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Abstract 

Maximum likelihood estimation is a popular method in statistical inference. As a 

way of assessing the accuracy of the maximum likelihood estimate (MLE), the 

calculation of the covariance matrix of the MLE is of great interest in practice. Standard 

statistical theory shows that the normalized MLE is asymptotically normally distributed 

with covariance matrix being the inverse of the Fisher information matrix (FIM) at the 

unknown parameter. Two commonly used estimates for the covariance of the MLE are 

the inverse of the observed FIM (the same as the inverse Hessian of the negative log-

likelihood) and the inverse of the expected FIM (the same as the inverse FIM). Both of 

the observed and expected FIM are evaluated at the MLE from the sample data. In this 

dissertation, we demonstrate that, under reasonable conditions similar to standard MLE 

conditions, the inverse expected FIM outperforms the inverse observed FIM under a 

mean squared error criterion. Specifically, in an asymptotic sense, the inverse expected 

FIM (evaluated at the MLE) has no greater mean squared error with respect to the true 

covariance matrix than the inverse observed FIM (evaluated at the MLE) at the element 
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level.  This result is different from widely accepted results showing preference for the 

observed FIM. In this dissertation, we present theoretical derivations that lead to the 

conclusion above. We also present numerical studies on three distinct problems to 

support the theoretical result. 

This dissertation also includes two appendices on topics of relevance to stochastic 

systems. The first appendix discusses optimal perturbation distributions for the 

simultaneous perturbation stochastic approximation (SPSA) algorithm. The second 

appendix considers Monte Carlo methods for computing FIMs when closed forms are not 

attainable. 

First Reader and Advisor: James C. Spall

Second Reader: Daniel Q. Naiman
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Chapter 1

Introduction

In this introduction chapter, we start with the motivation that drives our interest in 

the topic of Fisher information, which is followed by the literature review, where we 

summarize relevant work done by others. In Section 1.3, we propose our approach to 

solve the problem of interest. A sketch of our scheme is summarized at a high level. In 

the last section, some large sample results are discussed as a background for further 

analysis in Chapter 2. 

1.1 Motivation

Maximum likelihood (ML) estimation is a standard approach for parameter 

estimation and statistical inference in the modeling of stochastic systems. Given a set of 

sample observations and the proposed underlying statistical model, the method of ML 

selects values of the model parameters that produce a distribution that gives the observed 

data the greatest probability. ML estimation enjoys great popularity in practice because it 
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has many optimal properties such as asymptotic normality, functional invariance, and 

convergence to the true parameter in a certain probability sense. Not all of these 

properties are shared with other parameter estimation methods such as least-squares 

estimation (LSE). 

Because of the nice properties it possesses, ML estimation is commonly used across

a wide range of statistical models are fitted to real-life situations. To name a few 

examples, the generalized linear model (GLM), which is a generalization of ordinary 

linear regression that allows for response variables that have other than a normal 

distribution, is extensively used in various industries such as clinical trials, customer 

relationship marketing, and quantitative finance. The ML method is the standard 

approach used in practice to estimate parameters associated with GLMs, see Nelder and 

Wedderburn (1972). ML estimation can also be applied to hypothesis testing 

(Huelsenbeck and Crandall, 1997). The construction of a likelihood ratio test statistic is 

based on the idea of ML under the null hypothesis and the alternative hypothesis. System 

identification, where statistical methods are used in control engineering to build 

mathematical models of dynamical systems, is another area where ML is commonly seen. 

Particularly, system parameters are estimated using ML (Prado, 1979; Johari, et. al., 1965;

and Ljung, 1999).

ML estimation produces point estimates based on sample data. Like many other 

point estimation methods, e.g., LSE, people are also interested in the accuracy of 

maximum likelihood estimates (MLEs). As a way of assessing the accuracy of MLEs, 

calculations of the associated confidence intervals are of great interest in statistical 

inference on unknown parameters (e.g., Ljung, 1999, pp. 215–218). At the same level of 
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confidence, tighter confidence intervals indicate better accuracy of the corresponding 

MLEs and vice versa. To construct confidence intervals for MLEs, typically, one needs to 

know the distribution and the covariance matrix of the MLE. In fact, under regularity 

conditions, MLEs are asymptotically normally distributed. Given this asymptotic 

distribution, the problem of constructing confidence intervals is essentially reduced to 

finding the covariance matrix of MLEs. 

Before we elaborate on the above statement, let us define the relevant notations. Let 

X = [X1, X2, … , Xn] be a sequence of n independent but not necessarily identically 

distributed (i.n.i.d.) random vectors (variables) where each Xi may contain discrete or 

continuous components. The probability density/mass function of Xi, say pi(xi,θ), 

depends on a p × 1 vector of unknown parameters θ = [t1, t2, … , tp]
T, where θ  Θ and Θ

is a p-dimensional parameter space. Let n̂θ be an MLE for θ based on X and the true 

value of θ in the underlying distribution be θ . We use the notation ti to denote the ith 

component of θ because we reserve n̂θ for MLEs derived from a sample of size n. The 

joint probability density/mass function of X is p(x,θ) 
1

( , )
n

i ii
p


 θx . If we denote the 

negative log-likelihood function as l(θ,x) =−log p(x,θ), the p × p Fisher information 

matrix (FIM) Fn(θ) is defined as

log ( , ) log ( , )
( )n T

p p
E

      

θ θ
θ

θ θ

x x
F
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θ θ
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( , ) ( , )

,
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l l
E

      

θ θ

θ θ

x x
                                         (1.1)

where θT is the transpose of θ, all expectations are taken with respect to data X and are 

conditional on the true parameter θ . The p × p Hessian matrix of l(θ,x), Hn(θ), is 

defined as the second derivative of l(θ,x) with respect to θ:

2 ( , )
( )n T

l


 
θ

θ
θ θ

x
H .

Computation of Fn(θ) according to its definition in (1.1) is often formidable because 

it involves direct calculation of expectation of an outer product form. Under some 

regularity conditions where the interchange of differentiation and integral is valid (more 

details are discussed in Chapter 2), Fn(θ) has the following form equivalent to (1.1): 

                                                                  

Fn(θ) = E(Hn(θ)),                                             (1.2)

where the expectation is taken with respect to X and is conditional on the true parameter 

θ . Expression (1.2) provides an alternative of computing Fn(θ), which is often more 

computationally friendly than the definition in (1.1). 
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Standard statistical theory shows that the normalized n̂θ from either i.i.d. or i.n.i.d 

samples is asymptotically Gaussian under some reasonable conditions (Ljung, 1999, pp. 

215–218 and Spall, 2003, Sect. 13.3). That is, under modest assumptions (more details 

discussed in Section 1.4.1), 

   1distˆ( ) 0,  ( )nn N   θ θ θF ,                                  (1.3)

where “ dist” denotes convergence in distribution, and ( )θF lim .( )n n n
 θF

The superscript “−1” in (1.3) denotes matrix inverse. The asymptotic normality in (1.3) 

for i.n.i.d samples is of particular interest in our discussion below. 

Given the asymptotic normality of MLEs, the problem of constructing confidence 

intervals reduces largely to the problem of determining the covariance matrix of MLEs, 

which is the main focus of this dissertation. In fact, other than the essential role in 

computing confidence intervals, the estimation of the covariance matrix of MLEs is also 

crucial in other applications. For example, in Nie and Yang (2005), the covariance matrix 

of MLEs is used in the discussion of the consistency of MLEs. Another example lies in 

the standard t-test, which is used to assess the significance of a parameter. Estimation of 

the covariance of the MLE is needed in computing the test statistic and the associated P-

value, which is the probability of obtaining a test statistic at least as extreme as the one 

that was actually observed, assuming the null hypothesis is true. 



6

In practical applications, one of two matrices is commonly used to approximate the 

covariance matrix of MLE: 1ˆ( )n n
θF or 1ˆ( )n n

θH , where ( )n θF ( )n n θF and 

( )n θH ( )n n θH . Both of the two estimates are evaluated at the MLE n̂θ . The 

derivation of these two estimates is not surprising given the covariance term in the right 

hand side of (1.3) and the relation in (1.2). However, there is not yet a solid theoretical 

validation for the better choice between 1ˆ( )n n
θF and 1ˆ( )n n

θH . In fact, people in 

practice tend to choose one or the other, depending on which one is easier to obtain for 

their problems. For instance, in Rice (1995, p. 269), 1ˆ( )n n
θF is used to estimate the 

variance of the MLE based on i.i.d. Poisson distribution, where the closed form of ( )n θF

is easy to compute. Abt and Welch (1998) uses 1ˆ( )n n
θF to estimate the covariance 

matrix of MLE in Gaussian stochastic processes. Escobar and Meeker (2001) discusses 

asymptotic equivalent performance of 1ˆ( )n n
θF as an estimate of covariance of MLE for 

censored data (i.e. partially known observations) from location-scale families, which is a 

family of univariate probability distributions parameterized by a location parameter (e.g. 

mean of a normal distribution) and a non-negative scale parameter (e.g. variance of a 

normal distribution). On the other hand, Cavanaugh and Shumway (1996) mentions that 

in the setting of state-space models, where the structure of the Gaussian log-likelihood 

often makes 1ˆ( )n n
θF difficult to compute, people prefer to use 1ˆ( )n n

θH as an 

approximation of the covariance of MLE.  In Prescott and Walden (1983), 1ˆ( )n n
θH is 
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used as an estimation of the covariance matrix of MLE from generalized extreme-value 

distributions for complete, left censored, right censored or doubly censored samples. 

Other than the two estimates discussed above, there are other estimation methods in 

practical applications as well. For example, Jiang (2005) proposed an estimate of the 

covariance matrix that consists partially of 1ˆ( )n n
θF and partially of 1ˆ( )n n

θH for 

mixed linear models with non-normal data, where mixed models contain both fixed 

effects and random effects. In this case, a combination of 1ˆ( )n n
θF and 1ˆ( )n n

θH is 

used because the closed form of 1ˆ( )n n
θF is not attainable and 1ˆ( )n n

θH is inconsistent 

in the sense that it does not converge to the true covariance matrix in probability. 

Alternative estimation methods can be found in Royall (1986), Reeds (1978), and others. 

However, our discussion below mainly focuses on the relative performance of 1ˆ( )n n
θF

and 1ˆ( )n n
θH . Potential extension to other general estimation methods is left for future 

work. 

Given the importance of covariance matrix estimation of MLE and the fact that no 

theoretical conclusion has been established for the best estimate, the aim of this work is 

to provide theoretical development for choosing a good estimate of the covariance matrix 

of MLE. In particular, we explore the properties of 1ˆ( )n n
θF and 1ˆ( )n n

θH and 

compare their performance in estimating the covariance matrix of a normalized n̂θ . 
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1.2 Literature review

There has been great interest and discussion in both observed and expected FIM, 

ˆ( )n nθH and ˆ( )n nθF , in the literature. In this section, we review some of the work that is 

relevant to our discussion. 

Efron and Hinkley (1978) appears to be the most-cited paper relative to comparing 

ˆ( )n nθH and ˆ( ).n nθF Efron and Hinkley demonstrate that for scalar-parameter 

translation families with an appropriate ancillary statistic a (more explanation below), the 

conditional variance of normalized θ̂n is better approximated by 1ˆ(θ )n nH  than by 

1ˆ(θ )n nF  . Specifically, the following ratio decays to zero in a stochastic sense:

 
 

1

1

ˆ ˆvar (θ θ ) (θ )
,

ˆ ˆvar (θ θ ) (θ )

n n n

n n n

n a H

n a F

 

 

 

 
                                       (1.4)

where var(∙) denotes variance. Roughly speaking, if n is large enough, the magnitude of 

error produced by 1ˆ(θ )n nH  is less than that produced by 1ˆ(θ )n nF  in some stochastic 

sense, i.e., 

   1 1ˆ ˆ ˆ ˆvar (θ θ ) (θ ) var (θ θ ) (θ )n n n n n nn a H n a F        .         (1.5)
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The ancillary statistic, a, in (1.4) and (1.5) is a statistic whose distribution does not 

depend on θ but which affects the precision of θ̂n as an estimate of θ. An example of an 

ancillary statistic is given in Cox (1958), which we now summarize. An experiment is 

conducted to measure a constant θ. Independent unbiased measurements y of θ can be 

made with either of two instruments, both of which measure with normal error: 

instrument k produces independent error that follows a N(0, 2σk ) distribution (k = 1, 2), 

where 2
1σ and 2

2σ are known and unequal. When a measurement y is obtained, a record is 

also kept of the instrument used. In this case, the ancillary statistic is defined as the label 

for the instrument used for a particular observation, i.e., aj = k if yj is obtained using 

instrument k.  More discussion can be found in Sundberg (2003). 

There were several short papers that commented on Efron and Hinkley (1978) that 

appeared in the same issue of the journal containing Efron and Hinkley (1978). For 

example, Barndorff-Nielsen (1978) discusses ancillarity properties of ˆ(θ )n nH in a more 

general sense. He stated that part of Efron and Hinkley’s (1978) paper perpetuates the 

impression that ˆ(θ )n nH is, in general, an approximate ancillary statistic (see remarks 

immediately after formulae (1.5) and (1.6) in Efron and Hinkely (1978)). He pointed out 

that this impression is not true. He also argues with an example that the possible 

ancillarity properties of ˆ(θ )n nH depend on the parameterization chosen. An ancillary 

statistic under one parameterization may not be ancillary if the model is reparameterized. 

Besides, in Efron and Hinkley (1978), a number of examples are demonstrated in which 

ˆ(θ )n nH is preferable to θ̂( )n nF . To argue that this is not always the case, James (1978) 
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deliberately modified an example of Cox (1958) where θ̂( )n nF is superior to ˆ(θ )n nH in 

estimating the variance of an error term. Likewise, Sprott (1978) also provides an 

example where ˆ(θ )n nF is more accurate than θ̂( )n nH .

Efron and Hinkley (1978) appeared at the forefront of the wave of interest in 

conditional inference and asymptotics for parametric models. The paper was motivated 

by Fisher’s (1934) statement that the information loss for MLE in location-scale families 

can be recovered completely by basing inference on the conditional distribution of the 

MLE θ̂n given an exact ancillary statistic a for which ( θ̂n , a) is sufficient (DiCiccio, 

2008). A statistic is sufficient if no other statistic that can be calculated from the same 

sample provides any additional information as to the value of the parameter. 

There has been much subsequent work that follows Efron and Hinkley (1978). Most 

of such work has focused on developing approximate ancillaries, instead of exact 

ancillaries, and on approximating the conditional variances of the MLE. For instance, 

Cox (1980) introduced the concept of local ancillary and discussed second-order local 

ancillaries for scalar-parameter models. Ryall (1981) extended Cox’s (1980) result of 

second-order local ancillary to the vector parameter case and developed a third-order 

local ancillary for scalar parameter models. Skovgaard (1985) studied general vector 

parameter models and developed a second-order local ancillary analogous to the 

ancillarity in Efron and Hinkley (1978). Barndorff-Nielsen (1980) and Amari (1982) 

discussed various approximate ancillaries in the context of curved exponential families. 

More subsequent work based on Efron and Hinkley (1978) can be found in Pedersen 

(1981), Grambsch (1983), McCullagh (1984), and Sweeting (1992), etc. 
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However, the reliance on an ancillary statistic imposes a major practical limitation 

in real-life applications. The ancillary statistic is often hard to specify in practice. That is, 

it is either difficult to define or is not unique in many practical problems. And it is even 

harder to find a pair ( θ̂n , a) that is sufficient. In DiCiccio (2008), a comment on the 

conclusion of Efron and Hinkley (1978) appears as: “One obstacle to extending the 

results for translation families to more general scalar parameter models is that typically 

no exact ancillary statistic a exists such that ( θ̂n , a) is sufficient”. Thus, the conditional 

variance approach might not be as applicable in practical problems. Besides, theoretical 

conclusions in Efron and Hinkley (1978) only hold for one-parameter translation families, 

which is another constraint on general application. 

Despite the practical limitations discussed above, the main message of Efron and 

Hinkley (1978), that the variance estimates for MLE should be constructed from 

observed information, is still widely accepted; see, for example, McLachlan and Peel 

(2000), Agresti (2002), and Lawless (2002). However, it has been found in the literature 

that some papers use the conclusions of Efron and Hinkley (1978) without strictly 

following the underlying assumptions. For example, in Caceres et. al. (1999), Efron and 

Hinkley (1978) is cited to validate the use of observed information in variance estimation 

of MLE for confidence interval construction. But no discussion on ancillary statistics is 

seen throughout the paper. Similar reference of Efron and Hinkley’s result can also be 

found in Hosking and Wallis (1987), Kass (1987), and Raftery (1996). The presence of 

such references reflects the fact that the theoretical foundation for a good covariance 

estimate for MLE is of great interest and value in the literature. However, there is no 
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solid theoretical development in this area yet. This fact further motivates the pursuit of a 

theoretical analysis for covariance estimation of MLE in this dissertation.

Unlike Efron and Hinkley (1978), Lindsay and Li (1997) avoided the concept of

ancillarity. They showed that for p-dimensional parameter models, if an error of 

magnitude 3 2( )O n is ignored, 1ˆ( )n n
θH is the optimal estimator of the realized 

squared error among all asymptotically linear estimators (see Hampel (1974) and Bickel, 

Klaassen, Ritov, and Wellner (1993, p.19)). That is, for all i, j = 1, 2, … , p, 1ˆ( )n n
θH

solves the optimization problem:  

   
2

,,( )
ˆ ˆmin ( )( )( )T

n n i ji jT
E n T       

   
θ θ θ θ

X
X ,                         (1.6)

where (∙)i,j denotes the (i, j)th entry of a matrix and T(X)  is any statistic chosen from a 

class of asymptotically linear estimators based on the sample data X. Here asymptotically 

linear estimators are defined as linear combinations of functions of each observation plus 

a term that converges to zero asymptotically. This class of estimators includes 1ˆ( )n n
θF ,

1ˆ( )n n
θH , etc. 

The construction of (1.6) indicates that Lindsay and Li’s work does not directly 

estimate the variance of MLE. Instead, the estimation target is the realized squared error 

rather than the covariance matrix of normalized n̂θ , where the two differ by an operation 

of expectation. Specifically, the expectation of the realized squared error is the 
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covariance matrix. Lindsay and Li’s work does not directly solve our problem of interest, 

which is on covariance matrix estimation of MLE. However, the paper has great value in 

stimulating the approach that follows. 

Compared to (1.6), Cao and Spall (2009, 2010) proposed an alternative to 

determining the best approximation to the variance of θ̂n when θ is a scalar. Specifically, 

the optimization problem is revised with the adjustment of the estimation target: 

             
 2

( )
( )ˆmin var θ ( )n

T
E n T 
  X

X ,                                    (1.7)

where ( )T X denotes an estimate of the variance of normalized θ̂n based on sample data 

X. In Cao and Spall (2009, 2010), ( )T X is constrained to two candidates: 1ˆ(θ )n nF  or

1ˆ(θ )n nH  . This idea of minimizing the mean squared error of estimation was discussed 

in Sandved (1968) in the context of approximating a measure of accuracy for a parameter 

estimate. In Cao and Spall (2009), it is shown that for scalar θ, 1ˆ(θ )n nF  is a better 

estimator of nvar( θ̂n ) than 1ˆ(θ )n nH  under criterion (1.7) with some reasonable 

conditions. In this paper, we generalize the above scalar result to multivariate θ. 

The comparison of 1ˆ( )n n
θF and 1ˆ( )n n

θH has also been done in other aspects. 

For example, in a score test, the numerator of the test statistic is the squared score 

function, which is the first derivative of the log-likelihood function with respect to the 

parameter of interest. The denominator of the test statistic can be either 1ˆ( )n n
θF or 



14

1ˆ( )n n
θH .  In practice, 1ˆ( )n n

θF is preferred to 1ˆ( )n n
θH since the latter may result in 

a negative test statistic; see Morgan et al (2007), Verbeke et al (2007), and Freedman 

(2007). The relative merit of 1ˆ( )n n
θF and 1ˆ( )n n

θH is also discussed in the context of 

iterative calculation of MLE, where Newton’s method or scoring method can be used for 

situations in which closed form of MLE is not attainable; see Fisher (1925), Green (1984), 

and Garwood (1941). Another area where 1ˆ( )n n
θF and 1ˆ( )n n

θH is compared is the 

construction of confidence regions, see Royal (1986) and Rust, et. al. (2011). 

1.3 New approach

In this section, we first lay out the problem settings discussed in this work and then 

briefly introduce the approach we take to achieve the theoretical conclusion. 

To keep our context as general as possible, we consider sequences of i.n.i.d. random 

vectors, which is often of more practical interest than i.i.d samples, throughout our 

discussion. The parameter considered is multivariate to accommodate for general 

practical situations. 

The main goal of this work is to compare the performance of 1ˆ( )n n
θF and 

1ˆ( )n n
θH in estimating the scaled covariance matrix of MLE, which is denoted by 

ˆcov( )nn θ . We follow the idea used in Lindsay and Li (1997) and Cao and Spall (2009). 

We want to solve the following optimization problem: 



15

   
2

,,( )
ˆmin cov( ) ( )n i ji jT

E n T
    
   

θ
X

X ,                                 (1.8)

Specifically, our current discussion focuses on T(X) being either 1ˆ( )n n
θF or 1ˆ( )n n

θH . 

