)

.

These weights should be subscripted by the current iteration number m, but
to avoid clutter we omit the subscripts. If we set

wk =
n∑
i=1

wik and Sk =
1

wk

n∑
i=1

wik(yi − µk)(yi − µk)t,

then the EM updates are πk = wk
n

, µk = 1
wk

∑n
i=1wikyi, and

Σk = arg min
Σ

wk
2

log det Σ +
wk
2

tr(Σ−1Sk) +
λ

2

[
α‖Σ‖∗ + (1− α)‖Σ−1‖∗

]
.
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To further stabilize the estimation procedure, one can put a Dirichlet prior
with rates γk on the cluster probabilities πk. This leads to modified updates

πk =
wk + γk − 1

n+
∑c

k=1 γk − c
.

Finally, we address two practical issues. First, there is the question of
how to choose α. In the previous examples we sought a stable estimate of a
single covariance matrix. Here we seek c covariance matrices whose imputed
data change from iteration to iteration. We could estimate a separate αk for
each cluster, but doing so leads to unstable estimates. Instead we simply fix
α at 1

2
for all clusters. This action shrinks all covariance matrices nonlinearly

towards the identity matrix and provides good adaptivity to the data without
sacrificing numerical stability. Second, while placing an appropriate Dirichlet
prior on πk ensures that it will be strictly positive for all iterations, it is still
possible for wik ≈ 0 for all i for a given k. If this happens, the updates for
Σk and µk may behave poorly. As a precaution, we refuse to update Σk and
µk when wik ≈ 0 for all i.

Similar approaches have been employed previously. Fraley and Raftery
(2007) suggest a restricted parameterization of the covariance matrices. While
they offer a menu of parameterizations that cover a range of degrees of free-
dom, each model has a fixed number of degrees of freedom. One advantage
of our model is that the degrees of freedom may be adapted to the data
by choosing the regularization parameter λ by cross-validation. Indeed this
approach was proposed by Ruan et al. (2011), who used an `1 penalty to en-
force sparsity in the estimated precision matrices. Sparse precision matrices
corresponds to the prior belief that many of the covariates are conditionally
independent. While this may be true for some data sets, our regularized
covariance estimates does not make this assumption.

Figure 5 shows the results of clustering with our algorithm on a simulated
data set. A total of 60 data points were generated from a mixture of 10
bivariate normals corresponding to 59 parameters in the most general case.
The number of observations per cluster ranged from 3 to 11. We used γk = 2
for all k, fixed λ = 10, and set c = 10. We ran our algorithm 100 times
using random initializations with the k-means++ algorithm (Arthur and
Vassilvitskii, 2007) and kept the clustering that gave the greatest penalized
likelihood. The resulting clustering is quite sensible. The only missteps are
splitting cluster 1 into two clusters and merging clusters 2 and 10. The latter
decision is reasonable given how much clusters 2 and 10 overlap.
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Figure 5: NECM clustering projected onto the first two principal components
of the data. Ellipses depict the first two eigenvectors (and their corresponding
eigenvalues) of the estimated covariances of each cluster.
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7. Discussion

The initial insight of Stein (1975) has led to several methods for shrinkage
estimation of a sample covariance matrix S. These methods preserve the
eigenvectors of S while pushing S towards a multiple of the identity matrix.
Our Bayesian prior does precisely this in a nonlinear fashion. In our four
examples it appears that exerting shrinkage is desirable, but the particular
kind of shrinkage is immaterial. In its favor NECM has the advantage of
making very few assumptions and requiring only simple calculations. Even
in the covariance-regularization examples, where the data were generated
using sparse precision matrices, there was relatively little loss in accuracy
using NECM.

NECM does require a singular value decomposition (SVD). Although
highly optimized routines for accurately computing the SVD are readily avail-
able, such calculations are not cheap. Randomized linear algebra may provide
computational relief (Halko et al., 2011; Mahoney, 2011). If one can tolerate
a small loss in accuracy, the SVD of a randomly sampled subset of the data
or a random projection of the data can give an acceptable surrogate SVD.

Applications extend well beyond the classical statistical methods illus-
trated here. For example, in gene mapping with pedigree data, a covariance
matrix is typically parameterized as a mixture of three components, one of
which is the global kinship coefficient matrix capturing the relatedness be-
tween individuals in the study (Lange, 2002). The kinship matrix can be
estimated from a high density SNP (single nucleotide polymorphism) panel
rather than calculated from possibly faulty genealogical records. Because a
typical study contains thousands of individuals typed at hundreds of thou-
sands of genetic markers, this application occurs in the regime n � p. The
construction of networks from gene co-expression data is another obvious ge-
netic example (Horvath, 2011). Readers working in other application areas
can doubtless think of other pertinent examples.
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