Generalization to other estimation candidate T(X) may be considered in future work. 

In essence, we compare the performance of 1ˆ( )n n
θF and 1ˆ( )n n

θH at the 

individual entry level. If we can show that one is better than the other for every matrix 

entry, then we have found the better of the two in estimating ˆcov( )nn θ .

1.4 Background

Standard results have been established for large sample properties for i.i.d. 

samples including the central limit theorem (CLT) for the raw data, and the weak law of 

large numbers (WLLN). In reality, however, observations are frequently not generated 

from i.i.d samples. In this section, we discuss the CLT, and the WLLN for i.n.i.d. samples. 

Specifically, we present sufficient conditions that lead to these properties. These 

conditions will be used in the theoretical development in Chapter 2. All limits below are 

as n → ∞. 

1.4.1. The central limit theorem

The CLT states that under certain conditions, the distribution of a normalized 

sample mean of a sequence approaches a normal distribution, i.e.,
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   1 2 1 2
1 1

dist
η (η ) 0, σ

n n
i i ii i

n E N n 
 

   ,

where {η1, η2, … , ηn} is a sequence of i.n.i.d random variables with corresponding

variances { 2
1σ , 2

2σ , … , 2σn }. Various studies of conditions under which the above 

asymptotic distribution holds have been made by Chebyshev (1980), Feller (1935), Levy 

(1935), Lindberg (1922), Lyapunov (1900, 1901), Markov (1900), and others. 

For a random sample {η1, η2, … , ηn}, the following well-known Lindberg-Feller 

condition guarantees the CLT result:

A1. η1, η2, …, ηn is a sequence of independent samples;

A2. For every  > 0,      
2 2

η η ε
1

lim η η 0
i i n

n

n i i nE s
i

E E s  


    
 

 1 , where 

2 2
1
σ

n
n ii

s


  and 1{… } is the indicator function. 

1.4.2. Weak law of large numbers

The WLLN states that under certain conditions, the sample mean of a sequence 

converges in probability to the average population mean:

 
1

1
η (η ) 0

n
p

i i
i

E
n 

  ,
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where {η1, η2, … , ηn} is a sequence of independent random variables and p denotes 

convergence in probability.

A set of sufficient conditions for WLLN for i.n.i.d samples is presented in Chung 

(2005, Theorem 5.2.3):

B.1. η1, η2, …, ηn is a sequence of independent samples;

B.2.  { η }1
η 1 0

i

n
i ni

E 
 where 1{A} is an indicator function which equals 1 if the 

condition denoted by A holds and 0 otherwise;

B.3.  2 2
{ η }1

η 1 0
i i

n
ni

n E


 . 

In this dissertation, we apply conditions presented in Sections 1.4.1 and 1.4.2 for the 

CLT and the WLLN under i.n.i.d samples. We discuss more on the concrete forms of 

i.n.i.d sequences in Chapter 2. 

This dissertation is organized as follows. In Chapter 2, we present the theoretical 

development that leads to the main result. In Chapter 3, we present numerical studies on 

three distinct problems to support the main theoretical result. In Chapter 4, we summarize 

the achievement in this dissertation and discuss potential future work to extend the results

of this dissertation. This dissertation also includes two appendices on topics of relevance 

to stochastic systems. In Appendix A, we discuss optimal perturbation distributions for 

the simultaneous perturbation stochastic approximation (SPSA) algorithm. In Appendix 

B, we consider Monte Carlo methods for computing FIMs when closed forms are not 

attainable. 
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Chapter 2

Theoretical Analysis

In this chapter, we present the theoretical development in this dissertation on 

comparing the expected and observed FIM in estimating the covariance matrix of MLEs. 

In Section 2.1, we begin with notation definitions, followed by a discussion on a list of 

sufficient conditions used to achieve the theoretical conclusion in Section 2.2. In Section 

2.3, we present preliminary results as a preparation for the main result. In Section 2.4, we 

present the main result. 

2.1 Notation

As defined in Chapter 1, X = [X1, X2, … , Xn] is a collection of i.n.i.d. random 

vectors (variables) where Xi  
q, i = 1, 2, … , n, and q ≥ 1. Each Xi may contain discrete 

or continuous components. If we let d
iX and c

iX denote the sub-vectors of discrete and 

continuous components of Xi, respectively, then dim( d
iX ) + dim( c

iX ) = q, where dim(∙) 

denotes the dimension of a vector. Either d
iX or c

iX may be a null sub-vector for a given
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Xi, i.e., dim( d
iX ) = 0 or dim( c

iX ) = 0. And dim( d
iX ) = 0 implies that all elements in Xi

are continuous and vice versa.  

Recalling the definitions in Chapter 1, the probability density/mass function and the 

negative log-likelihood function of Xi are pi (xi , θ) and li(θ,xi) ≡ −log pi (xi , θ), 

respectively, where θ = [t1, t2, … , tp]
T  Θ is a p-dimensional vector valued parameter. 

The joint density/mass function and the negative log-likelihood function of X are p(x,θ) 

1
( , )

n
i ii

p


 θx and l(θ, x) 
1

( , )
n

i ii
l


 θ x = 

1
log ( , ),

n
i ii

p


 θx respectively. The MLE 

for θ based on X is denoted as 1 2
ˆ ˆ ˆ ˆ[ , ,..., ]Tn n n npt t tθ and the true value of θ is θ*

1 2[ , ,..., ] .T
pt t t   Let i

rU , i
rsU , and i

rstU be the derivatives of li(θ,xi) according to i
rU

≡∂li(θ,xi)/∂tr, 
i
rsU ≡∂2li(θ,xi)/∂tr∂ts, and i

rstU ≡ ∂3li(θ,xi)/∂tr∂ts∂tt. Correspondingly, Ur, 

Urs , and Urst are the derivatives of l(θ, x) according to Ur ≡∂l(θ, x)/∂tr, Urs

≡∂2l(θ, x)/∂tr∂ts, and Urst ≡ ∂3l(θ, x)/∂tr∂ts∂tt. Note that Urs is the (r,s) entry of Hn(θ). 

Let us define null-cumulants for each observation Xi (e.g. κ i
r , ,κi

r s , etc.) and average 

null-cumulants per observation (e.g. κ r , ,κr s , etc.) as follows: (All expectations are well 

defined and the word “null” refers to the fact that the twin processes of differentiation 

and averaging both take place at the same value: θ , see McCullagh (1987, page 201)):

κ ( )i i
r rE U ,                                                   (2.1a)
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κ ( )i i
rs rsE U ,                                                  (2.1b)

κ ( )i i
rst rstE U ,                                                  (2.1c)

,κ ( ) ( ) ( )i i i i i
r s r s r sE U U E U E U  ,                                 (2.1d)

,κ ( ) ( ) ( )i i i i i
rs t rs t rs tE U U E U E U  ,                                 (2.1e)

1

κ κ
n

i
r r

i

n


 ,                                                (2.2a)

1

κ κ
n

i
rs rs

i

n


 ,                                               (2.2b)

1

κ κ ,
n

i
rst rst

i

n


                                               (2.2c)

, ,
1

κ κ
n

i
r s r s

i

n


 ,                                             (2.2d)

, ,
1

κ κ .
n

i
rs t rs t

i

n


                                              (2.2e)

The standardized likelihood scores, denoted by indexed Z’s, are the derivatives of 

the negative log-likelihood centered by its expectation and scaled by n−1/2. That is,

 1 2 ( ) κr r rZ n U n  θ ,                                        (2.3)
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and 

 1 2 ( ) κst st stZ n U n  θ .                                       (2.4)

We assume that the likelihood function is regular in the sense that necessary 

interchanges of differentiation and integration are valid (more details are provided in 

Section 2.2 below). Furthermore, given the notation of d
iX and c

iX , pi (xi , θ) can be 

decomposed as a product of two terms: pi(xi ,θ) ( , )c c d
i i ip θx x ( , ),d d

i ip θx where 

( , )c c d
i i ip θx x is the conditional density function of c

iX given d d
i iX x , and ( , )d d

i ip θx

is the marginal mass function of d
iX . Let d

iS denote the support of d
iX and c d

i iS x

denote the support of c
iX given .d d

i iX x Now we are ready to show that with valid 

interchange of differentiation and integration, ( ) 0i
rE U  , for i = 1, 2, … , n and r = 1, 

2, … , p. In fact,

              

( , )
( )i i i

r
r

l
E U E

t

 
   

θ x

                         

( , )
( , ) ( , )

d d c c d
i i i i i

c c d c d di i
i i i i i i

r

l
p d p

t
 


 

 
θ

θ θ
x S x S x

x
x x x x          

                         
( , )1

( , ) ( , )
( , )d d c c d

i i i i i

c c d d d ci i
i i i i i i

i i r

p
p p d

p t
 


 

 
θ

θ θ
θ

x S x S x

x
x x x x

x
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( , )

d d c c d
i i i i i

ci i
i

r

p
d

t
 


 

 
θ

x S x S x

x
x     (cancellation of pi(xi, θ))                                           

                ( , )   
d d c c d
i i i i i

c
i i i

r

p d
t

 


 

   θ
x S x S x

x x     

                   (interchange of differentiation and integration)   

                ( , ) ( , )
d d c c d
i i i i i

c c d c d d
i i i i i i

r

p d p
t

 


  

   θ θ
x S x S x

x x x x

                
( 1)

rt

 



(mass/density function integrates to 1)

                0.

Thus, κ 0 and κ 0i
r r  for all i and r; 1 2

r rZ n U for all r according to the definition 

in (2.3). 

Let ,κv u be the (v,u) element of the inverse matrix of κ , where κ is a p × p matrix 

whose (s, t) element is ,κ s t , s, t = 1, … , p. Throughout this paper, the double bar notation 

(  ) indicates a special summation operation. Specifically, for the argument under the 

double bar, summation is implied over any index repeated once as a superscript and once 

as a subscript. For example, 

, ,
, ,

1 1

κ κ κ κ
p p

v u v u
st v u st v u

v u

Z Z
 

  ;
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, , , , , ,
, ,

1 1 1 1

κ κ ( κ κ κ ) κ κ κ κ κ .
p p p p

r t s u i i v w i r t s u i i v w i
tu tu tu v w tu tu tu v w

t u v w

U U U U
   

 
      

 
 

This short-hand notation of summation is the same as the index notation used in 

McCullagh (1987) and Lindsay and Li (1997) except that we add the double bar notation 

to distinguish the summation from each individual summand. 

To orthogonalize Zr and Zst, we define 

,
,κ κ .v u

st st st v uY Z Z 

Given the definition above, we have cov(Zr , Yst) = 0, r, s, t = 1, … , p, which is an 

important property used in Sections 2.3 and 2.4. The uncorrelatedness is seen by noting:

cov(Zr, Yst) = cov(Zr, 
,

,κ κv u
st st v uZ Z )

                   =  1 2 1 2 1 2 ,
,

1 1 1

cov , κ κ κ
n n n

i i v u i
r st st st v u

i i i

n U n U n U  

  

 
  
 
 

     

                       (definitions (2.3) and (2.4))                                        

                  

 1 2 1 2

1 1

cov , κ
n n

i i
r st st

i i

n U n U 

 

 
   

 
 

                     1 2 1 2 ,
,

1 1

cov , κ κ
n n

i v u i
r st v u

i i

n U n U 
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1 1 ,
,

1 1 1 1

cov , κ κ cov ,
n n n n

i i v u i i
r st st v u r

i i i i

n U U n U U 

   

   
       

   
                                             

                    = 1 1 ,
,

1 1

cov( , ) κ κ cov( , )
n n

i i v u i i
r st st v u r

i i

n U U n U U 

 
    

                     (independence between observations)

                    = 1 1 ,
, , ,

1 1

κ κ κ κ
n n

i v u i
st r st v u r

i i

n n 

 
     (definitions (3.1d) and (3.1e) )                                         

                    = ,
, , ,κ κ κ κv u

st r st v u r (definitions (3.2d) and (3.2e))                                         

                    = , ,κ κst r st r

                    = 0.

In the discussion below, we frequently use the stochastic big-O and little-o terms: 

Od(n−1), 2 1( ),dO n op(n−1), and op(1). Specifically, Od(n−1) denotes a stochastic term that 

converges in distribution to a random variable when multiplied by n; 2 1( )dO n denotes a 

product of two Od(n−1) terms; op(n−1) is a stochastic term that converges in probability to 

zero when multiplied by n; and op(1) is a stochastic term that converges in probability to 

zero, i.e., op(1) = n ×op(n−1). In addition, for simplicity, we introduce 1( )dO n to denote 

a summation of a finite number of Od(n−1) terms and 2 1( )dO n to denote a summation of a 

finite number  of  2 1( )dO n terms. 
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2.2 Conditions

In this section, we introduce sufficient conditions for the analytical development 

below. We provide some interpretation of the conditions immediately following the 

presentation of the conditions below. 

A1. Necessary interchanges of differentiation and integration are valid for the following 

functions denoted generally as g(xi, θ):

I. pi(xi ,θ), i = 1, 2, … , n; 

II. i
rsU exp{− li(xi , θ)},  i = 1, 2, … , n and r, s =1, 2, … , p. 

Specifically, the following conditions hold for g(xi, θ): 

A1(a). g(xi , θ) and ∂g(xi , θ)/∂tj are continuous on Θ × q for j = 1, 2, … , p;

A1(b). There exist nonnegative functions q0(xi) and q1(xi) such that 

| g(xi, θ)| ≤ q0(xi), |∂g(xi , θ)/∂tj| ≤ q1(xi) for all xi    
q and θ Θ,

where 0( )d d c c d
i i i i i

c
i iq d  x S x S x

x x < ∞ and 1( )d d c c d
i i i i i

c
i iq d  x S x S x

x x < ∞. 

A2. The negative log-likelihood function l(x, θ) has continuous partial derivatives with 

respect to θ up to the fourth order and all expectations in (2.1a–e) are well defined. 

A3. Fn( θ ) is positive definite, ( )θF ≡ limn→∞ ( )n
θF exists and is invertible.

A4. The following limits exist and are finite in magnitude:

A4(a): limn→∞ κrst = limn→∞
1

1
κ

n i
rsti

n
 for r, s, t = 1, 2, … , p;                                                          
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A4(b): limn→∞
1 ( )rs in E U t   |θ = θ* for r, s, i = 1, 2, … , p;                                   

A4(c): limn→∞
1 2 ( )rs i jn E U t t    |θ = θ* for r, s, i, j = 1, 2, … , p;                            

A4(d): limn→∞ n−1 E(Urstv)|θ = θ* for r, s, t, v = 1, 2, … , p.  

A5. The Lindberg-Feller condition holds for the following independent sequences 

denoted generally as 1ξ ,...,ξn :

I. 1{ ( )}i n
r iU 

θ for r = 1, 2, … , p.

II. 1{ ( )}i n
rs iU 

θ for r, s  = 1, 2, … , p.

III. 1{ ( )}i n
rst iU 

θ   for r, s, t = 1, 2, … , p.

Specifically,       2 2
1 ξ ξ ε

lim ξ ξ 0
i i n

n
n i i ni E s

E E s   
   1 for every  > 0, 

where 2 2
1
σ

n
n ii

s


  , 2σi is the variance of i, and  1{… } is the indicator function. 

A6. Conditions for the WLLN hold for the following independent sequences denoted 

generally as 1ξ ,...,ξn : 

I. 1{ ( )}i n
r iU θ for r = 1, 2, … , p and θ in a neighborhood of ;θ

II. 1{ ( )}i n
rs iU θ for r, s = 1, 2, … , p and θ in a neighborhood of ;θ

III. 1{ ( )}i n
rst iU θ for r, s, t = 1, 2, … , p and θ in a neighborhood of ;θ

IV. 1{ ( )}i n
rstv iU θ for r, s, t, v = 1, 2, … , p and θ in a neighborhood of ;θ

V. , , ,
,κ κ ( κ κ )r t s u i v w i

tu tu v wU U for i = 1, 2, … , n and r, s, t, v = 1, 2, … , p;
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VI. , , ,
,κ κ (κ κ )κr t s u v w i

tuv tu v wU for i = 1, 2, … , n and r, s, t, v = 1, 2, … , p. 

Specifically, the following holds for the i.n.i.d sequence 1ξ ,...,ξn :

A6(a).  { ξ }1
ξ 1 0

i

n
i ni

E   ;

A6(b).  2 2
{ ξ }1

ξ 1 0
i i

n
ni

n E
  . 

A7. The dominated convergence theorem (DCT) applies to all stochastic high order terms 

op(1). As a result, for any stochastic term that converges in probability to zero, the 

corresponding expectation converges to zero as well. Specifically, all op(1) terms 

throughout this paper are formed as a linear combination of a finite number of the 

following terms and each coefficient converges in probability to a constant:

I. 3 2
r v stn Z Z Z for r, v, s, t = 1, 2, … , p;

II. 2
r v uw stn Z Z Z Z for r, v, s, t, u, w = 1, 2, … , p;

III. 1 2 ( ) ( )r ni i nj jn Z t t t t     for r, i, j = 1, 2, … , p;

IV. 1 ( ) ( )r st ni i nj jn Z Z t t t t     for r, s, t, i, j = 1, 2, … , p;

V. ( ) ( ) ( ) ( )ni i nj j nk k ng gt t t t t t t t          for i, j, k, g = 1, 2, … , p; 

VI. , , ,
,κ κ ( κ κ )r t s u i v w i

tu tu v wU U for i = 1, 2, … , n and r, s, t, v = 1, 2, … , p;

VII. , , ,
,κ κ (κ κ )κr t s u v w i

tuv tu v wU for i = 1, 2, … , n and r, s, t, v = 1, 2, … , p. 

A8. The null-cumulants defined in (2.2a–e) are bounded in magnitude for all n, i.e. 

lim sup κn   , where κ represents κ r , κrs , ,κr s , ,κrs t for r, s, t = 1, 2, … , p. 
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A9. There exist entries (r, s) such that there is a subsequence {n1, n2, n3, … } of {1, 2, 

3, … } so that 1ˆ ( , )( )n n r sθF and 1ˆ ( , )( )n n r sθH differ for all n = n1, n2, n3, … . And for 

all such entries (r, s),   1 , , ,
,1

lim inf var κ κ κ κ κ 0
n r t s u i i v w i

n tu tu tu v wi
n U U

 
      . 

Condition A1 ensures valid interchange of differentiation and integral on relevant 

functions, which is crucial in proving ( ) 0i
rE U  for i = 1, 2, … , n, r = 1, 2, … , p and an 

intermediate result in Lemma 2 below. Sufficient conditions for interchange of 

differentiation and integral on likelihood functions are also discussed in Wilks (1962, pp. 

408–411 and 418–419) and Bickel and Doksum (2007, p.179). Condition A2 is to

guarantee that all null-cumulants are well defined in (2.1a–e). Condition A3 guarantees 

the limit of the Fisher information exists and is invertible. Limits in Condition A4 are to 

ensure necessary convergence in the proof of the lemmas below. Specifically, we assume 

finite limits for average null-cumulants and its derivatives with respect to components of 

the parameter. Condition A5 describes Lindberg-Feller condition of the CLT for i.n.i.d. 

samples. In our context, we assume that the CLT holds for sequences of 1st, 2nd, and 3rd

derivatives of the log-likelihood function with respect to elements of the parameter. Note 

that we keep the analysis at individual element level, so we require CLT conditions only 

for scalar sequences, even though we consider multiple-dimension parameters in our 

context. Condition A6 presents sufficient conditions for the WLLN for i.n.i.d samples 

(Chung 2005, Theorem 5.2.3). Condition A6(a) implies that the relevant i.n.i.d samples 

should not have heavy tails; condition A6(b) indicates that the variance of the sequence 

cannot grow too fast.  Condition A7 assumes that the DCT applies to relevant sequences, 
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which guarantees that the rate of convergence in stochastic sense is preserved after 

expectation. This condition is implicitly used in Lindsay and Li (1997) and McCullagh 

(1987, Chapter 7). In condition A8, the imposed boundedness on null-cumulants is to 

guarantee that any stochastic term multiplied by these cumulants preserve the 

convergence rate. Condition A9 states that for any entry where 1ˆ( )n n
θF and 1ˆ( )n n

θH

differ for a subsequence, the limit inferior of the variance term in the condition is positive. 

This condition is used to show the superiority of 1ˆ( )n n
θF over 1ˆ( )n n

θH in the main 

theorem. In fact, the term inside the variance function in condition A9 is random only 

through the 1st and 2nd derivatives of the log-likelihood function. The condition requires a 

certain level of variability for the 1st and 2nd derivatives of the log-likelihood function. 

This is not surprising because if the variability is too low, 1ˆ( )n n
θF and 1ˆ( )n n

θH are 

very close to each other or even identical. Besides, the concept of “subsequence” in 

condition A9 allows for the flexibility where 1ˆ( )n n
θF and 1ˆ( )n n

θH do not have to be 

different for every single term of the sequence. In fact, we only require that 1ˆ( )n n
θF and 

1ˆ( )n n
θH be different for infinite terms. Obviously, condition A9 is applicable to 

situations where 1ˆ( )n n
θF and 1ˆ( )n n

θH differ for all n. All the above assumptions are 

assumed in this dissertation as sufficient conditions for the main result. As discussed 

above, these are reasonable assumptions that hold for a wide class of problems like other 

standard conditions.
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2.3 Preliminary results

Before we present the main result, let us summarize some preliminary results that

are essential to our analysis. 

Lemma 1

For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the estimation error of 

n̂θ has the following form:

1 2 , 2 1ˆ κ ( )i u
ni i u dt t n Z nO n       ,                                   (2.5)

for r = 1, 2, … , p. 

Proof: For r = 1, 2, … , p, the MLE n̂θ satisfies the equation 1 ˆ( ) 0r nn U θ , which 

can be expanded in a Taylor’s series around θ* as follows:

1 1 1

1 1 1

ˆ ˆ ˆ0 ( ) ( ) ( ) (2 ) ( ) ( ) ( ),
p p p

r ri ni i rij n ni i nj j
i i j

n U n U t t n U t t t t       

  
         θ θ θ (2.6)

where nθ is an intermediate point between n̂θ and θ*. Let us write the error term in the 

following form 

1 2 ,ˆ κi u
ni i u nit t n Z R     ,                                        (2.7)
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where Rni needs to be determined. In order to show that (2.5) is true, we now show that 

Rni = 2 1( )dnO n , for i = 1, 2, … , p. Given (2.7), we show that (2.6) can be rewritten as 

follows:

            

1 1 1 2 ,

1

0 ( ) ( ) ( κ )
p

i u
r ri u i

i

n U n U n Z R    


    θ θ

                 1

1 1

ˆ ˆ(2 ) ( ) ( ) ( )
p p

rij n ni i nj j
i j

n U t t t t  

 
     θ              

               

1 2 1 1 2 1 2 , 1 1 2

1 1

( κ ) ( κ ) ( κ )
p p

i u
r ri ri u ri ri ni

i i

n Z n n Z n n Z n n Z n R   

 
             

                 1

1 1

ˆ ˆ(2 ) ( ) ( ) ( )
p p

rij n ni i nj j
i j

n U t t t t  

 
     θ

               1 2 1 , 1 2 , 1 1 2
,

1 1 1

κ κ κ ( κ )
p p p

i u i u
r ri u r i u ri ri ni

i i i

n Z n Z Z n Z n n Z n R   

  
                

                 1

1 1

ˆ ˆ(2 ) ( ) ( ) ( )
p p

rij n ni i nj j
i j

n U t t t t  

 
     θ     

               

1 , 1 1 2

1

κ ( κ )
p

i u
ri u ri ri ni

i

n Z Z n n Z n R 


    ,      

1

1 1

ˆ ˆ(2 ) ( ) ( ) ( ),
p p

rij n ni i nj j
i j

n U t t t t  

 
     θ                                                  (2.8) 
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where the third equality follows from the fact that ,κ ( ) ( ) κi i i i i
rs rs r s r sE U E U U   , which 

implies κrs ,κr s for r, s = 1, 2, … , p; and the last equality follows from a cancellation 

due to the fact that 1 2 ,
,1

κ κ
p i u

r i ui
n Z


  1 2

rn Z  . By condition A5, we know that by 

the CLT for i.n.i.d samples, both Zri and Zu converge in distribution to a normal random 

variable. Thus, the first term in the last equality of (2.8) is 2 1( )dnO n . By condition A6, 

we know that by the WLLN for i.n.i.d samples, n−1
( )rij nU θ converges in probability to 

limn→∞ κrij , which is a constant by condition A4(a), for i, j = 1, 2, … , p. Thus, by 

Slutsky’s theorem, n−1
( )rij nU θ ˆ( )ni it t  ˆ( )nj jt t  2 1( )pnO n for i, j = 1, 2, … , p, and, 

consequently, the third term in the last equality of (2.8) is 2 1( )dnO n . Now, (2.8) can be 

rewritten as 

1 1 2 2 1

1

( κ ) ( )
p

ri ri ni d
i

n n Z n R nO n 


                                     (2.9)

Equation (2.9) holds for r = 1, 2, … , p, which can be presented in the following matrix 

form:

 1 2 2 1( ) ( )n n dn n n  θ Z + F R O ,                                (2.10)



33

where Z ≡ [Zri] r, i = 1, 2, … , p, ( )n
θF ≡ [ κri ]r, i = 1, 2, … , p,  Rn ≡ [Rn1, Rn2, … , Rnp]

T , Od(n−1) 

≡ [Od(n−1), Od(n−1), … , Od(n−1)]T, and 2 1 2 1 2 1 2 1( ) [ ( ), ( ),..., ( )]Td d d dn O n O n O n      O . With 

condition A6, we know that by the WLLN for i.n.i.d samples, n−1/2Z converges to zero in 

probability. Thus by the continuous mapping theorem (Mann and Wald, 1943) and 

condition A3,   11 2 ( )nn
 θZ + F converges in probability to 1( ) θF , i.e. 

  11 2 ( )nn
 θZ + F = 1( ) θF + op(1), where op(1) is a p × p matrix with each entry 

being a op(1) term. As a result, 

  11 2 2 1( ) ( )n n dn n n
   θ R Z + F O

                  1 2 1 2 1( ) ( ) (1) ( )d p dn n n n      θ  F O o O

                                                2 1( )dn n O

Thus, Rni 
2 1( )dnO n  , which, combined with (2.7), produces (2.5).  

Lemma 2

For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the inverse of the 

Fisher information matrix 1ˆ( )n n
θF has the following expansion:

1 , 1/ 2 , , , 2 1
,

ˆ( ) ( , ) ( ) ( ),r s r j s k i u
n n jki jk i u dr s n Z nO n           θ F         (2.11)
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where 1ˆ( ) ( , )n n r sθF is the (r,s) element of 1ˆ( )n n
θF .

Proof: By a Taylor expansion around θ , the (r, s) element of ˆ( )n nθF can be 

expressed as:  

1 1

1

( )ˆ ˆ( )( ) ( ) ( ),
p

rs
n n rs ni i

ii

E U
n E U n t t

t
r s  

  
 




   

θ θ θ θ
θF

                      

2
1

1 1

( ) ˆ ˆ(2 ) ( ) ( )
n

p p
rs

ni i nj j
i ji j

E U
n t t t t

t t
  


 


    

  θ θ

                    1 3 2 ,

1

( )
( ) κ

p
i urs

rs u
ii

E U
n E U n Z

t
 

 
 




  

θ θ θ θ

                      1 2 1

1

( )
( )

p
rs

d
ii

E U
n nO n

t


 





 

 θ θ


   
2

1

1 1

( ) ˆ ˆ(2 ) ( ) ( )
n

p p
rs

ni i nj j
i ji j

E U
n t t t t

t t
  


 


    

  θ θ
,                               (2.12)

where nθ is an intermediate point between n̂θ and θ and the second equality follows 

from the result of Lemma 1. Notice that n−1∂ E(Urs)/∂ti |θ=θ* converges deterministically 

by condition A4(b), the third term in (2.12) after the second equality is 2 1( )dnO n . With 

condition A6, we know that by the WLLN for i.n.i.d. samples, 1 2 ( )
n

rs i jn E U t t


  
θ θ

converges in probability to 1lim  ( )n rs in E U t
   |θ = θ*, which is a constant by 

condition A4(b), for i, j = 1, 2, … , p. Thus, by Slutsky’s theorem, 
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1 2 ( )
n

rs i jn E U t t


  
θ θ

ˆ( )ni it t  ˆ( )nj jt t  2 1( )dnO n for i, j = 1, 2, … , p and 

consequently, the fourth term in the last equality of (2.8) is 2 1( )dnO n . As a result, 

expression (2.12) is equivalent to the following:

1 3 2 , 2 1

1

( )ˆ( )( ) ( ) κ ( ).,
p

i urs
n n rs u d

ii

E U
n E U n Z nO n

t
r s  

  
 




   

θ θ θ θ
θ F      (2.13)

We now claim the following two facts:

(i) 1
,( ) κrs r sn E U 





θ θ

; 

(ii) 3 2 , 1 2 ,
,

1

( )
κ κ (κ κ )

p
i u i urs

u rsi rs i u
ii

E U
n Z n Z

t


 





  

 θ θ
.

First, (i) follows from the definition of Urs and the equivalent form of FIM in (1.2):

1 1 1 1
, ,

1 1 1

( ) ( ) ( ) κ κ
n n n

j j j j
rs rs r s r s r s

j j j

n E U n E U n E U U n  
   

  
  

     θ θ θ θ θ θ
.

To show (ii), we first rewrite ( )rs iE U t  by definition:

                 
1

( )
( )

n
jrs

rs
i i j

E U
E U

t t 
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1

( )jn
rs

ij

E U

t






             
1

( , ) ( , )
d d c c d
j j j j j

n
j c c d c d d

rs j j j j j j
ij

U p d p
t  

     
     

   θ θ
x S x S x

x x x x

Furthermore, by condition A1, 

( , ) ( , )
d d c c d
j j j j j

j c c d c d d
rs j j j j j j

i

U p d p
t

 

     
     
  θ θ

x S x S x

x x x x

      ( , ) ( , )
d d c c d
j j j j j

j c c d d d c
rs j j j j j j

i

U p p d
t

 

 
      
 

  θ θ
x S x S x

x x x x

                                  exp ( , )
d d c c d
j j j j j

j c
rs j j

i

U l d
t

 

 
      
 

  θ
x S x S x

x x

                   exp ( , ) ( , )
d d c c d
j j j j j

j jj c
j rs j j irsi iU l U U p d

 

    θ θ
x S x S x

x x x

                                               (interchange of differentiation and integration)

                                   ( , )
d d c c d
j j j j j

j jj c
rs j j irsi iU U U p d

 

   θ
x S x S x

x x

                      ( , ) ( , )
d d c c d
j j j j j

j jj c c d c d d
rs j j j j j jrsi iU U U p d p

 

    θ θ
x S x S x

x x x x

                                  .j jj
rsrsi iE U U U 
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Thus, 

                             

3 2

1

( )p
rs

ii

E U
n

t








 θ θ  3 2

1 1

p n
j jj

rsrsi i
i j

n E U U U 



 

  θ θ

                                                                  3 2
,

1 1

κ κ
p n

j j
rsi rs i

i j

n

 
 

                                                                 1 2
,

1

(κ κ ),
p

rsi rs i
i

n


 

3 2 , 1 2 , 1 2 ,
, ,

1 1

( )
κ (κ κ ) κ κ (κ κ )

p p
i u i u i urs

u rsi rs i u rsi rs i u
ii i

E U
n Z n Z n Z

t


  


 


     

 θ θ
.

Given (i), (ii), we re-express ˆ( )n nθF in (2.13) as follows:

1 2 , 2 1
, ,

ˆ( )( ) κ κ (κ κ ) ( ), i u
n n r s rsi rs i u dn Z nO nr s     θ F .                    (2.14)

By the definition of matrix inverse,  

1

1

1 if ˆ ˆ( )( ) ( ) ( )
0 if .

, ,
p

n n n n
s

r t

r t
r s s t




  

 θ θF F                                 (2.15)
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We now develop the form for 1ˆ( ) ( , )n n r sθF in order to satisfy (2.15). Given the 

expression in (2.11), let us suppose 1ˆ( ) ( , )n n r sθF has the following representation:

1 , 1/ 2 , , ,
,

ˆ( ) ( , ) ( ) ( , )r s r j s k i u
n n jki jk i u nr s n Z W r s          θF ,             (2.16)

where Wn (r,s)  is to be determined. In fact, we want to show that Wn (r,s) = 2 1( )dnO n , 

for r, s = 1, 2, … , p. 

By plugging (2.14) and (2.16) into (2.15), we have:

1

1

ˆ ˆ( )( , ) ( ) ( , )
p

n n n n
s

r s s t


 θ θF F

  

1 2 , 2 1
, ,

1

κ κ (κ κ ) ( )
p

i u
r s rsi rs i u d

s

n Z nO n 



      
 

     

, 1/ 2 , , ,
,( ) ( , )s t s j t k i u

jki jk i u nn Z W s t  
           

 

  

, 1 2 , , 1 2 , , ,
, , , ,

1 1

κ κ κ (κ κ ) κ ( )
p p

s t s t i u s j t k i u
r s rsi rs i u r s jki jk i u

s s

n Z n Z 

 
           

    1 2 , 1/ 2 , , , 2 1
, ,

1 1

κ (κ κ ) ( , ) ( ) ( )
p p

i u s j t k i u
rsi rs i u n jki jk i u d

s s

n Z W s t n Z nO n  

 
            

     1 , , , ,
, , ,

1 1

κ (κ κ ) κ κ κ (κ κ ) κ ( , )
p p

i u s j t k i u
rsi rs i u jki jk i u r s n

s s

n Z Z W s t

 
      



39

     , 2 1 2 1

1 1

κ ( ) ( , ) ( )
p p

s t
d n d

s s

nO n W s t nO n 

 
     

      (expand the product and pass the summation sign to each individual term)

  
, 1 2 , , 1 2 , ,

, , ,κ κ κ (κ κ ) ( )s t s t i u t k i u
r s rsi rs i u rki rk i un Z n Z         

     1 2 ,
,

1

κ (κ κ ) ( , )
p

i u
rsi rs i u n

s

n Z W s t


  

     1/ 2 , , , 2 1
,

1

( ) ( )
p

s j t k i u
jki jk i u d

s

n Z nO n 


              

     

1 , , , ,
, , ,

1 1

κ (κ κ ) κ κ κ (κ κ ) κ ( , )
p p

i u s j t k i u
rsi rs i u jki jk i u r s n

s s

n Z Z W s t

 
      

     , 2 1 2 1

1 1

κ ( ) ( , ) ( )
p p

s t
d n d

s s

nO n W s t nO n 

 
     

   , 1 2 ,
, ,

1

κ κ κ (κ κ ) ( , )
p

s t i u
r s rsi rs i u n

s

n Z W s t


   

     

      

1/ 2 , , , 2 1
,

1

( ) ( )
p

s j t k i u
jki jk i u d

s

n Z nO n 


        

      1 , , , ,
, , ,

1 1

(κ κ )κ κ κ κ (κ κ ) κ ( , )
p p

i u s j t k i u
rsi rs i u jki jk i u r s n

s s

n Z Z W s t

 
      

      , 2 1 2 1

1 1

κ ( ) ( , ) ( ). 
p p

s t
d n d

s s

nO n W s t nO n 

 
                                                             (2.17)

By the definition of matrix inverse, the first term after the last equality above is:
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,
,

1 if 
κ κ

0 if .
s t

r s
r t

r t


  

As a result, in order for expression (2.17) to equal the right hand side of (2.15), we must 

have the rest of the terms in the last equation of (2.17) sum up to zero, i.e.,

1 2 , 1/ 2 , , , 2 1
, ,

1 1

κ (κ κ ) ( , ) ( ) ( )
p p

i u s j t k i u
rsi rs i u n jki jk i u d

s s

n Z W s t n Z nO n  

 
            

1 , , , ,
, , ,

1 1

(κ κ )κ κ κ κ (κ κ ) κ ( , )
p p

i u s j t k i u
rsi rs i u jki jk i u r s n

s s

n Z Z W s t

 
      

, 2 1 2 1

1 1

κ ( ) ( , ) ( ) 0.  
p p

s t
d n d

s s

nO n W s t nO n 

 
                                                             (2.18)

Group the left hand side of (2.18) by Wn(s, t), we have:

            

1 2 , 2 1
, ,

1

( , ) κ (κ κ ) κ ( )
p

i u
n rsi rs i u r s d

s

W s t n Z nO n 



      
 

 

                1/ 2 , , , 2 1 , 2 1
,

1 1

( ) ( ) κ ( )
p p

s j t k i u s t
jki jk i u d d

s s

n Z nO n nO n  

 
            

  1 , , , ,
, ,

1

(κ κ )κ κ κ κ (κ κ ) .
p

i u s j t k i u
rsi rs i u jki jk i u

s

n Z Z


                               (2.19)
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For the left hand side of (2.19), 1 2 ,
,κ (κ κ )i u

rsi rs i un Z  + 2 1( )dnO n = op(1), which 

follows from Slutsky’s theorem. For the right hand side of (2.19), by Slutsky’s therorem, 

the first term 1/ 2 , , ,
,1

( )
p s j t k i u

jki jk i us
n Z


       2 1( )dnO n  = op(n−1). The second 

term ,
1
κ

p s t
s

 2 1( )dnO n  2 1( )dnO n  by the fact that ,κs t = O(1) by condition A3. 

The last term 1 ,
,1

(κ κ )κ
p i u

rsi rs i us
n Z


 , , ,

,κ κ κ (κ κ )s j t k i u
jki jk i uZ  2 1( )dnO n  . As a 

result, (2.19) can be rewritten as 

  2 1
,

1

( , ) κ (1) ( )
p

n r s p d
s

W s t o nO n


    ,                                  (2.20)

where the left hand side of (2.20) uses the comment below (2.19) and the right hand side 

follows from the analysis directly above. Equation (2.20) holds for all r, t = 1, 2, … , p. A 

matrix form representation is:

  2 1( ) (1) ( )n n p dn n  θ W F o = O ,                                  (2.21)

where Wn ≡ {Wn(s, t)}s, t = 1, 2, … , p, ( )n
θF ≡ {κr, s}r, s = 1, 2, … , p, op(1)  is a p  p matrix 

with each element being op(1), and 2 1( )d nO is a p  p matrix with each element being 

2 1( )dO n . By condition A3, ( )n
θF converges to an invertible constant matrix ( )θF , 
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which implies that   1
( ) (1)n p

 θF o converges in probability to 1( ) . θF By the 

continuous mapping theorem (Mann and Wald, 1943), we have the following:

 2 1 1( ) ( ) (1)n d pn n    θW O F o

                                                 2 1 1 2 1( ) ( ) ( ) (1)d d pn n n n      θ O F O o .

As a result, each element in Wn is a linear combination of 2 1( )dnO n terms plus some 

higher order terms which are dominated by 2 1( )dnO n . Thus, Wn(r, s) 2 1( )dnO n  , for all 

r, s = 1, 2, … , p. Consequently, by (2.16),  

1 , 1/ 2 , , , 2 1
,

ˆ( ) ( , ) ( ) ( ).r s r j s k i u
n n jki jk i u dr s n Z nO n           θ F                    □

Lemma 3

For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the inverse of the 

observed Fisher information matrix 1ˆ( )n n
θH has the following expansion:

 1 , 1/ 2 , , , 2 1
,

ˆ( ) ( , ) κ κ κ κ (κ κ ) ( )r s r j s k i u
n n jki jk i u jk dr s n Z Y nO n      θ H ,     (2.22)

where 1ˆ( ) ( , )n n r sθH is the (r,s) element of 1ˆ( )n n
θH .
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Proof: By Lemma 1 and the Taylor’s expansion, the (r,s) element of ˆ( )n nθH can be 

expanded as follows:

1 1

1

ˆ ˆ( )( , ) ( ) ( ) ( )
p

n n rs rsi ni i
i

r s n U n U t t    


   θ θ θH

               1

1

ˆ ˆ(2 ) ( ) ( ) ( )
p

rsij n ni i nj j
i

n U t t t t  


     θ

              

            
 1 1 2 3 2 ,

1

κ ( )κ
p

i u
rs rs rsi u

i

n n Z n n U Z  


    θ 2 1 1

1

( ) ( )
p

d rsi
i

nO n n U  


   θ   

  

1

1 1

ˆ ˆ(2 ) ( ) ( ) ( )
p p

rsij n ni i nj j
i j

n U t t t t  

 
     θ

                                         (2.23)

where nθ
 is an intermediate point between n̂θ and θ . With condition A6, we know that 

by the WLLN for i.n.i.d samples, 1
1

( )
p

rsii
n U 

 θ converges in probability to 

1
lim κ

p
n rsii  , which exists and is constant by condition A4(a). Thus, the third term 

after the last equality in (2.23) is 2 1( )dnO n by Slutsky’s theorem. In addition, again by 

condition A6 and the WLLN for i.n.i.d samples, 1 ( )rsij nn U θ
 converges in probability to

limn→∞ n−1 E(Ursij)|θ = θ*, which is a constant by condition A4(d), for i, j = 1, 2, … , p. 

Thus, by Slutsky’s theorem, 1 ( )rsij nn U θ
 ˆ( )ni it t  ˆ( )nj jt t  2 1( )dnO n for i, j = 1, 
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2, … , p and consequently, the fourth term in the last equality of (2.23) is 2 1( )dnO n . As a 

result, expression (2.23) is equivalent to the following:

   1 1 2 3 2 , 2 1

1

ˆ( )( , ) κ ( ) κ κ κ ( )
p

i u
n n rs rs rsi rsi rsi u d

i

r s n n Z n n U n n Z nO n   


     θ θ H

                     1 2 1 2 ,

1

κ κ κ
p

i u
rs rs rsi u

i

n Z n Z 


   

                         3 2 , 2 1

1

( ) κ κ ( )
p

i u
rsi rsi u d

i

n U n Z nO n  


   θ                            

                      1 2 ,κ κ κi u
rs rs rsi un Z Z     

 

                         
 3 2 , 2 1

1

( ) κ κ ( )
p

i u
rsi rsi u d

i

n U n Z nO n  


   θ 

                   

1 2 , 2 1
,κ κ κ ( )i u

r s rs rsi u dn Z Z nO n      
 

 ,                                         (2.24)

where the last equation follows from the facts that κrs = 
1
κ

n i
rsi

n
 1

( )
n i

rsi
E U n




 1

n i i
r si

E U U n


  ,1
κ

n i
r si

n


  ,κr s and that  1 2 ( ) κrsi rsin U n  θ converges in 

distribution to a normal random variable, according to condition A5 and the CLT for 

i.n.i.d data. Thus  3 2
1

( ) κ
p

rsi rsii
n U n 


 θ ,κi u

uZ 2 1( )dnO n  . 

To show (2.22), let us first assume that 1ˆ( ) ( , )n n r sθH has the following form:
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 1 , 1/ 2 , , ,
,

ˆ( ) ( , ) κ κ κ (κ κ )κ ( , )r s r j s k i u
n n jki jk i u jk nr s n Z Y V r s     θH ,      (2.25)

where Vn(r,s) is to be determined. We now want to show that Vn(r,s) = 2 1( )dnO n . By 

definition of matrix inverse, expression (2.25) must satisfy the following:

1

1

1 if ,ˆ ˆ( )( ) ( ) ( )
0 if .

, ,
p

n n n n
s

r t

r t
r s s t




  

 θ θH H                            (2.26)

Plugging (2.24) and (2.25) into (2.26), we have the following:

1

1

ˆ ˆ( )( , ) ( ) ( , )
p

n n n n
s

r s r s


 θ θH H

  

1 2 , 2 1
,

1

κ κ κ ( )
p

i u
r s rs rsi u d

s

n Z Z nO n 



        
  

 

  
 , 1/ 2 , , ,

,κ κ κ (κ κ )κ ( , )s t s j t k i u
jki jk i u jk nn Z Y V r s  

      
 

  
 , 1/ 2 , , ,

, , ,
1 1

κ κ κ κ κ (κ κ )κ
p p

s t s j t k i u
r s r s jki jk i u jk

s s

n Z Y

 
    

      1 2 , ,

1

κ κ κ
p

i u s t
rs rsi u

s

n Z Z



    
 

      

      
 1 , , , ,

,
1

κ κ κ κ (κ κ )κ
p

i u s j t k i u
rs rsi u jki jk i u jk

s

n Z Z Z Y
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     1 2 , , 2 1
,

1 1 1

κ κ ( , ) κ ( , ) κ ( )
p p p

i u s t
rs rsi u n r s n d

s s s

n Z Z V r s V r s nO n 

  

       
 

   

      1/ 2 , , , 2 1
,

1

κ κ (κ κ )κ ( )
p

s j t k i u
jki jk i u jk d

s

n Z Y nO n 


     2 1

1

( , ) ( )
p

n d
s

V r s nO n


  

      (Expand the product and pass the summation sign to each individual term)

  
 , 1 2 , , ,

, , ,
1 1

κ κ κ κ κ (κ κ )κ
p p

s t s j t k i u
r s r s jki jk i u jk

s s

n Z Y

 
         

     1 2 , , , 1 2 ,
,

1 1

κ κ κ κ κ κ κ ( , )
p p

i u i u s t i u
rs rs i u rsi u rs rsi u n

s s

n Y Z Z n Z Z V r s 

 

            
   

 

      1 , , , ,
, ,

1 1

κ κ κ κ (κ κ )κ κ ( , )
p p

i u s j t k i u
rs rsi u jki jk i u jk r s n

s s

n Z Z Z Y V r s

 

        
 

 

      , 2 1 1 2 , , , 2 1
,

1 1

κ ( ) κ κ (κ κ )κ ( )
p p

s t s j t k i u
d jki jk i u jk d

s s

nO n n Z Y nO n  

 
       

     2 1

1

( , ) ( )
p

n d
s

V r s nO n


  

    ( Expand  by definition in the third termrsZ )

  
   , 1 2 , , 1 2 , ,

, , ,κ κ κ (κ κ )κ κ (κ κ )κs t t k i u s t i u
r s rki rk i u rk rsi rs i u rsn Z Y n Z Y       

    
 1 , , , ,

,
1

κ κ κ κ (κ κ )κ
p

i u s j t k i u
rs rsi u jki jk i u jk

s

n Z Z Z Y



      
 



    

1 2 ,

1

κ κ ( , )
p

i u
rs rsi u n

s

n Z Z V r s



    
 


    

    

, 2 1
,

1 1

κ ( , ) κ ( )
p p

s t
r s n d

s s

V r s nO n

 
      2 1

1

( , ) ( )
p

n d
s

V r s nO n
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 1 2 , , , 2 1

,
1

κ κ (κ κ )κ ( )
p

s j t k i u
jki jk i u jk d

s

n Z Y nO n 


    

     (Rearrange the third term to find out that it can cancel out with the second term)

  
 , 1 , , , ,

, ,
1

κ κ κ κ κ κ (κ κ )κ
p

s t i u s j t k i u
r s rs rsi u jki jk i u jk

s

n Z Z Z Y



       
 



    

1 2 , , 2 1
,

1 1 1

κ κ ( , ) κ ( , ) κ ( )
p p p

i u s t
rs rsi u n r s n d

s s s

n Z Z V r s V r s nO n 

  

        
 

   

    
 1 2 , , , 2 1

,
1

κ κ (κ κ )κ ( )
p

s j t k i u
jki jk i u jk d

s

n Z Y nO n 


     2 1

1

( , ) ( ).
p

n d
s

V r s nO n


  

In order for the above expression to equal the right hand side of (2.26), we must have the 

collection of terms other than ,
,κ κs t

r s satisfy :

         
 1 , , , ,

,
1

κ κ κ κ (κ κ )κ
p

i u s j t k i u
rs rsi u jki jk i u jk

s

n Z Z Z Y



     
 



            1 2 ,
,

1 1

κ κ ( , ) κ ( , )
p p

i u
rs rsi u n r s n

s s

n Z Z V r s V r s

 

      
 

 

            
 1 2 , , , 2 1

,
1

κ κ (κ κ )κ ( )
p

s j t k i u
jki jk i u jk d

s

n Z Y nO n 


    

, 2 1 2 1

1 1

κ ( ) ( , ) ( ) 0
p p

s t
d n d

s s

nO n V r s nO n 

 
       .                                             (2.27)

Grouping the left hand side of (2.27) by Vn(s, t), we have:
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1 2 , 2 1
,

1

( , ) κ κ κ ( )
p

i u
n rs rsi u r s d

s

V s t n Z Z nO n 



       
  

 

 1 2 , , , 2 1 , 2 1
,

1 1

κ κ (κ κ )κ ( ) κ ( )
p p

s j t k i u s t
jki jk i u jk d d

s s

n Z Y nO n nO n  

 
        

   1 , , , ,
,

1

κ κ κ κ (κ κ )κ
p

i u s j t k i u
rs rsi u jki jk i u jk

s

n Z Z Z Y



      
 

 .                             (2.28)

For the left hand side of (2.28),  1 2 ,κ κi u
rs rsi un Z Z  2 1( )dnO n  = op(1) follows from 

Slutsky’s theorem. For the right hand side of (2.28), by Slutsky’s theorem, we have

 1/ 2 , , ,
,1

κ κ (κ κ )κ
p s j t k i u

jki jk i u jks
n Z Y

   2 1( )dnO n  =op(n−1). The second term 

can be simplified as , 2 1
1
κ ( )

p s t
ds

nO n


   2 1( )dnO n  by the fact that ,κs t = O(1) 

followed from condition A3. The last term of the right hand side of (2.28) 

1 ,
1

κ κ
p i u

rs rsi us
n Z Z


   
 

  , , ,
,κ κ (κ κ )κs j t k i u

jki jk i u jkZ Y   2 1( )dnO n  . As a result, 

(2.28) can be rewritten as 

  2 1
,

1

( , ) κ (1) ( )
p

n r s p d
s

V s t o nO n


    .                             (2.29)

Equation (2.29) holds for r, t = 1, 2, … , p. A matrix form representation is as follows:
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  2 1( ) (1) ( )n n p dn n  θ V F o = O ,                                 (2.30)

where Vn ≡ {Vn(r, s)}r, s = 1, 2, … , p, ( )n
θF ≡ {κr, s}r, s = 1, 2, … , p, op(1)  is a p  p matrix 

with each element being op(1), and 2 1( )d nO is a p  p matrix with each element being 

2 1( )dO n . By condition A3, ( )n
θF converges to an invertible constant matrix ( )θF , 

which implies that   1
( ) (1)n p

 θF o converges in probability to 1( ) . θF By the 

continuous mapping theorem (Mann and Wald, 1943), we have the following:

     2 1 1( ) ( ) (1)n d pn n    θV O F o

                                                   2 1 1 2 1( ) ( ) ( ) (1)d d pn n n n      θ O F O o .

As a result, each element in Vn is a linear combination of 2 1( )dnO n terms plus some 

higher order terms which are dominated by 2 1( )dnO n . Thus, Vn(r, s) 2 1( )dnO n  , for r, 

s = 1, 2, … , p. Consequently, 

 1 , 1/ 2 , , , 2 1
,

ˆ( ) ( , ) κ κ κ (κ κ )κ ( ).r s r j s k i u
n n jki jk i u jk dr s n Z Y nO n      θ H          □
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Lemma 4

For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the covariance 

between n̂rt and n̂st , for any r, s, can be expressed as: 

1 , 1ˆ ˆcov( , ) κ ( ).r s
nr nst t n o n  

Proof: By Lemma 1 and the definition of covariance,

 ˆ ˆ ˆ ˆcov( , ) cov ( ),( )nr ns nr r ns st t t t t t   

            1 2 , 2 1 1 2 , 2 1cov ( κ ( )), ( κ ( ))r u s v
u d v dn Z nO n n Z nO n         

 
      

            1 2 , 2 1 1 2 , 2 1( κ ( )) ( κ ( ))r u s v
u d v dE n Z nO n n Z nO n          

 
 

                        

1 2 , 2 1 1 2 , 2 1κ ( ) κ ( )r u s v
u d v dE n Z nO n E n Z nO n              

   
 

                     1 , , 1 2 , , 2 1κ κ κ κ ( )r u s v r u s v
u v u v dE n Z Z n E Z Z nO n                  



                       2 1 2 1( ) ( )d dE nO n nO n    
     2 1 2 1( ) ( ) ,d dE nO n E nO n                   (2.31)

where the last equation follows from the fact that , ,(κ ) κ ( ) 0r u r u
u uE Z E Z  for r, u = 1, 

2, … , p. The first term after the last equality in (2.31) can be rewritten as 
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1 , ,κ κr u s v
u vE n Z Z  

 
1 , ,κ κr u s v

u vE n Z Z   
 

1 , ,κ κ ( )r u s v
u vn E Z Z 1 , ,

,κ κ κr u s v
u vn

1 ,κr sn . For the second term in the last equality of (2.31), with condition A6, we know 

that by the WLLN for i.n.i.d data, n−1/2Zu → 0 in probability. Thus, by Slutsky’s theorem, 

1 2 , ,κ κr u s u
u un Z Z   

 
2 1( )dnO n  = op( n−1) and by condition A7 and the DCT, the 

second term in (2.31) is o(n−1). Similarly, for the third term in the last equality of (2.31), 

2 1 2 1( ) ( )d dn nO n nO n    → 0 in probability, which follows from Slutsky’s theorem. 

Again by condition A7, the third term in (2.31) is o(n−1). Now, we want to show the last 

term in the last equality of (2.31) is also o(n−1). It suffices to show that  2 1( )dnE nO n

 2 1( )dE nO n   2 1( )dE n nO n    2 1( )dE n nO n   → 0. As a matter of fact,  

2 1( )dn nO n  → 0 in probability by Slutsky’s theorem. Condition A7 implies 

 2 1( )dE n nO n  → 0, and thus  2 1( )dnE nO n  2 1( )dE nO n  →0, i.e. the last term in 

(2.31) is o(n−1). Consequently, the covariance between n̂rt and n̂st , for any r, s, can be 

expressed as:

1 , 1ˆ ˆcov( , ) κ ( )r s
nr nst t n o n   .                                         □
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Lemma 5

If we define 

1 2 , ,κ κ ,                                       (2.32)r t s u
nrs tuA n Y

1 2 , , ,
,κ κ (κ κ )κr t s u v w

nrs tuv tu v wB n Z  ,                         (2.33)

then the following are true:

(a). E(AnrsBnrs) = 0.

(b).  2 1 1( ) ( ) ( )nrs nrs dE A B nO n o n    .

(c).   2 1 1(1) ( ) ( )nrs dE o A nO n o n     . 

Proof :

(a). By definition, E(Ytu) = 0 and E(Zw) = 0, which implies that E(Anrs) = E(Bnrs) = 0; 

since cov(Zr, Yst) =0 for r, s, t = 1, … , p, E(AnrsBnrs) = cov(Anrs, Bnrs) =0. 

(b). Rewrite Anrs as:

                              1 2 , ,κ κr t s u
nrs tuA n Y

                                      1 2 , , ,
,κ κ ( κ κ )r t s u v w

tu tu v wn Z Z 

                                      1 , , ,
,κ κ ( κ κ κ )r t s u v w

tu tu tu v wn U n U  
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1 , , ,
,

1

κ κ ( κ κ κ )
n

r t s u i i v w i
tu tu tu v w

i

n U U


   .                              (2.34)

Equation in (2.34) reveals that Anrs is a sample mean of a sequence of independent 

random variables, each of which has mean zero. By condition A6, we know that the 

WLLN for i.n.i.d sample implies that Anrs → 0 in probability. Similarly,

1 2 , , ,
,κ κ (κ κ )κr t s u v w

nrs tuv tu v wB n Z 

       1 , , ,
,κ κ (κ κ )κr t s u v w

tuv tu v wn U 

    1 , , ,
,1

κ κ (κ κ )κ
n r t s u v w i

tuv tu v wi
n U


  .                      (2.35)

Equation (2.35) indicates that Bnrs is a sample mean of a sequence of independent random 

variables, each of which has mean zero. By condition A6 and the WLLN for i.n.i.d 

sample, Bnrs → 0 in probability. Thus, (Anrs+ Bnrs)
2 1( )dnO n  =op(n−1) by Slutsky’s 

theorem. As a result, by condition A7 and the DCT,  E[(Anrs+Bnrs)
2 1( )dnO n  ] = o(n−1) .

(c). From (2.34), we know that Anrs is a sample mean of a sequence of independent 

random variables, each of which has mean zero. Thus, E(Anrs) = 0, implying E(o(1) × Anrs) 

= o(1) × E(Anrs) = 0. Furthermore, 2 1(1) ( )do nO n  1( )po n by Slutsky’s theorem. Thus 

 2 1 1(1) ( ) ( )dE o nO n o n   by condition A7 and the DCT.                                             □
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2.4 Main results     

In this section, we present results that show the advantage of 1ˆ( )n n
θF over 

1ˆ( )n n
θH in estimating ˆcov( )nn θ , the scaled covariance matrix of n̂θ . In our scheme, 

we compare the two matrices for an arbitrary corresponding entry. Specifically, we show 

that asymptotically, 1ˆ( ) ( , )n n r sθF estimates ˆ ˆcov( , )nr nsn t t at least as well as

1ˆ( ) ( , )n n r sθH under the mean squared error criterion for all r, s = 1, 2, … , p. Hence, in 

a limit sense, 1ˆ( )n n
θF is preferred to 1ˆ( )n n

θH in estimating ˆcov( ).nn θ

There are degenerate cases where ˆ ˆ( ) ( )n n n nθ θF H for all n, and thus the equal 

performance of the two estimates: 1ˆ( )n n
θF and 1ˆ( )n n

θH . The following lemma 

demonstrates situations when ˆ ˆ(θ ) (θ )n n n nF H for one-parameter i.i.d. exponential 

families. Please note that such situations do not satisfy condition A9 in Section 2.2. 

Lemma 6

If X = [X1, X2, … , Xn] is a sequence of i.i.d scalar random variables whose density 

belongs to the one-parameter exponential family, i.e., for i = 1, 2, … , n, 

  

pi(xi , θ) = h(xi)exp{η(θ)T(xi) − A(θ)},

where θ is a scalar parameter, h(∙), T(∙), η(∙), and A(∙) are known functions. Then 

ˆ ˆ(θ ) (θ )n n n nF H if and only if 
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1
ˆ1 θ θ

1

ˆ(θ ) ( ( )) ( ) 0
n

n

n i
i

η E T X n T x




     
  

 ,

where ˆ(θ )nη denotes the second derivative of η(θ) with respect to θ evaluated at θ = θ̂n . 

Remarks: Conditions above hold for the following situations:

I. T(x) = x, ˆ1 θ θ
ˆ( ( )) θ

n nE T X   , and θ̂n X , where X denotes the sample mean. 

Examples that satisfy these conditions include the Poisson distribution, binomial 

distribution, and normal distribution with unknown mean. 

II. ˆ(θ ) 0nη  . An example that satisfies this condition is pi(xi , θ) = exp{−θxi+ logθ}.

Proof: The negative log-likelihood function of X is 

       

 
1

(θ, ) log( ( )) (θ) ( ) (θ)
n

i i
i

l h x η T x A


   x . 

The second derivative of l(θ, x) with respect to θ is 

2

2
1

(θ, )
(θ) ( ) (θ)

θ

n

i
i

l
η T x nA



    


x
. 

Thus, 
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1
ˆθ θ

1

ˆ ˆ ˆ(θ ) (θ ) ( ( )) (θ )
n

n

n n n i n
i

F n η E T X A




    ,

1

1

ˆ ˆ ˆ(θ ) (θ ) ( ) (θ )
n

n n n i n
i

H n η T x A



    , 

and 

1
ˆθ θ

1 1

ˆ ˆ ˆ(θ ) (θ ) (θ ) ( ( )) ( )
n

n n

n n n n n i i
i i

F H n η E T X T X


 

      
  
 

                                                  1
ˆθ θ

1

ˆ(θ ) ( ( )) ( )
n

n

n i i
i

η E T X n T X




     
  

 , 

where the second equality follows from the fact that X1, X2, … , Xn are i.i.d. As a result, 

ˆ ˆ(θ ) (θ )n n n nF H if and only if 

1
ˆ1 θ θ

1

ˆ(θ ) ( ( )) ( ) 0
n

n

n i
i

η E T X n T x




     
  

 .                                      □

Now let us present the main theorem which shows the superiority of 1ˆ( )n n
θF over 

1ˆ( )n n
θH in estimating ˆcov( )nn θ . 
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Theorem 1

Under conditions A1–A8 in Section 2.2, for every pair (r,s), r, s = 1, 2, … , p

 
 

21

21

ˆ ˆ ˆ( ) ( , ) cov( , )
liminf 1.

ˆ ˆ ˆ( ) ( , ) cov( , )

n n nr ns

n
n n nr ns

E r s n t t

E r s n t t



 

    
   

θ

θ

H

F
                            (2.36)

Furthermore, if condition A9 in Section 2.2 is satisfied, then the strict inequality (> 1) in 

(2.36) holds. 

Remark: The inequality in (2.36) indicates that, asymptotically, 1ˆ( )n n
θF produces 

no greater mean squared error than 1ˆ( )n n
θH in estimating ˆcov( )nn θ at each element 

level. In addition, if the difference between  1ˆ( )n n
θF and 1ˆ( )n n

θH is significant 

enough (see condition A9 and the corresponding comments in Section 2.2), then the strict 

inequality in (2.36) holds, i.e., 1ˆ( )n n
θF produces strictly smaller mean squared error 

than 1ˆ( )n n
θH asymptotically. Please note that condition A9 requires that the referred 

function of the first and the second derivative of the log-likelihood has variance strictly 

positive asymptotically. This is common in situations where  1ˆ( )n n
θF and 1ˆ( )n n

θH are 

unequal for all n. Condition A9 is general enough to allow for other settings, as well, 

given its requirement that 1ˆ( )n n
θF and 1ˆ( )n n

θH be non-identical on only a 

subsequence. 
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Proof: By Lemmas 2–4, we derive the following decomposition:

2 21 1ˆ ˆˆ ˆ ˆ ˆ( ) ( , ) cov( , ) ( ) ( , ) cov( , )n n nr ns n n nr nsr s n t t r s n t t         θ θH F

   1 1 1 1ˆ ˆ ˆ ˆˆ ˆ( ) ( , ) ( ) ( , ) 2 cov( , ) ( ) ( , ) ( ) ( , )n n n n nr ns n n n nr s r s n t t r s r s             θ θ θ θF H H F

    1 2 , , , 2 1
,κ κ 2(κ κ )κ ( ) (1)r t s u v w

tuv tu v w tu dn Z Y nO n o  
     
 



      1 2 , , 2 1κ κ ( )r t s u
tu dn Y nO n      



      2 1 2 12 ( ) (1) ( )nrs nrs d nrs dB A nO n o A nO n        

   2 2 1 12 ( ) ( ) ( )nrs nrs nrs nrs nrs d pA A B A B nO n o n      

 2 1(1) ( ) ,nrs do A nO n                                                                                         (2.37)                                                                                 

where Anrs and Bnrs are as defined in (2.32) and (2.33). The op(n−1) term in the last 

equality of (2.37) follows from a product of two 2 1( )dnO n terms, each of which 

converges in probability to zero when multiplied by n , which is implied by Slutsky’s 

theorem. Consequently, n 2 1( )dnO n  ×
2 1( )dnO n converges in probability to zero by 

Slutsky’s theorem, indicating 2 1( )dnO n ×
2 1( )dnO n = op(n−1). Taking expectation of 

both sides of (2.37), we now have
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   2 21 1ˆ ˆˆ ˆ ˆ ˆ( , ) ( ) ( , ) cov( , ) ( ) ( , ) cov( , )n n n nr ns n n nr nsd r s E r s n t t E r s n t t             
θ θH F

                2 2 1 12 ( ) ( ) ( )nrs nrs nrs nrs nrs d pE A A B A B nO n o n      

                    2 1
, ,(1) ( )n r s dE o A nO n                                

               
2 1( ) ( )nrsE A o n  ,                                                                                        (2.38)                                                                                               

where the last equality follows from Lemma 5. Consequently, 

 
 

21

21

ˆ ˆ ˆ( ) ( , ) cov( , )
liminf

ˆ ˆ ˆ( ) ( , ) cov( , )

n n nr ns

n
n n nr ns

E r s n t t

E r s n t t



 

   
   

θ

θ

H

F

   
 

2 21 1

21

ˆ ˆˆ ˆ ˆ ˆ( ) ( , ) cov( , ) ( ) ( , ) cov( , )
liminf 1

ˆ ˆ ˆ( ) ( , ) cov( , )

n n nr ns n n nr ns

n
n n nr ns

E r s n t t E r s n t t

E r s n t t

 

 

            
   

θ θ

θ

H F

F

 21

( , )
liminf 1

ˆ ˆ ˆ( ) ( , ) cov( , )

n

n
n n nr ns

nd r s

nE r s n t t 
 

   
θF

≥ 1,                                                                                                                                (2.39)

where the last inequality follows from (2.38) and the fact that liminf ( , )n nnd r s

2liminf ( ( ) (1))n nrsnE A o  ≥ 0. 



60

Now we want to demonstrate that if, in addition, condition A9 is satisfied, the strict 

inequality in (2.39) holds. In fact, we have

        2liminf ( )nrs
n

nE A


 
 

             liminf var( )nrs
n

n A




             1 , , ,
,1

liminf var κ κ κ κ κ
n r t s u i i v w i

tu tu tu v win
n n U U



  
    

  


             1 , , ,
,1

liminf var κ κ κ κ κ
n r t s u i i v w i

tu tu tu v win
n U U



  
    

  


> 0,                                                                                                                    (2.40)

where the first equality follows from the fact that E(Anrs) = 0; the third equality is due to 

the fact that observations across i are independent; and the inequality at the end follows 

from condition A9. Consequently,  

                                     
liminf ( , )n

n
nd r s



                                         2 1liminf ( ) ( )nrs
n

nE A n o n


  

                                        2 1liminf ( ) liminf ( )nrs
n n

nE A n o n
 

  

                                        0 ,
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where the last inequality follows from (2.40) and the fact that 1liminf ( )n n o n 

1lim ( )n n o n  = 0. Furthermore, we have 

 
 

21

21

ˆ ˆ ˆ( ) ( , ) cov( , )
liminf

ˆ ˆ ˆ( ) ( , ) cov( , )

n n nr ns

n
n n nr ns

E r s n t t

E r s n t t



 

   
   

θ

θ

H

F

            
 21

( , )
liminf 1

ˆ ˆ ˆ( ) ( , ) cov( , )

n

n
n n nr ns

nd r s

nE r s n t t 
 

   
θF

>1.                                                                                                □

In summary, Theorem 1 indicates that, asymptotically, 1ˆ( )n n
θF performs at least 

as well as 1ˆ( )n n
θH in estimating the scaled covariance matrix of n̂θ for each matrix 

entry. An immediate practical problem is that in many situations, the closed analytical 

form of the Fisher information is not attainable (e.g. Example 1 in Section 3.1). Given the 

relation between expected and observed Fisher information in (1.2), one way to get 

around with this issue is to use numerical approximations. A few Monte Carlo-based 

techniques are introduced in Appendix B, which include a basic resampling method, a 

feedback-based method, and an independent perturbation per measurement method. 
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Chapter 3

Numerical Studies

In this chapter, we show three numerical examples to demonstrate the superiority of 

the expected FIM in estimating the covariance matrix of MLEs. The first example 

considers a mixture Gaussian model, which is popularly used in practice to deal with 

statistical populations with two or more subpopulations. The second example covers a 

signal-plus-noise situation, which is commonly seen in practical problems where 

statistical inferences are made in the presence of noise. The last example discusses a 

linear discrete-time state-space model, which has wide applications in areas such as 

engineering, economics, and finance. 

Before we present the examples, let us introduce the common notation that is used 

throughout all three cases. To compare the performance of expected and observed FIM in 

estimating the covariance matrix of MLEs, we define discrepancy matrices MH and MF

such that the (r,s) entry of MH is MH(r,s) 1 2ˆ ˆ ˆ( ) ( , ) cov( , )( )[ ]n n nr nsE r s n t t θH and 
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the (r,s) entry of MF is MF(r,s) 1 2ˆ ˆ ˆ( ) ( , ) cov( , ) .( )[ ]n n nr nsE r s n t t θF   

Correspondingly, we use RH and RF to denote matrices composed of relative square root 

of mean squared error for each component, i.e., RH(r,s) ˆ ˆ( , ) cov( , )nr nsr s n t t HM

and RF(r,s) ˆ ˆ( , ) cov( , ) .nr nsr s n t t FM Notice that the performance is assessed at a 

component level, which is consistent with the approach used in Theorem 1 of Chapter 2. 

However, in the examples that follow, we are not able to provide true MH (or MF) or RH

(or RF) because closed forms of the expectations are not attainable. We present numerical 

estimates as replacements, which are derived from an average of a large number of 

sample values. 

For each example, we also show a typical value of both 1ˆ( )n n
θF and 1ˆ( )n n

θH . 

We first generate 1001 independent values of 1ˆ( )n n
θF or 1ˆ( )n n

θH . We then rank the 

1001 matrices by their (Euclidean) distance to the true (or approximated) ˆcov( )nn θ . The 

outcome with the median distance from ˆcov( )nn θ is picked as the typical outcome. 

3.1 Example 1— Mixture Gaussian distribution

The mixture Gaussian distribution is of great interest and is popularly used in 

practical applications (Wang, 2001; Stein et al., 2002). In this study, we consider a 

mixture of two univariate Gaussian distributions. Specifically, let X = [x1, x2, … , xn]T be 

an i.i.d. sequence with probability density function:
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2 2 2 2 2 2
1 1 1 2 2 2( , ) λ exp( ( μ ) (2σ )) 2πσ (1 λ) exp( ( μ ) (2σ )) 2πσf x x x      θ ,

where 1 2= [λ,μ ,μ ]Tθ and σ1, σ2 are known. There is no closed form for MLE in this case. 

We use Newton’s method to achieve numerical approximation of n̂θ . The covariance 

matrix of n̂θ is approximated by the sample covariance of 106 values of n̂θ from 106

independent realizations of data. This is a good approximation of the true covariance 

matrix because the first four post-decimal digits do not change as the number of 

independent realizations increases. The analytical form of the true FIM is not attainable. 

But the closed form of the Hessian matrix is computable (see Boldea and Magnus, 2009). 

We approximate the true FIM using the sample average of the Hessian matrix over 105

independent replications. This is a good approximation since the first four post-decimal 

digits do not vary as the amount of averaging increases beyond 105.

In this study, we consider two cases when θ = [0.5, 0, 4]T with n = 50, and θ

=[0.5, 0, 2] T with n = 100, where for both cases σ1 = σ2 = 1. For the second case, we use 

a bigger sample size n to allow for adequate information to achieve reliable MLE when 

two individual Gaussian distributions have closer mean. We estimate MH and MF by 

sample averages over 105 independent replications. This is a good approximation of the 

mean squared error matrix because the first three post-decimal digits do not change as the 

number of independent realizations increases.  Simulation results are summarized in 

Table 3.1.
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Table 3.1: Simulation results for Example 1. The scaled covariance matrix ˆcov( )nn θ is 

approximated by the sample covariance matrix of 106 values of n̂θ from 106 independent 

realizations; MH and MF are approximated by sample averages over 105 independent 

replications.

θ = [0.5, 0, 4], n = 50 θ = [0.5, 0, 2], n = 100

ˆcov( )nn θ

0.2719 0.1151 0.1036

0.1151 2.4006 0.4333

0.1036 0.4333 2.5389

 
 
 
  

1.3881 2.4472 2.4351

2.4472 7.7186 4.7643

2.4351 4.7643 7.7076

 
 
 
  

Typical
1ˆ( )n n
θH

0.2601   0.0518   0.0464

0.0518   2.4353   0.1796

0.0464   0.1796   2.0442

 
 
 
  

0.7831   1.6690   1.0829

1.6690   8.3483   3.0017

1.0829   3.0017   3.7717

 
 
 
  

Typical
1ˆ( )n n
θF

0.2762   0.1065   0.1056

0.1065   2.4619   0.4019

0.1056   0.4019   2.4314

 
 
 
  

1.3006   1.9168   1.8297

1.9168   5.8289   2.8067

1.8297   2.8067   5.9017

 
 
 
  

MH

0.0020 0.0033 0.0054

0.0033 0.2637 0.0657

0.0054 0.0657 0.3703

 
 
 
  

1.0903 2.6794 4.0365

2.6794 15.1482 5.6708

4.0365 5.6708 9.7639

 
 
 
  

MF

0.0020 0.0002 0.0002

0.0002 0.0081 0.0023

0.0002 0.0023 0.0082

 
 
 
  

0.1015 0.9894 0.4956

0.9894 10.1784 3.4294

0.4956 3.4294 5.2064

 
 
 
  

MH − MF

65.1 10 0.0031 0.0052

0.0031 0.2556 0.0634

0.0052 0.0634 0.3621

  
 
 
 
 

0.9888 1.6900 3.5409

1.6900 4.9698 2.2414

3.5409 2.2414 4.5575

 
 
 
  

RH

0.1640 0.5021 0.7104

0.5021 0.2139 0.5915

0.7104 0.5915 0.2396

 
 
 
  

0.7521 0.6688 0.8250

0.6688 0.5042 0.4998

0.8250 0.4998 0.4045

 
 
 
  

RF

0.1643 0.1086 0.1505

0.1086 0.0375 0.1114

0.1505 0.1114 0.0356

 
 
 
  

0.2294 0.4064 0.2891

0.4064 0.4133 0.3886

0.2891 0.3886 0.2960
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Results in Table 3.1 are consistent with theoretical conclusion in Chapter 2. For θ

= [0.5, 0, 2]T, every entry of 1ˆ( )n n
θF has a lower MSE in estimating the corresponding 

component in ˆcov( )nn θ than 1ˆ( )n n
θH . The difference in MSEs is quite significant. For 

θ = [0.5, 0, 4]T, almost every entry of 1ˆ( )n n
θF has a lower MSE than the 

corresponding entry in 1ˆ( )n n
θH except for the (1,1)entry. However, the difference in 

MSEs for the (1,1)entry is very small and we believe this might correspond to the higher 

order term that we ignore in the theoretical discussion. Moreover, for both values of θ*, 

typical values of 1ˆ( )n n
θF are closer to ˆcov( )nn θ than the typical values of 1ˆ( )n n

θH . 

Specifically, typical values of 1ˆ( )n n
θF produce smaller sum of squared errors over all 

entries than typical values of 1ˆ( )n n
θH .

3.2 Example 2— Signal-plus-noise problem

The signal-plus-noise situation represents a class of common problems in practice. 

Examples of application for this statistical model include estimation of the initial mean 

vector and covariance matrix in a state-space (Kalman filter) model from a cross-section 

of realizations (Shumway et al., 1981), dose response analysis (Hui and Berger, 1983), 

estimation of parameters for random-coefficient linear models (Sun, 1982), small area 

estimating in survey sampling (Ghosha and Rao, 1994), sensitivity studies (Spall, 1985a; 

Spall and Chin, 1990), and nuisance parameter analysis (Spall, 1989).
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This study is a generalization of the numerical study in Cao and Spall (2009), 

where a scalar case of θ is discussed. Consider a sequence of i.n.i.d random vectors X1, 

X2, … , Xn. For each i  {1, 2, … , n}, Xi is multivariate normal:

Xi ~ N (μ, Σ+ Qi),

where μ is the common mean vector across observations, Σ is the common part of the 

covariance matrices and Qi is the covariance matrix of noise for observation i. In practice, 

the Qi are known and θ contains unique elements in μ and Σ. 

There are no closed forms for n̂θ or its covariance matrix. We use Newton’s 

method to find a numerical approximation of n̂θ and estimate the covariance matrix 

based on 106 MLEs from 106 independent realizations. This is a good approximation of 

the true covariance matrix because the first four post-decimal digits do not change as the 

number of independent realizations increases. Closed forms of FIM for this signal-plus-

noise Gaussian model are provided in Shumway (1982) and closed forms of the

corresponding Hessian matrix are provided in Spall (1985b). Spall (2003) shows the 

same for the special case of scalar data. 

In this study, we consider 4-dimensional Xi  and diagonal Σ: Σ = diag{ Σ11, Σ22, Σ33, 

Σ44}. Thus, θ = [μ1, μ2, μ3, μ4, Σ11, Σ22, Σ33, Σ44]T is an 8 × 1 vector. The underlying true 

value of the parameters in this study is θ* = [0, 0, 0, 0, 1, 1, 1, 1]T. The known Qi
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matrices are constructed in the following way: let U be a 4 × 4 deterministic matrix where 

each entry is drawn from uniform (0, 0.1)-distribution. Qi is defined as Qi = i UTU. 

In our study, we use the following UTU matrix:

0.0289 0.0219 0.0120 0.0216

0.0219 0.0200 0.0068 0.0189

0.0120 0.0068 0.0076 0.0053

0.0216 0.0189 0.0053 0.0210

T

 
 
 
 
 
 

U U =

The sample size in this study is n = 80. We estimate MH and MF by sample 

averages over 105 independent replications. This is a good approximation of the mean 

squared error matrix because the first three post-decimal digits do not change as the 

number of independent realizations increases. Simulation results are summarized in Table 

3.2.
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Table 3.2: Simulation results for Example 2. The scaled covariance matrix ˆcov( )nn θ is 

approximated by the sample covariance matrix of 106 MLEs from 106 independent 

realizations. Both MH and MF are approximated by sample averages over 105

independent replications.

ˆcov( )nn θ

  0.46    0.07      0.06     0.05    0.17  0.08 0.00 0.08

  0.07    0.33      0.07     0.04 0.23     0.27 0.06 0.12

  0.06    0.07      0.40     0.07 0.29 0.08 0.01 0.05

  0.05    0.04      0.07

  
  
   

     0.32 0.24 0.10  0.06    0.33

  0.17 0.23  0.29  0.24    5.32     0.81     0.60    0.61

0.08    0.27  0.08  0.10    0.81     2.14     0.49    0.43

0.00 0.06  0.01  0.06    0.60     0.49  

  
  

  
       0.73    0.52

0.08 0.12 0.05      0.33    0.61      0.43     0.52    2.27

 
 
 
 
 
 
 
 
 
 
 
    

Typical 
1ˆ( )n n
θH

   1.66  0.24  0.28  0.25  0.58  0.20  0.20  0.33

0.24      0.85  0.52  0.49  1.19  0.20  0.30  0.47

0.28  0.52      0.73  0.54  1.14  0.23  0.28  0.39

0.25  0.49  0.54      0.77 

      
      
      
    1.22  0.29  0.31  0.37

0.58  1.19  1.14  1.22      8.84  2.85  3.02  4.15

0.20  0.20 0.23   0.29  2.85      3.10  0.66  0.93

0.20  0.30  0.28  0.31  3.02   0.66     2.76  1.16

0

   
      
      
      
 .33  0.47  0.39  0.37  4.15  0.93  1.16      3.85

 
 
 
 
 
 
 
 
 
 
 

       

Typical 
1ˆ( )n n
θF

1.87   0.12   0.07   0.12            0           0           0            0

0.12   1.43   0.03   0.11            0           0           0            0

0.07   0.03   1.32   0.03            0           0           0            0

0.12   0.11   0.03   1.43            0           0           0            0

     0        0 0         0      6.84   0.02  0.00  0.02

     0        0 0         0  0.02      4.0

  
 0   0.00  0.02

     0        0 0         0  0.00   0.00      3.48  0.00

     0        0 0         0  0.02   0.02  0.00      4.04

 
 
 
 
 
 
 
 

  
   
 

    

(Table continues next page)
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(Table 3.2, continued)

MH

 1.66       0.40     0.31      0.48         28.72         65.39         2.50         31.12

 0.40       1.47     0.57      1.29         98.65       228.58         8.61       108.54

 0.31       0.57     0.71      0.69         36.05         81.20         3.09         38.53

 0.48       1.29     0.69      2.16       136.86       317.60       11.96       151.32

28.72    98.65   36.05   136.86  11730.81   27047.99   1022.28   12810.97

65.39  228.58   81.20 317.60   27047.99   61770.41   2367.40   29953.45

  2.50      8.61     3.09    11.96     1022.28     2367.40       95.91     1127.44

31.12  108.54   38.53 151.32   12810.97   29953.45   1127.44   14469.97

 
 
 
 
 
 
 
 
 
 
 
  

MF

0.86   0.00   0.00   0.00   0.02   0.00 0.00   0.00

0.00   1.41   0.00   0.00   0.05   0.07 0.00   0.01

0.00   0.00   0.24   0.00   0.08   0.00 0.00   0.00

0.00   0.00   0.00   1.38   0.06   0.01 0.00   0.11

0.02   0.05   0.08   0.06   9.92   0.70 0.37   0.41

0.00   0.07   0.00   0.01   0.70  12.18 0.24   0.20

0.00   0.00   0.00   0.00   0.37   0.24 5.76   0.27

0.00   0.01   0.00   0.11   0.41   0.20 0.27   5.49

 
 
 
 
 
 
 
 
 
 
 
  

MH − MF

  0.79      0.40    0.31      0.48       28.69        65.38        2.50        31.12

  0.40      0.06    0.56      1.28       98.59      228.50        8.60      108.53

  0.31      0.56    0.46      0.69       35.97        81.19        3.09        38.53

  0.48      1.28    0.69      0.78     136.80      317.59      11.95      151.21

28.69    98.59  35.97  136.80  11720.88  27047.28  1021.91  12810.55

65.38  228.50  81.19  317.59  27047.28  61758.22  2367.15  29953.24

  2.50      8.60    3.09   11.95     1021.91    2367.15     90.14     1127.16

31.12  108.53  38.53  151.21  12810.55  29953.24 1127.16   14464.47

 
 
 
 
 
 
 
 
 
 
 
  

RH

     2.75     8.04        8.23     11.64    31.01    100.07 1439.00     68.70

     8.04     3.62      10.39     23.19    42.79      54.38       44.06     82.03

     8.23     10.39      2.08     10.74    20.60    102.86       91.12   110.06

   11.64     23.19    10.74       4.53    46.96    167.33       51.38     36.90

   31.01     42.79    20.60     46.96    20.34     202.64      53.12   182.64

 100.07    54.38   102.86   167.33  202.64   115.90        97.97   398.04

1439.00     44.06   91.12     51.38    53.12       97.97       13.33    64.55

   68.70     82.03  110.06    36.90   182.64    398.04        64.55    52.93

 
 
 
 
 
 
 
 
 
 
 
  

(Table continues next page)
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(Table 3.2, continued)

RF

1.98   0.61   0.02     1.10              1          1         1           1

0.61   3.54    0.45    1.25              1          1         1           1

0.02   0.45    1.23    0.60              1          1         1           1

1.10   1.25    0.60    3.62              1          1         1           1

    1         1         1         1 0.59    1.03     1.01 1.04

    1         1         1         1 1.03    1.62     1.00 1.04

    1         1         1         1 1.01    1.00     3.26 1.00

    1         1         1         1 1.04    1.04     1.00 1.03

 
 
 
 
 
 
 
 
 
 
 
  

Numerical results in Table 3.2 are consistent with the theoretical conclusion in 

Chapter 2. Every entry of 1ˆ( )n n
θF produces a smaller error in estimating the 

corresponding component in ˆcov( )nn θ than 1ˆ( )n n
θH . Notice that large numbers appear 

in the 4 ×4 lower right sub-matrix in MH and RH . This is due to the fact that enormous 

values happen in same realizations of the Hessian matrix 1ˆ( )n n
θH . However, we do not 

see large numbers in MF or RF due to the expectation effect in 1ˆ( )n n
θF , which avoids 

enormous values. Notice that there are entries in RF that exactly equal to one. This is due 

to the fact that the corresponding entries in 1ˆ( )n n
θF are zero, making the relative root of 

MSE being 100%.  Moreover, the typical outcome of 1ˆ( )n n
θF is closer in value to 

ˆcov( )nn θ than the typical outcome of 1ˆ( )n n
θH . Specifically, the typical value of 

1ˆ( )n n
θF produces smaller sum of squared error over all entries than the typical value of 

1ˆ( )n n
θH .
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3.3 Example 3— State-space model

A state-space model is a mathematical description of a physical system as a set of 

input, output and state variables. Before we introduce the state-space model, let us define 

some necessary notation. Assume that xt is an unobserved l-dimensional state process, A

is an l × l transition matrix, and wt is a vector of l zero-mean, independent disturbances 

with covariance matrix Q. Let yt be an observed m-dimensional process, C be an m × l

design matrix, and vt be a vector of m zero-mean, independent disturbances with 

covariance matrix R. The mean and covariance matrix of x0 (the initial xt) are denoted by 

μ and Σ, respectively. It is assumed that μ and Σ are known and that x0, wt, and vt are 

mutually independent and multivariate normal. 

The state-space model considered is defined by the equations

xt = Axt−1 + wt,                                                        (3.1) 

yt = Cxt + vt,                                                          (3.2)

for t = 1, 2,… , n time periods. 

In our context, we consider situations where l = 3, m = 1 and A, C, R are known. 

The unknown parameters of interest are the unique elements in diagonal Q, i.e., θ = [Q11, 

Q22, Q33]T, where
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11

22

33

0 0

0 0 .

0 0

Q

Q

Q

 
   
  

Q

Given the definition of θ above, the log-likelihood function L(θ) for the system described 

in (3.1) and (3.2) is (neglecting constant terms) (Gibson and Ninness, 2005):

  1
2

1 1
1 1

1 1
( ) log( ) ε ,

2 2

n n
T T

tt t t t
t t

L R R


 
 

     θ CP C CP C                      (3.3)

whose computation requires Kalman Filter equations:

1ˆε ;t t t ty  Cx                                                                (3.4)

1 1 1ˆ ˆ ;t t t t  x Ax                                                                (3.5)

1ˆ ˆ ε ;t tt t t t x x K                                                             (3.6)

  1

1 1 ;T T
t t t t t R



  K P C CP C                                                 (3.7) 

1 1 1 ;T
t t t t   P AP A Q                                                          (3.8)

1 1.tt t t t t t  P P K CP                                                          (3.9)
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Given (3.3)–(3.9), it is not hard to derive the Hessian matrix Hn(θ) in a recursive 

form. In addition, the FIM Fn(θ) is also attainable for this state-space model (Cavanaugh 

and Shumway, 1996). The closed form for the MLE n̂θ is not available. We use 

stochastic search method Algorithm B in Spall (2003, pp. 43–45) to approximate n̂θ . 

Our simulation is based on the specific model:

0 1 0

0 0 1 ,

0.8 0.8 0.8

 
   
  

A

C = [1  0   0],

R = 1,

μ = [0   0   0]T,

0 0 0

0 0 0 .

0 0 0

 
   
  

Σ

The true input for θ is θ* = [1, 1, 1]T, i.e., 

1 0 0

0 1 0 .

0 0 1

 
   
  

Q
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The forms of A and C above are chosen according to the process described in Ljung 

(1999, Chapter 4). The transition matrix A is designed in such a way that the system is 

identifiable. Given that there is no closed form for its covariance matrix cov( n̂θ ), we 

approximate cov( n̂θ ) using the sample covariance matrix of 104 independent estimates of 

n̂θ , where each n̂θ is computed from a sequence of observations y1, y2,… , y100. This is a 

good approximation since the first three post-decimal digits do not change as the amount 

of averaging increases beyond 104.

In this study, we consider two sample sizes: n = 100 and n = 200. We estimate MH

and MF by sample averages over 104 independent replications. This is a good 

approximation since the first three post-decimal digits do not change as the amount of 

averaging increases beyond 104.The simulation results are summarized in Table 3.3 (n

=100) and Table 3.4 (n =200).
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Table 3.3: Simulation results for Example 3 (n = 100). For n = 100, the scaled covariance 

matrix ˆcov( )nn θ is approximated by the sample covariance matrix of 104 values of n̂θ

from 104 independent realizations. Both MH and MF are approximated by sample 

averages over 104 independent replications.

ˆcov( )nn θ

  51.8934   24.4471   33.7404

24.4471       59.4544   3.36401

33.7404   3.36401      63.0565

  
   
   

Typical 
1ˆ( )n n
θH

 26.1023    8.78498   11.5611

8.78498       10.6455   1.77378

11.5611    1.77378      20.0403

  
   
   

Typical 
1ˆ( )n n
θF

  54.7463    34.3979    47.2827

34.3979        68.2098   2.11431

47.2827    2.11431        68.8055

  
   
   

MH

11810.3615 2706.7101   20839.1818

  2706.7101   11028.3976     1326.5203

20839.1818 1326.5203   57649.6871

 
 
 
  

MF

292.8718    139.8859    195.8054

139.8859   1011.1910       4.1963

195.8054 4.1963  1371.368

 
 
 
  

MH −MF

11517.4897       2566.8241 20643.3763

  2566.8241 10017.2065       1322.3240

20643.3763       1322.3240 56278.3183

 
 
 
  

RH

2.0942 2.1279 4.2784

2.1279 1.7663 10.8267

4.2784 10.8267 3.8077

 
 
 
  

RF

0.3297 0.4837 0.4147

0.4837 0.5348 0.6089

0.4147 0.6089 0.5872
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Table 3.4: Simulation results for Example 3 (n = 200). For n = 200, the scaled covariance 

matrix ˆcov( )nn θ is approximated by the sample covariance matrix of 104 values of n̂θ

from 104 independent realizations. Both MH and MF are approximated by sample 

averages over 104 independent replications.               

ˆcov( )nn θ

  73.3308   34.6841   49.5769

34.6841       75.7118   12.8851

49.5769   12.8851      83.5198

  
   
   

Typical 
1ˆ( )n n
θH

 55.3965    20.0538   57.3601

20.0538       35.4422   9.9754

57.3601    9.9754      144.8040

  
   
   

Typical 
1ˆ( )n n
θF

  62.9489    19.3356    52.5227

19.3356        34.8782   11.0883

52.5227    11.0883        99.8797

  
   
   

MH

1241.1417 712.4586   1081.9223

  712.4586     3042.7638     268.2577

1081.9223 268.2577   3752.2690

 
 
 
  

MF

484.4139     166.9961     246.2559

166.9961   1101.7465       29.8785

246.2559       29.8785  1343.5888

 
 
 
  

MH −MF

756.7278 545.4625 835.6663

545.4625 1941.0173 238.3791

835.6663 238.3791 2408.6802

 
 
 
  

RH

0.4804 0.7695 0.6634

0.7695 0.7285 1.2711

0.6634 1.2711 0.7334

 
 
 
  

RF

0.3001 0.3725 0.3165

0.3725 0.4384 0.4242

0.3165 0.4242 0.4388
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Both Table 3.3 and Table 3.4 show significant advantage of 1ˆ( )n n
θF over 

1ˆ( )n n
θH in estimating ncov( n̂θ ). For both sample sizes n = 100 and n = 200, 1ˆ( )n n

θF

has smaller MSE in estimating the corresponding component in ˆcov( )nn θ than 

1ˆ( )n n
θH . Because the observed Fisher information (Hessian) matrix is sample 

dependent, even one enormous outcome can result in a big MSE for 1ˆ( )n n
θH . But this 

is not the case for the expected FIM due to the averaging effect that is embedded. In both 

tables above, typical values of 1ˆ( )n n
θF presents a better estimate of ˆcov( )nn θ than 

typical values of 1ˆ( )n n
θH . Specifically, the typical value of 1ˆ( )n n

θF produces smaller 

sum of squared error over all entries than the typical value of 1ˆ( )n n
θH .

Comparing Table 3.3 and Table 3.4, we find that for the larger n, the difference 

between the MSEs of 1ˆ( )n n
θF and 1ˆ( )n n

θH is smaller. This is not surprising because 

as sample size grows, 1ˆ( )n n
θH converges to 1ˆ( )n n

θF . Furthermore, for the larger 

sample size, the accuracy of 1ˆ( )n n
θF increases. This makes sense because as we get 

more information (sample data), we have a better estimate of ˆcov( )nn θ .  
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Chapter 4

Conclusions and Future Work 

In Section 4.1, we summarize the research contribution of this dissertation. In 

Section 4.2, we discuss potential extensions of the work presented in this dissertation. We 

propose a few approaches which are preliminary ideas but are likely to be explored as 

future work. 

4.1 Conclusions

In this dissertation, we compare the relative performance of the expected and 

observed Fisher information in estimating the covariance matrix of MLE. The discussion 

throughout this work applies broadly to many contexts with i.n.i.d samples and multi-

dimensional parameters of interest. We demonstrate that under a set of reasonable 

conditions, the inverse expected Fisher information outperforms the inverse observed 

Fisher information in estimating the covariance matrix of MLE. Specifically, in 

estimating each entry of the covariance matrix of the MLE, the corresponding entry of 
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the inverse Fisher information (evaluated at the MLE) has no greater mean squared error 

than the corresponding entry of the observed Fisher information (evaluated at the MLE)

in an asymptotic sense, i.e.,

 
 

21

21

ˆ ˆ ˆ( ) ( , ) cov( , )
liminf 1,

ˆ ˆ ˆ( ) ( , ) cov( , )

n n nr ns

n
n n nr ns

E r s n t t

E r s n t t





   
  

θ

θ

H

F
  

for r, s = 1, 2, … , p. Note that zero difference in the mean squared errors occurs when the 

corresponding entries of the inverse expected and the inverse observed Fisher 

information (evaluated at the MLE) are identical. This can happen even if the two 

matrices are not identical.

This dissertation provides the theoretical foundation as well as numerical 

demonstration to support the conclusion above. In Chapter 2, we present detailed 

theoretical analysis that we developed to reach the final conclusion. All analysis is done 

at element level, even though the expected and observed Fisher information under 

consideration are in matrix form. In Chapter 3, three numerical examples are illustrated to 

support the theoretical conclusion. We first consider an i.i.d mixture Gaussian 

distribution with three unknown parameters, which is a degenerate case of i.n.i.d samples. 

The second example demonstrates the theory in a signal-plus-noise situation, where each 

observation is independent but comes with a different level of noise. The last example 

considers system identification and parameter estimation in a state-space model, which is 

of great interest in engineering and other fields. All three examples show the advantage 
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of the expected Fisher information over the observed Fisher information in estimating the 

covariance matrix of the MLE. 

The conclusion of this dissertation provides a theoretical foundation for the choice 

between expected and observed Fisher information in estimating the covariance matrix of 

MLE. The development of such foundation has been missing in the literature, though 

there is great need for constructing accurate approximations to the covariance matrix. 

Due to the popularity of the MLE as a standard estimation method, people in practice are 

also interested in the variance/covariance of the MLE. However, there was no solid 

theory readily available in the literature to provide guideline in choosing a good estimate 

of the variance/covariance of the MLE. Consequently, people often chose whichever 

works easier for their problems, regardless of the accuracy of the estimate chosen in 

estimating the variance/covariance of the MLE. Motivated by the fact that the theoretical 

foundation for choosing a good estimate for the covariance of MLEs is of great interest in 

the literature, this dissertation successfully develops theoretical guideline for the choice 

of a good estimate. We demonstrate that the expected Fisher information performs better 

under reasonable conditions. 

The conclusion of this dissertation may sound contradictory to some known results 

in the literature. For example, both Efron and Hinkley (1978) and Lindsay and Li (1997) 

favor the observed Fisher information over the expected Fisher, which the opposite of our 

conclusion. However, we need to be aware that the context and problem of interest are 

different in the three cases. In Efron and Hinkley (1978), the variance of the MLE for 

scalar parameters is discussed in the context of ancillary statistics. Specifically, the 

problem of interest considers the conditional variance of the MLE given an ancillary 
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statistics. In our discussion, the covariance matrix calculation is in an unconditional 

setting where no conditional statistics are needed, which is of broader interest in practice. 

In fact, the reliance on ancillarity imposes a practical limitation on Efron and Hinkley’s 

result. In many situations, ancillarity statistics are difficult to define and in some cases, 

the definition is not unique. In addition, discussions in Efron and Hinkley (1978) are 

limited to problems with scalar parameters. And the theoretical analysis in only provided 

for translation families. Both of these facts impose strong further limits on the practical 

application of Efron and Hinkley’s conclusion. For Lindsay and Li (1997), there is no 

condition on ancillary statistics and no limitation to scalar parameter and translation 

families. However, the problem of interest is the realized mean squared error of MLE 

rather than the covariance. And by definition, the latter equals the expectation of the 

former. In other words, the estimation target in Lindsay and Li (1997) is an observation-

dependent quantity. Thus, it is not surprising that the observed Fisher information is 

preferred to the expected Fisher in estimating the realized squared error. In contrast, this 

dissertation considers the unconditioned covariance matrix of MLE for any i.n.i.d 

observations, which, to our knowledge, has not been discussed in theoretical depth in the 

literature. 

This dissertation includes two appendices. In Appendix A, we discuss the optimal 

perturbation distribution for small-sample SPSA. We show that if the number of 

observations is small, the segmented uniform distribution may outperform the

asymptotically optimal Bernoulli  1 distribution in generating the perturbation vectors 

for this stochastic algorithm. In Appendix B, Monte-Carlo based approximating 

techniques are discussed for computing the FIM for complex problems. To elaborate, in 
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the main part of this dissertation, we have shown that under certain conditions, the 

expected Fisher information is preferred in estimating the covariance matrix of MLE. An 

immediate practical problem is that in many situations, the closed analytical form of the 

Fisher information is not attainable (e.g. Example 1 in Section 3.1). Given the relation 

between expected and observed Fisher information in (1.2), one way to get around with 

this issue is to use numerical approximations. A few approximating techniques are 

introduced in Appendix B, which include a basic resampling method, a feedback-based 

method, and an independent perturbation per measurement method. 

4.2 Future work 

This dissertation has been focusing on comparing the relative performance of two 

estimates, the inverse expected and inverse observed Fisher information matrix (both 

evaluated at the MLE), for approximating the covariance matrix of the MLE. It is also of 

interest to explore other estimates that can possibly obtain better estimation accuracy 

under different conditions. We introduce a few approaches that we can possibly take to 

extend the result of this dissertation. Note that these are preliminary thoughts and need to 

be explored more in the future work.

Although we conclude that under certain conditions/circumstances, the inverse 

expected Fisher information outperforms the inverse observed Fisher information in 

estimating the covariance matrix of MLE. This does not imply that the expected Fisher 

information is the best among all estimates. In fact, for some situations, the observed 

Fisher information or even a mixture of both estimates may be a better estimate. As such, 

one generalization of the estimation method is to consider linear combinations of the 
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inverse expected Fisher information and the inverse observed Fisher information. This 

allows for flexibility in constructing a good estimate by assigning appropriate weights to 

each element (expected Fisher information or observed Fisher information) under various 

conditions. The problem of interest is now an optimization problem with two scalar 

variables which are the coefficients of each components of the linear combination. 

Similar discussion on mixture of expected and observed Fisher information has been seen 

in Jiang (2005), where the data is generated from mixed linear models. 

A more ambitious extension of the problem is to consider all possible functions of 

the observations as an estimate of the covariance matrix of MLE. In other words, we are 

interested in extending the discussion to solving a functional optimization problem to find 

the best estimate of the covariance matrix of MLE. Specifically, we are looking for the 

solution T(X) which solves the optimization problem (1.8), where T(X) can be any 

feasible function of the observations. Here feasibility means that the matrix T(X) should 

be positive semi-definite as an estimate of a covariance matrix. Solving a functional 

optimization problem is challenging because the dimension of the space of feasible 

functions is infinite. In other words, any form of function can be applied to the 

observations as long as the resulting matrix is positive semi-definite. As such, many tools 

developed in finite-dimensional optimization are not applicable. 

Given the challenge of finding the analytical solution of a functional optimization 

problem, we can start with sub-optimal solutions through approximate functional 

optimization methods; see Daniel (1971) and Gelfand and Fomin (1963). For example, 

we can exploit linear approximation schemes based on a certain number of basis 

functions. Specifically, each entry of T(X) can be expressed as a linear combination of a 
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set of basis functions such as polynomial, sines, and cosines, as long as the resulting 

matrix T(X) is positive semi-definite. In such an approach, the original functional 

optimization problem is reduced to a nonlinear programming problem, where the 

objective is optimized only through the coefficients of the linear combination. The 

rationale behind this sub-optimal approach is that when the number of basis functions 

becomes sufficiently large, the resulting sub-optimal solution should resemble the 

properties of the optimal solution of the original functional optimization problem. Other 

than the approaches mentioned above, there are other methods to solve the above 

functional optimization as well. We have not yet pursued these more general possibilities.

In summary, this dissertation has shown the advantage of the inverse expected FIM 

over the inverse observed FIM in estimating the covariance matrix of MLEs. In the future 

work, we may attempt to extend the results by considering other estimation methods 

besides the inverse expected FIM and the inverse observed FIM. We would first focus on 

the two possible approaches discussed above in finding the sub-optimal solution of the 

functional optimization problem. Furthermore, we will explore other possible approaches 

in solving the functional optimization problem. 
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Appendix A

Non-Bernoulli Perturbation Distributions for Small Samples in 

Simultaneous Perturbation Stochastic Approximation

Stochastic approximation methods are a family of iterative stochastic optimization

algorithms that attempt to find zeroes or extrema of functions which cannot be computed 

directly, but only estimated via noisy observations. Among various approximation 

methods, simultaneous perturbation stochastic approximation (SPSA) is a commonly 

used method because it is easy to implement and it has very nice asymptotic properties. 

In this appendix, we discuss the optimal distribution for perturbation vectors in SPSA, 

which is a crucial component of this algorithm. Specifically, we talk about small-sample 

SPSA, where a limited number of function evaluations are allowed. 
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A1. Introduction

Simultaneous perturbation stochastic approximation (SPSA) has proven to be an 

efficient stochastic approximation approach, see Spall (1992, 1998, and 2009). It has 

wide applications in areas such as signal processing, system identification and parameter 

estimation, see www.jhuapl.edu/SPSA/, Bhatnagar (2011), and Spall (2003). The merit of 

SPSA follows from the construction of the gradient approximation, where only two 

function evaluations are needed for each step of the gradient approximation regardless of 

the dimension of the unknown parameter. As a result, SPSA reduces computation 

demand as compared to the finite difference (FD) method, which requires 2p function 

evaluations to achieve each step of the gradient approximation, where p is the dimension 

of the problem, see Spall (2003, Chapters 6 and 7). Obviously, the savings in 

computation with SPSA is more significant as p gets large. 

The implementation of SPSA involves perturbation vectors. Typically, the Bernoulli 

±1 distribution is used for the components of the perturbation vectors. This distribution is 

easy to implement and has been proven asymptotically most efficient, see Sadegh and 

Spall (1998). As a result, for large-sample SPSA, the Bernoulli distribution is the best 

choice for the perturbation vectors. However, one might be curious if this optimality 

remains when only small-sample stochastic approximation (SA) is allowed. Small-sample 

SA appears commonly in practice where it is expensive, either physically or 

computationally, to evaluate system performances. For example, it might be very costly 

to run experiments on a complicated control system. Under such circumstances, a limited 

number of function evaluations are available for SA. Unlike with large-sample SPSA, 
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one might not be confident that the Bernoulli distribution is still the best candidate for the 

perturbation vectors in small-sample SPSA.

In this appendix, we discuss the effective perturbation distributions for SPSA with 

limited samples. Specifically, we consider the segmented uniform (SU) distribution as a 

representative of non-Bernoulli distributions. The SU distribution has nice properties of 

easy manipulation both analytically and numerically. For instance, it has both a density 

function and a distribution function in closed form, making analytical computations 

possible. Moreover, it does not take much effort to generate SU random variables due to 

the nature of the SU density, resulting in time-efficient numerical analysis. In our 

discussion, we focus on one-iteration SPSA, which is a special case of small-sample 

SPSA. As a finite-sample analogue to asymptotic cases, the one-iteration case is a good 

starting point as it is easier to analyze and still captures insightful properties of general 

small-sample SPSA. Along with the analysis of the one-iteration scenario, we gain 

insights on the behavior of other small samples in the hope that the analysis can be 

generalized to more than one iteration cases. In fact, we demonstrate numerically that the 

one-iteration theoretical conclusions do apply to more than one iteration situations. 

Discussion and research on non-Bernoulli perturbation distributions in SPSA have 

been found in the literature, see Bhatnagar et al. (2003) and Hutchison (2002). In 

Bhatnagar et al. (2003), numerical experiments along with rigorous convergence proofs 

indicate that deterministic perturbation sequences show promise for significantly faster 

convergence under certain circumstances; while in Hutchison (2002), conjecture is made 

based on empirical results that the Bernoulli distribution maintains optimality for small-

sample analysis given an optimal choice of parameters. However, no theoretical 
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foundation is provided to validate this conjecture. The application of non-Bernoulli 

perturbations in SPSA is discussed in Maeda and De Figueiredo (1997) and Spall (2003, 

Section 7.3). 

A2. Methodology 

A2.1 Problem formulation

Let θ  Θ  Rp denote a vector-valued parameter of interest, where Θ is the 

parameter space and p is the dimension of θ. Let L(θ) be the loss function, which is 

observed in the presence of noise: y(θ) = L(θ) + ε, where ε is i.i.d noise, with mean zero 

and variance 2 ; y(θ) is the observation of L(θ) with noise ε . The problem is to 

min ( )L


 .                                                       (A.1)

The stochastic optimization algorithm to solve (A.1) is given by the following 

iterative scheme:

  

1
ˆ ˆ ˆˆ ( )k k k k ka    g ,                                           (A.2)

where k̂ is the estimate of θ at iteration k and ˆ( ) p
k Rg represents an estimate of the 

gradient of L at iteration k. The scalar-valued step-size sequence {ak} is nonnegative, 
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decreasing, and converging to zero. The generic iterative form of (A.2) is analogous to 

the steepest descent algorithm for deterministic problems. 

A2.2 Perturbation distribution for SPSA

SPSA uses simultaneous perturbation to estimate the gradient of L. The efficiency 

of this method is that it requires only two function evaluations at each iteration, as 

compared to 2p for the FD method, see Spall (2003, Chapters 6 and 7). Let Δk be a vector 

of p scalar-valued independent random variables at iteration k: 

1 2[ , ,..., ]Tk k k kp    .

Let ck be a sequence of positive scalars. The standard simultaneous perturbation 

form for the gradient estimate is as follows:

                    
1

ˆ ˆ( ) ( )

2
ˆˆ( ) .                           (A.3)
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To guarantee the convergence of the algorithm, certain assumptions on Δk should be 

satisfied:

I. {Δki} are independent for all k, i, and identically distributed for all i at each k. 
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II. {Δki} are symmetrically distributed about zero and uniformly bounded in magnitude 

for all k, i. 

III. 2ˆ( ( ) )k k k kiE y c     is uniformly bounded over k and i. 

Condition I has an important relationship with the finite inverse moments of the 

elements of Δk, see Spall (2003, p. 184). An important part of SPSA is the bounded

inverse moments condition for the Δki .Valid distributions include the Bernoulli ±1, the 

segmented uniform, the U-shape distribution and many others, see Spall (2003, p. 185). 

Two common mean-zero distributions that do not satisfy the bounded inverse moments 

condition are the symmetric uniform and the mean-zero normal distributions. The failure 

of both these distributions is a consequence of the amount of probability mass near zero. 

In the discussion that follows, we compare the segmented uniform (SU) distribution 

with the Bernoulli ±1 distribution. To guarantee that the two distributions have the same 

mean and variance, the domain of SU, following from basic statistics and simple algebra, 

is given as 

    (19 +3 13) 20 , −(19 − 3 13) 20  (19 −3 13) 20 , (19+ 3 13) 20 ,

which is approximately (−1.4908, −0.4092)  (0.4092, 1.4908), see Figure A.1. In our 

analysis, the sequences {ak} and {ck} take standard forms: ak = 0.602( 2)a k  , ck

0.101( 1)c k  , where a and c are predetermined constants. 
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Moments of perturbations under the two distributions are summarized below in 

Table A.1. These moments will be used in Section A3. Subscripts i and j denote the 

elements of ∆0 and i ≠ j. The derivation follows from basic statistics and simple algebra. 

Figure A.1: Mass/ probability density functions of the Bernoulli ±1 and the 

segmenteduniform distributions. Both distributions have mean 0 and variance 1.

Table A.1: Moments of perturbations 

under two distributions

Expectation Bernoulli SU

 0Δ iE 0 0

 0 0Δ Δi jE 0 0

 2 2
0 0Δ Δi jE 1 100/61

 2
01 Δ iE 1 100/61



93

A3. Theoretical analysis

In this section, we provide conditions under which SU outperforms the Bernoulli 

distribution. To specifically analyze the development of the algorithm, we consider the 

extreme example of small samples where only one iteration takes place in SPSA, that is,

k = 1. We start with this simple case as a basis for possible generalization for larger 

values of k, where the analysis is more complicated. In our analysis, mean squared error 

(MSE) is used to compare the performance of two distributions. 

Before we present the results, let us define necessary notations. Subscripts S, B

denote SU and the Bernoulli distribution, respectively, e.g. a0S denotes the value of a0

under SU distribution; Li is the first derivatives of L with respect to the ith component of 

θ, all first derivatives are evaluated at the starting point 0̂θ ; 0̂θ i and *θi are the ith 

component of 0̂θ and *θ , respectively, where *θ is the true value of θ. Following the 

theorem statement below, we provide some interpretation of the main condition. 

Theorem A.1

Consider loss function L(θ) with continuous third derivatives. For one iteration of 

SPSA, the SU distribution produces a smaller MSE between 1̂θ and *θ than the 

Bernoulli ±1 distribution if the starting point and the relevant coefficients (a0, c0, σ
2) are 

such that the following is true:

                                             

2 2 2
0 0

1

100 39

61 61

p

S B i
i

p a pa L
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               (A.4)

where the 2
0( )O c term is due to the higher order Taylor expansion.

Remark A.1: The choice of the coefficients is not arbitrary. For example, a0 and c0 should 

be picked according to the standard tuning process, see Spall (2003, Section 7.5); the 

starting point should stay in a reasonable range given any prior information for the 

problem. To best use the result of Theorem A.1, one should follow these standards rather 

than arbitrarily picking the coefficients to make (A.4) true. 

Remark A.2: If the gains c0S and c0B are small enough such that 2
0( )O c is negligible, the 

following conditions ((a) and (b)) are sufficient for (A.4) to hold: 

(a) The ratios of the gain sequences have the following relations:

0 0 (100 61 39 61) 1;S Ba a p p  

0 0 61 100 0.781.B Sc c  

(b) In particular, the following inequality is true: 
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2
*

0 0 02
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σˆ2 (θ θ ) ( )
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L a a

c
   .

The above inequality means that the function is relatively flat and the starting point is not 

too far away from the true minimum.

Proof: By (A.2) and (A.3), the updated estimate of θ after one iteration is
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1 0 0 01 0
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θ Δ θ Δ
θ

where ε+ and ε− are the corresponding noise. By a Taylor expansion of the third order, 

                   

3
0 0 0 0 0 0 0 0 0

1

ˆ ˆ( ) ( ) 2 Δ ( ),                             (A.6)
p

i i
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    θ Δ θ Δ

where the 3
0( )O c term is due to the higher order Taylor expansion. Specifically, 

 3 3
0 0 0 0 0

1 1 1

1
( ) ( ) ( ) Δ Δ Δ ,

6

p p p

ijk ijk i j k
i j k

O c c L L
  

     θ θ                          (A.7)



96

where Lijk denotes the third derivatives of L with respect to the elements i, j, k of θ, θ and 

θ are the intermediate points between 0̂θ and 0 0 0
ˆ cθ Δ , 0̂θ and 0 0 0

ˆ cθ Δ , respectively. 

Given (A.5), (A.6) and (A.7), and following from algebraic calculation and 

necessary rearrangements, we compute the difference in MSE 
2*

1̂E   
 

θ θ

   * *
1 1

ˆ ˆT
E     
 

θ θ θ θ under two distributions as follows: 

2 2* *
1 1
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S BE E        
   

θ θ θ θ
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.                                                                      (A.8) 

The derivation of (A.8) involves the computation of relevant moments, which are 

summarized in Table A.1.                                                                                                                                                

Condition (A.8) in Theorem A.1 may be hard to check for general problems due to 

the unknown analytical form of the higher order term 2
0( )O c . However, if we know more 

information about the loss function L, condition (A.8) can be replaced by a sufficient 

condition, which is easier to manipulate in practice. 
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Corollary A.1 

If we assume an upper bound for the magnitude of the third derivatives of L, say, 

( )ijkL M  for all i, j, k, where M is a constant, we can establish an upper bound U for 

the term 2
0( )O c in (A.8), i.e. 2

0( )O c U . As a result, a more conservative condition for 

the superiority of SU is 

2
2 2 2 *
0 0 0 0 0 0 02

1 10

100 39 σ ˆ( ) ( ) 2 (θ θ )
61 61 2

p p

S B i S B S B i i i
i iB

p
p a pa L a a a a L
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                                                                           (A.9)                                    

where U is defined as:

2 2 * 2 2 4 2 7
0 0 0 0 0 0 0 0

1

2 3 2 3 5
0 0 0 0 0

1ˆ(4 ) θ θ ( 1)
20

1 ˆ( ) max ( ).                                                    (A.10)
3

p

S S B B i i S S S
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S S B B i
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U a c a c M p a c M p a

a c a c Mp L



 
      

 

 



θ

Proof: Given (A.7) and the assumption that ( )ijkL M for all i, j, k, we derive an 

upper bound U for the term 2
0( )O c as in (A.10). To derive (A.10), we should first find the 

explicit form of the term 2
0( )O c in (A.8) as follows:
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Given the upper bound in (A.10), it follows immediately that (A.9) is a sufficient and 

more conservative condition for the superiority (smaller MSE) of SU.               □

Notice that if L is quadratic, the higher order terms in (A.6) and (A.8) vanish, 

resulting in the following simpler form of the condition in Theorem A.1. 

Corollary A.2

For a quadratic loss function L, the SU distribution produces a smaller MSE 

between 1̂θ and *θ than the Bernoulli ±1 distribution for one-iteration SPSA if the 

following holds: 
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If p = 2, the special form of Corollary A.2 becomes the following, which we use in 

the numerical example A4.1 below.

Corollary A.3

For a quadratic loss function with p = 2, the SU distribution produces a smaller 

MSE between 1̂θ and *θ than the Bernoulli ±1 distribution for one-iteration SPSA if the 

following holds: 
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A4. Numerical examples

A4.1 Quadratic loss function

Consider the quadratic loss function 2 2
1 1 2 2( )L t t t t  θ , where θ = [t1, t2]

T, σ2 = 1,

0̂θ [0.3,0.3] ,T aS = 0.00167, aB = 0.01897, cS = cB = 0.1, i.e. a0S = aS / (0+2)0.602

=0.0011, a0B =aB/(0+2)0.602 = 0.01252, c0S = cS / (0+1)0.101 = 0.1, c0B = cB / (0+1)0.101

=0.1, i.e., the parameters are chosen according to the tuning process, see Spall (2003, 

Section 7.5). The left hand side of (A.11) is calculated as −0.0114, which satisfies the 

condition of Corollary A.3, meaning SU outperforms the Bernoulli for k = 1. Now let us 

check this result with numerical simulation. We approximate the MSEs by averaging 

over 3×107 independent sample squared errors. Results are summarized in Table A.2. 

In Table A.2, for each iteration count k, the MSEs  2
1̂E θ θ are approximated 

by averaging over 3×107 independent sample squared errors. P-values are derived from 

standard matched-pairs t-tests for comparing two population means, which in this case 

are the MSEs for the Bernoulli and SU. For k =1, the difference between MSEs under 

SU and the Bernoulli is −0.0115 (as compared to the theoretical value of −0.0114 

computed from the expression in (A.11)), with the corresponding P-value being almost 0, 

which shows a strong indication that SU is preferred to the Bernoulli for k = 1.
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Table A.2: Results for quadratic loss functions

Number of 

iterations

MSE for 

Bernoulli

MSE for 

SU
P-value

k=1 0.1913 0.1798 <10−10

k=5 0.2094 0.1796 <10−10

k=10 0.1890 0.1786 <10−10

k=1000 0.0421 0.1403 >1−10−10

We also notice that the advantage of SU holds for k = 5 and k = 10 in this example. 

In fact, the better performance of SU for k > 1 has been observed in other examples as 

well (e.g., Maeda and De Figueiredo, 1997; Spall, 2003, Exercise 7.7). Thus, even though 

this paper only provides the theoretical foundation for the k = 1 case, it might be possible 

to generalize the theory to k > 1 provided that k is not too large a number.

A4.2 Non-quadratic loss function

Consider the loss function 4 2 2
1 1 1 2 2( )L t t t t t   θ , where θ = [t1, t2]

T, 

2
0̂σ 1,  [1,1] ,T θ the tuning process (see Spall, 2003, Section 7.5) results in aS = 0.05, 

aB = 0.15, cS = cB = 1. We estimate the MSEs by averaging over 106 independent sample 

squared errors. Results are summarized in Table A.3. 
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Table A.3: Results for non-quadratic loss functions

Number of 

iterations

MSE for 

Bernoulli
MSE for SU

k=1 1.7891 1.5255

k=2 1.2811 1.2592

k=5 0.6500 0.9122

k=1000 0.0024 0.0049

In Table A.3, for each iteration count k, the MSEs 2
1̂(|| || )E θ θ are approximated 

by averaging over 106 independent sample squared errors. Results show that for k = 1, 

there is a significant advantage of SU over the Bernoulli. But as the sample size increases, 

this advantage fades out, as we expect given the theory of the asymptotic optimality of 

the Bernoulli distribution. 

A5. Conclusion

In this work, we investigate the performance of a non-Bernoulli distribution 

(specifically, the segmented uniform) for perturbation vectors in one step of SPSA. We 

show that for certain choices of parameters, non-Bernoulli will be preferred to the 

Bernoulli as the perturbation distribution for one-iteration SPSA. Furthermore, results in 

numerical examples indicate that we may generalize the above conclusion to other small 

sample sizes too, i.e., to two or more iterations of SPSA. In all, this paper gives a 

theoretical foundation for choosing an effective perturbation distribution when k = 1, and 
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numerical experience indicates favorable results for a limited range of values of k > 1. 

This will be useful for SPSA-based optimization process for which available sample sizes 

are necessarily small in number. 
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Appendix B

Demonstration of Enhanced Monte Carlo Computation of the 

Fisher Information for Complex Problems 

In practice, it is often the case that closed forms of the Fisher information matrices 

are not attainable. To solve this problem, we use numerical approximations of the Fisher 

information matrices. In this appendix, we demonstrate some Monte Carlo methods in 

computing the Fisher information matrices for complex problems. 

B1. Introduction

The Fisher information matrix plays an essential role in statistical modeling, system 

identification and parameter estimation, see Ljung (1999) and Bickel and Doksum (2007, 

Section 3.4). Consider a collection of n random vectors Z = [z1, z2, … , zn]T, where each zi

is a vector for i = 1, 2, … , n. These vectors are not necessarily independent and 

identically distributed. Let us assume that the probability density/mass function for Z is 
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( )p ζ θZ , where ζ is a dummy matrix representing a possible realization of Z; θ is the 

unknown p × 1 parameter vector. The corresponding likelihood function is          

             

( ) ( ).l pθ ζ ζ θZ

Letting ( log ( )L l  θ θ Z be the negative log-likelihood function, the p × p Fisher 

information matrix F (θ) for a differentiable L is given by 

( ) ,
T

L L
E

      
θ

θ θ
F                                         (B.1)

where the expectation is taken with respect to the data set Z. 

Except for relatively simple problems, however, the definition of F(θ) in (B.1) is 

generally not useful in practical calculation of the information matrix. Computing the 

expectation of a product of multivariate nonlinear functions is usually a formidable task. 

A well-known equivalent form follows from the assumption that L is twice continuously 

differentiable in θ. That is, the Hessian matrix 

2

( )
T

L

 

θ
θ θ

H
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is assumed to exist. Furthermore, assume that L is regular in the sense that standard 

conditions such as in Wilks (1962, pp. 408–411 and 418–419) or Bickel and Doksum 

(2007, p. 179) hold. Under such conditions, the information matrix is related to the 

Hessian matrix of L through:

                 
2

( ) ,
T

L
E
 

     
θ

θ θ
F                                              (B.2)

where the expectation is taken with respect to the data set Z. The form of F(θ) in (B.2) is 

usually more amenable to calculate than the product-based form in (B.1). 

In many practical problems, however, closed forms of F(θ) do not exist. In such 

cases, we need to estimate the Fisher information numerically, see Al-Hussaini and 

Ahmad (1984), Lei (2010), and Mainassara et al. (2011). Given the equivalent form of 

F(θ) in (B.2), we can estimate F(θ) using measurements of H(θ). The conventional 

approach uses resampling-based method to approximate F(θ). In this paper, we 

demonstrate two other enhanced Monte Carlo methods: feedback-based approach and 

independent perturbation approach; see Spall (2008). The Monte Carlo computation of 

F(θ) is discussed in other scenarios too, see Das et al. (2010) where prior information of 

F(θ) is used in estimation. The remainder of the paper is organized as follows: in Section 

B2, we introduce methodology of three different approaches discussed in this paper; 

some relevant theory is summarized in Section B3; section B4 includes two numerical 

examples and discussions on relative performance of the three methods; a brief 

conclusion is made in section B5. 
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B2. Methodology

B2.1. Basic resampling-based approach

We first give a brief review of a Monte Carlo resampling-based approach to 

compute F(θ), as given in Spall (2005). Let Zpseudo(i) be a collection of Monte Carlo 

generated random vectors from the assumed distribution based on the parameters θ. Note 

that Zpseudo(i) is one realization of the collection of n random vectors Z. Let ˆ
k iH

represent the kth estimate of H(θ) at the data set Zpseudo(i). We generate ˆ
k iH via efficient 

simultaneous perturbation (SPSA) principles:

1 1
δ δ1ˆ ( ) ( ) ,

2 2 2

T
k i k iT T

k i k i k ic c
 

          

Δ Δ
g g

H                              (B.3)

where    pseudo pseudoδ ( ) ( )k i k i k ic i c i   θ Δ θ Δg g Z g Z , g(•) is the exact or 

estimated gradient function of L, depending on the information available;

1 2Δ ,Δ ,...,Δ
T

k i k i k i kp i
   Δ is a mean-zero random vector such that the scalar elements 

are i.i.d. symmetrically distributed random variables that are uniformly bounded and 

satisfy  1 Δ ,kj iE   1
k i
Δ denotes the vector of inverses of the p individual elements 

of k iΔ , and 0c  is a “small” constant. Each k represents different draw of random 

perturbation vectors k iΔ . Notice that the second term in the summation in (B.3) is 
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simply the transpose of the first term. It is deliberately designed this way so that the 

resulting ˆ
k iH is symmetric. 

The Monte Carlo approach of Spall (2005) is based on a double averaging scheme. 

The first “inner” average forms Hessian estimates at a given Zpseudo(i)  (i = 1, 2, … , N) 

from k = 1, 2, … , M values of ˆ
k iH and the second “outer” average combines these 

sample mean Hessian estimates across the N values of pseudo data. Therefore, the “basic” 

Monte Carlo resampling-based estimate of F(θ) in Spall (2005), denoted as , ( )M N θF , is:

,
1 1

1 1 ˆ( ) .
N M

M N k i
i kN M 

  θF H

This resampling-based estimation method is easy to implement and works well in 

practice (Spall, 2005). However, this basic Monte Carlo approach could be improved by 

some extra effort. In the next two subsections, we introduce the use of feedback 

information and independent perturbation, respectively.

B2.2 Enhancements through use of feedback

The feedback ideas for FIM estimation in Spall (2008) are related to the feedback 

ideas presented with the most updates in Spall (2009), as applied to stochastic 

approximation. From Spall (2009), it is known that ˆ
k iH in (B.3) can be decomposed into 

three parts:
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          2ˆ ( ) ( ),k i k i O c  θ ΨH H                                     (B.4)

where k iΨ is a p p matrix of terms dependent on H(θ) and k iΔ . Specifically, 

1 1
( ) ,

2 2
T

k i k i k i Ψ H HD D H

where 1( )T
pk i k i k i

 Δ ΔD I and Ip is the p p identity matrix. 

Notice that for any value of H, ( ))k iE Ψ 0H . If we subtract both sides of (B.4) 

by k iΨ and use ˆ
k i k iΨH as an estimate of H(θ), we end up with reduced variance of 

the Hessian estimate while the expectation of the estimate remains the same. Ultimately, 

the variance of the estimate of F(θ) is also reduced. Based on this idea, Spall (2008) 

introduces a feedback-based method to improve the accuracy of the estimate of F(θ). The 

recursive (in i) form of the feedback-based form of the estimate of F(θ), say ( )M,N θF , is 

, , 1 , 1
1

1 1 ˆ( ) ( ) ( ( )) ,                   (B.5)
M

M i M i M ik i k i
k

i

i iM 


       θ θ Ψ θF F H F

where ,0( )M θ 0F . More recent work regarding the feedback-based approach includes 

Spall (2009), where the feedback ideas are applied to stochastic approximation. 
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B2.3 Enhancements through use of independent perturbation per measurement

If the n vectors entering each Zpseudo(i) are mutually independent, the estimation of 

F(θ) can be improved by exploiting this independence. In particular, for the basic 

resampling-based approach, the variance of the elements of the individual Hessian 

estimates ˆ
k iH can be reduced by decomposing ˆ

k iH into a sum of n independent 

estimates, each corresponding to one of the data vectors. A separate perturbation vector 

can then be applied to each of the independent estimates, which produces variance 

reduction in the resulting estimate , ( )M N θF . The independent perturbations above reduce 

the variance of the elements in the estimate of F(θ) from O(1/N) to O(1/nN). 

Similarly, this independent perturbation idea can be applied to the feedback-based 

approach as well. Besides applying separate perturbation vectors to each of the 

independent estimates of ˆ
k iH , we also decompose the , 1( )M i θF in (B.5) into a sum of 

n independent estimates and then apply the k iΨ function to individual estimates to gain 

feedback information to improve the corresponding independent estimates of ˆ
k iH . 

B3. Theory 

The following results are given in Spall (2008) as a theoretical validation for the 

advantage of the feedback-based approach. 
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Lemma B.1

For some open neighborhood of θ , suppose the forth derivative of the log-

likelihood function ( )L θ exists continuously and that  2
( )E L θ is bounded in 

magnitude. Furthermore, let 
2

ˆ ,k iE
    
 

H then for any fixed M ≥ 1 and all c

sufficiently small, 

2

, ( ) 0M NE       
 

θF F B as N→∞,

where ( )θB is a bias matrix satisfying 2( ) ( )O c θB . 

Theorem B.1

Suppose that the conditions of the Lemma hold, 2,  p   2
( ) ,E   θH 0, F

and 0. F Further, suppose that for some δ > 0 and δ 0  such that 

1 1(1 δ) (1 δ ) 1,      2 2δ
( )E L

 θ is uniformly bounded in magnitude for all θ in 

an open neighborhood of θ ,  2 2δ1 Δkj iE    . Then the accuracy of , ( )M N θF is greater 

than the accuracy of ( )M,N θF in the sense that 
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2

,
2

2

,

lim 1 ( ).
M N

N
M N

E
O c

E



 

      
   

F F

F F
                                   (B.6)

Corollary B.1

Suppose that the conditions of the Theorem hold, rank ( ) 2 F , and the elements of 

k iΔ are generated according to the Bernoulli 1 distribution. Then, the inequality in (B.6) 

is strict.

B4. Numerical study

In this section, we show the merit of the enhanced Monte Carlo methods over the 

basic Monte Carlo resampling method. The performance of the estimation is measured by 

the relative norm of the deviation matrix: est ( ) ( ) ( )n nθ θ θF F F , where the standard 

spectral norm (the largest singular value) is used, ( )n θF is the true information matrix, 

and est ( )θF stands for the estimated information matrix via either the basic or the 

enhanced Monte Carlo approach, as appropriate. For the purpose of comparison, we test 

under the cases where the true Fisher information is achievable or the exact Hessian 

matrix is computable, which are not the type of problems we would actually deal with in 

practice with these estimation methods. 
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B4.1 Example 1—Multivariate normal distribution in a signal-plus-noise setting

Suppose that the zi are independently distributed N(µ, Σ+Pi) for all i, where µand Σ

are to be estimated and the Pi’s are known. This corresponds to a signal-plus-noise setting 

where the N(µ, Σ)-distributed signal is observed in the presence of independent N(0, Pi)-

distributed noise. The varying covariance matrix for the noise may reflect different 

quality measurements of the signal. This setting arises, for example, in estimating the 

initial mean vector and covariance matrix in a state-space model from a cross-section of 

realizations (Shumway, Olsen, and Levy, 1981), in estimating parameters for random-

coefficient linear models (Sun 1982), in small area estimating in survey sampling 

(Ghosha and Rao 1994), in sensitivity studies (Spall, 1985a; Spall and Chin, 1990), and 

in nuisance parameter analysis (Spall, 1989). 

Let us consider the following scenario: dim(zi) = 4, n = 30, and T
i iP U U , where 

U is generated according to a 4×4 matrix of uniform (0, 1) random variables (so the Pi’s 

are identical except for the scale factor i ). Note that once U is generated, it stays 

constant throughout the study. Let θ represent the unique elements in µand Σ; hence, p = 

4+4(4+1)/2 = 14. So, there are 14(14+1)/2 = 105 unique terms in Fn(θ) that are to be 

estimated via the Monte Carlo methods (basic or enhanced approaches). The value of θ 

used to generate the data is also used as the value of interest in evaluating Fn(θ). This 

value corresponds to µ = 0 and Σ being a matrix with 1’s on the diagonal and 0.5’s on the 

off-diagonals. The gradient of the log-likelihood function and the analytical form of the 

FIM are available in this problem (see Shumway, Olsen, and Levy, 1981).



114

Throughout the study, elements in perturbation k iΔ have symmetric Bernoulli ± 1 

distribution for all k and i; M = 2; c = 0.0001. In each method, we estimate the Hessian 

matrix in two different approaches: using the gradient of the log-likelihood function or 

using the log-likelihood function values when the gradient is not available. Results based 

on 50 independent replications are summarized in Table B.1 (P-values correspond to t-

tests of the comparison between the relative norms of the deviation matrices from two 

approaches). 

Table B.1 indicates that there is statistical evidence for the advantage of the 

feedback-based Monte Carlo method over the basic Monte Carlo resampling method. The 

difference between the two methods is more significant when the gradient information of 

the log-likelihood function is available (row 2) or the number of iterations increases when 

only likelihood function is available (rows 4). 

Keeping all other settings and parameters the same, we now test on the independent 

perturbation per measurement idea in section B2.3. Table B.2 summarizes the simulation 

results based on 50 independent realizations (P-values correspond to t-tests of the 

comparison between the relative norms of the deviation matrices from two approaches: 

independent perturbation alone and feedback and independent perturbation combined).
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Table B.1: Sample mean value of est ( ) ( ) ( )n nθ θ θF F F with approximate 95% 

confidence intervals (CIs) shown in brackets. P-values based on one-sided t-test 

using 50 independent runs.

Input Information
Basic 

Approach

Feedback-based 

Approach
P-value

Gradient Function

N = 40,000

0.0104

[0.0096, 

0.0111]

0.0063

[0.0058, 0.0067]
<10−10

Log-likelihood Function Only

N = 40,000

0.0272

[0.026, 

0.0283]

0.0261

[0.0251, 0.0271]
0.0016

Log-likelihood Function Only

N = 80,000

0.0204

[0.0194, 

0.0213]

0.0191

[0.0184, 0.0198]
2.52×10−5

Table B.2 demonstrates the improvement in estimation accuracy when the sample is 

independent and separate perturbation is applied to each independent measurement. 

Specifically, the estimation accuracy is improved by independent perturbation alone 

(column 2) and is improved even more by the combination of independent perturbation 

and feedback approach (column 3). 
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Table B.2: Sample mean value of est ( ) ( ) ( )n nθ θ θF F F when using 

independent perturbation per measurement. Approximate 95% CIs shown in 

brackets. P-value based on one-sided t-test using 50 independent runs.

Input 

Information

Indep. Perturbation 

Alone

Feedback and Indep. 

Perturbation
P-value

Gradient 

Function

N = 40,000

0.0066

[0.0043, 0.0103]

0.0062

[0.0044, 0.0097]
7.622×10−9

B4.2 Example 2—Mixture Gaussian distribution

Mixture Gaussian distribution is of great interest and is popularly used in practical 

applications (see Wang, 2001; Stein et al., 2002). In this study, we consider a mixture of 

two scale normal distributions. Specifically, let Z = [z1, z2, …  , zn]T be an independent 

and identically distributed sequence with probability density function:

   2 2 2 2 2 2
1 1 1 2 2 2( , ) λ exp ( μ ) (2σ ) 2πσ (1 λ)exp ( μ ) (2σ ) 2πσf z z z      θ ,

where 1 1 2 2= [λ,μ ,σ ,μ ,σ ] .Tθ There are 5(5+1)/2 = 15 unique terms in Fn (θ) that are to 

be estimated. The analytical form of the true Fisher information matrix is not attainable in 

this case. But the closed form of the Hessian matrix is computable (see Boldea and 

Magnus 2009). We thus approximate the true Fisher information using the sample 
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average of the Hessian matrix over a large number (106) of independent replications. This 

should be a fairly good approximation since the first three decimal digits do not vary as 

the amount of averaging increases. 

In this numerical study, we consider the case where θ = [0.2, 0, 1, 4, 9]T. As in 

Example 1, elements in perturbation k iΔ have symmetric Bernoulli ± 1 distribution for 

all k and i; M = 2; c = 0.0001. In each method, we estimate the Hessian matrix in two 

different approaches: using the gradient of the log-likelihood function or using the log-

likelihood function values only. Results based on 50 independent replications are 

summarized in Table B.3 (P-values correspond to t-tests of the comparison between the 

relative norms of the deviation matrices from two approaches).

Table B.3: Sample mean value of est ( ) ( ) ( )n nθ θ θF F F with approximate 

95% CIs shown in brackets. P-values based on one-sided t-test using 50 

independent runs. 

Input Information
Basic 

Approach

Feedback-based 

Approach
P-value

Gradient Function

N = 40,000

0.0038

[0.0035, 

0.0042]

0.0013

[0.0011, 0.0015]
<10−10

Log-likelihood Function Only

N = 40,000

0.0094

[0.0088, 0.01]

0.0088

[0.0083, 0.0094]
2.39×10−4

Log-likelihood Function Only

N = 80,000

0.0065

[0.006, 

0.0069]

0.0059

[0.0054, 0.0063]
3.6×10−7
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Table B.3 indicates statistical evidence for the advantage of the feedback-based 

Monte Carlo method over the basic Monte Carlo resampling method. The difference 

between the performances of the two methods is more significant when gradient 

information of the log-likelihood function is available (row 2) or the number of iterations 

increases when only likelihood function is available (row 4).

B5. Conclusions

This appendix demonstrates two enhanced Monte Carlo methods for estimating the 

Fisher information matrix: feedback-based approach and independent perturbation 

approach. Numerical examples show that both of these two methods improve the 

estimation accuracy as compared to the basic Monte Carlo approach.
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Abstract 





Maximum likelihood estimation is a popular method in statistical inference. As a way of assessing the accuracy of the maximum likelihood estimate (MLE), the calculation of the covariance matrix of the MLE is of great interest in practice. Standard statistical theory shows that the normalized MLE is asymptotically normally distributed with covariance matrix being the inverse of the Fisher information matrix (FIM) at the unknown parameter. Two commonly used estimates for the covariance of the MLE are the inverse of the observed FIM (the same as the inverse Hessian of the negative log-likelihood) and the inverse of the expected FIM (the same as the inverse FIM). Both of the observed and expected FIM are evaluated at the MLE from the sample data. In this dissertation, we demonstrate that, under reasonable conditions similar to standard MLE conditions, the inverse expected FIM outperforms the inverse observed FIM under a mean squared error criterion. Specifically, in an asymptotic sense, the inverse expected FIM (evaluated at the MLE) has no greater mean squared error with respect to the true covariance matrix than the inverse observed FIM (evaluated at the MLE) at the element level.  This result is different from widely accepted results showing preference for the observed FIM. In this dissertation, we present theoretical derivations that lead to the conclusion above. We also present numerical studies on three distinct problems to support the theoretical result. 

This dissertation also includes two appendices on topics of relevance to stochastic systems. The first appendix discusses optimal perturbation distributions for the simultaneous perturbation stochastic approximation (SPSA) algorithm. The second appendix considers Monte Carlo methods for computing FIMs when closed forms are not attainable. 
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Chapter 1

Introduction



In this introduction chapter, we start with the motivation that drives our interest in the topic of Fisher information, which is followed by the literature review, where we summarize relevant work done by others. In Section 1.3, we propose our approach to solve the problem of interest. A sketch of our scheme is summarized at a high level. In the last section, some large sample results are discussed as a background for further analysis in Chapter 2. 



1.1 Motivation

Maximum likelihood (ML) estimation is a standard approach for parameter estimation and statistical inference in the modeling of stochastic systems. Given a set of sample observations and the proposed underlying statistical model, the method of ML selects values of the model parameters that produce a distribution that gives the observed data the greatest probability. ML estimation enjoys great popularity in practice because it has many optimal properties such as asymptotic normality, functional invariance, and convergence to the true parameter in a certain probability sense. Not all of these properties are shared with other parameter estimation methods such as least-squares estimation (LSE). 

Because of the nice properties it possesses, ML estimation is commonly used across a wide range of statistical models are fitted to real-life situations. To name a few examples, the generalized linear model (GLM), which is a generalization of ordinary linear regression that allows for response variables that have other than a normal distribution, is extensively used in various industries such as clinical trials, customer relationship marketing, and quantitative finance. The ML method is the standard approach used in practice to estimate parameters associated with GLMs, see Nelder and Wedderburn (1972). ML estimation can also be applied to hypothesis testing (Huelsenbeck and Crandall, 1997). The construction of a likelihood ratio test statistic is based on the idea of ML under the null hypothesis and the alternative hypothesis. System identification, where statistical methods are used in control engineering to build mathematical models of dynamical systems, is another area where ML is commonly seen. Particularly, system parameters are estimated using ML (Prado, 1979; Johari, et. al., 1965; and Ljung, 1999). 

ML estimation produces point estimates based on sample data. Like many other point estimation methods, e.g., LSE, people are also interested in the accuracy of maximum likelihood estimates (MLEs). As a way of assessing the accuracy of MLEs, calculations of the associated confidence intervals are of great interest in statistical inference on unknown parameters (e.g., Ljung, 1999, pp. 215–218). At the same level of confidence, tighter confidence intervals indicate better accuracy of the corresponding MLEs and vice versa. To construct confidence intervals for MLEs, typically, one needs to know the distribution and the covariance matrix of the MLE. In fact, under regularity conditions, MLEs are asymptotically normally distributed. Given this asymptotic distribution, the problem of constructing confidence intervals is essentially reduced to finding the covariance matrix of MLEs. 











[bookmark: _GoBack]Before we elaborate on the above statement, let us define the relevant notations. Let X = [X1, X2, …, Xn] be a sequence of n independent but not necessarily identically distributed (i.n.i.d.) random vectors (variables) where each Xi may contain discrete or continuous components. The probability density/mass function of Xi, say pi(xi,θ), depends on a p × 1 vector of unknown parameters θ = [t1 , t2 , …, tp]T, where θ  Θ and Θ is a p-dimensional parameter space. Let  be an MLE for θ based on X and the true value of θ in the underlying distribution be . We use the notation ti to denote the ith component of θ because we reserve  for MLEs derived from a sample of size n. The joint probability density/mass function of X is p(x,θ) . If we denote the negative log-likelihood function as l(θ,x) =−log p(x,θ), the p × p Fisher information matrix (FIM) Fn(θ) is defined as









       



                                                          (1.1)





where θT is the transpose of θ, all expectations are taken with respect to data X and are conditional on the true parameter . The p × p Hessian matrix of l(θ,x), Hn(θ), is defined as the second derivative of l(θ,x) with respect to θ:





.



Computation of Fn(θ) according to its definition in (1.1) is often formidable because it involves direct calculation of expectation of an outer product form. Under some regularity conditions where the interchange of differentiation and integral is valid (more details are discussed in Chapter 2), Fn(θ) has the following form equivalent to (1.1): 

                                                                  

Fn(θ) = E(Hn(θ)),                                             (1.2)





where the expectation is taken with respect to X and is conditional on the true parameter . Expression (1.2) provides an alternative of computing Fn(θ), which is often more computationally friendly than the definition in (1.1). 



Standard statistical theory shows that the normalized  from either i.i.d. or i.n.i.d samples is asymptotically Gaussian under some reasonable conditions (Ljung, 1999, pp. 215–218 and Spall, 2003, Sect. 13.3). That is, under modest assumptions (more details discussed in Section 1.4.1), 





  ,                                  (1.3)









where “” denotes convergence in distribution, and  The superscript “−1” in (1.3) denotes matrix inverse. The asymptotic normality in (1.3) for i.n.i.d samples is of particular interest in our discussion below. 

Given the asymptotic normality of MLEs, the problem of constructing confidence intervals reduces largely to the problem of determining the covariance matrix of MLEs, which is the main focus of this dissertation. In fact, other than the essential role in computing confidence intervals, the estimation of the covariance matrix of MLEs is also crucial in other applications. For example, in Nie and Yang (2005), the covariance matrix of MLEs is used in the discussion of the consistency of MLEs. Another example lies in the standard t-test, which is used to assess the significance of a parameter. Estimation of the covariance of the MLE is needed in computing the test statistic and the associated P-value, which is the probability of obtaining a test statistic at least as extreme as the one that was actually observed, assuming the null hypothesis is true. 

































In practical applications, one of two matrices is commonly used to approximate the covariance matrix of MLE:  or , where   and . Both of the two estimates are evaluated at the MLE . The derivation of these two estimates is not surprising given the covariance term in the right hand side of (1.3) and the relation in (1.2). However, there is not yet a solid theoretical validation for the better choice between  and . In fact, people in practice tend to choose one or the other, depending on which one is easier to obtain for their problems. For instance, in Rice (1995, p. 269),  is used to estimate the variance of the MLE based on i.i.d. Poisson distribution, where the closed form of  is easy to compute. Abt and Welch (1998) uses  to estimate the covariance matrix of MLE in Gaussian stochastic processes. Escobar and Meeker (2001) discusses asymptotic equivalent performance of  as an estimate of covariance of MLE for censored data (i.e. partially known observations) from location-scale families, which is a family of univariate probability distributions parameterized by a location parameter (e.g. mean of a normal distribution) and a non-negative scale parameter (e.g. variance of a normal distribution).  On the other hand, Cavanaugh and Shumway (1996) mentions that in the setting of state-space models, where the structure of the Gaussian log-likelihood often makes  difficult to compute, people prefer to use  as an approximation of the covariance of MLE.  In Prescott and Walden (1983),  is used as an estimation of the covariance matrix of MLE from generalized extreme-value distributions for complete, left censored, right censored or doubly censored samples. 

















Other than the two estimates discussed above, there are other estimation methods in practical applications as well. For example, Jiang (2005) proposed an estimate of the covariance matrix that consists partially of  and partially of  for mixed linear models with non-normal data, where mixed models contain both fixed effects and random effects. In this case, a combination of  and  is used because the closed form of  is not attainable and  is inconsistent in the sense that it does not converge to the true covariance matrix in probability. Alternative estimation methods can be found in Royall (1986), Reeds (1978), and others. However, our discussion below mainly focuses on the relative performance of  and. Potential extension to other general estimation methods is left for future work. 







Given the importance of covariance matrix estimation of MLE and the fact that no theoretical conclusion has been established for the best estimate, the aim of this work is to provide theoretical development for choosing a good estimate of the covariance matrix of MLE. In particular, we explore the properties of  and  and compare their performance in estimating the covariance matrix of a normalized . 







1.2 Literature review 





There has been great interest and discussion in both observed and expected FIM,  and , in the literature. In this section, we review some of the work that is relevant to our discussion. 











Efron and Hinkley (1978) appears to be the most-cited paper relative to comparing  and  Efron and Hinkley demonstrate that for scalar-parameter translation families with an appropriate ancillary statistic a (more explanation below), the conditional variance of normalized  is better approximated by  than by . Specifically, the following ratio decays to zero in a stochastic sense:





                                       (1.4)







where var(∙) denotes variance. Roughly speaking, if n is large enough, the magnitude of error produced by  is less than that produced by  in some stochastic sense, i.e., 





.         (1.5)











The ancillary statistic, a, in (1.4) and (1.5) is a statistic whose distribution does not depend on θ but which affects the precision of  as an estimate of θ. An example of an ancillary statistic is given in Cox (1958), which we now summarize. An experiment is conducted to measure a constant θ. Independent unbiased measurements y of θ can be made with either of two instruments, both of which measure with normal error: instrument k produces independent error that follows a N(0, ) distribution (k = 1, 2), where  and  are known and unequal. When a measurement y is obtained, a record is also kept of the instrument used. In this case, the ancillary statistic is defined as the label for the instrument used for a particular observation, i.e., aj = k if yj is obtained using instrument k.  More discussion can be found in Sundberg (2003). 



















There were several short papers that commented on Efron and Hinkley (1978) that appeared in the same issue of the journal containing Efron and Hinkley (1978). For example, Barndorff-Nielsen (1978) discusses ancillarity properties of  in a more general sense. He stated that part of Efron and Hinkley’s (1978) paper perpetuates the impression that  is, in general, an approximate ancillary statistic (see remarks immediately after formulae (1.5) and (1.6) in Efron and Hinkely (1978)). He pointed out that this impression is not true. He also argues with an example that the possible ancillarity properties of  depend on the parameterization chosen. An ancillary statistic under one parameterization may not be ancillary if the model is reparameterized. Besides, in Efron and Hinkley (1978), a number of examples are demonstrated in which  is preferable to . To argue that this is not always the case, James (1978) deliberately modified an example of Cox (1958) where  is superior to  in estimating the variance of an error term. Likewise, Sprott (1978) also provides an example where  is more accurate than .





Efron and Hinkley (1978) appeared at the forefront of the wave of interest in conditional inference and asymptotics for parametric models. The paper was motivated by Fisher’s (1934) statement that the information loss for MLE in location-scale families can be recovered completely by basing inference on the conditional distribution of the MLE  given an exact ancillary statistic a for which (, a) is sufficient (DiCiccio, 2008). A statistic is sufficient if no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter. 

There has been much subsequent work that follows Efron and Hinkley (1978). Most of such work has focused on developing approximate ancillaries, instead of exact ancillaries, and on approximating the conditional variances of the MLE. For instance, Cox (1980) introduced the concept of local ancillary and discussed second-order local ancillaries for scalar-parameter models. Ryall (1981) extended Cox’s (1980) result of second-order local ancillary to the vector parameter case and developed a third-order local ancillary for scalar parameter models. Skovgaard (1985) studied general vector parameter models and developed a second-order local ancillary analogous to the ancillarity in Efron and Hinkley (1978). Barndorff-Nielsen (1980) and Amari (1982) discussed various approximate ancillaries in the context of curved exponential families. More subsequent work based on Efron and Hinkley (1978) can be found in Pedersen (1981), Grambsch (1983), McCullagh (1984), and Sweeting (1992), etc. 





However, the reliance on an ancillary statistic imposes a major practical limitation in real-life applications. The ancillary statistic is often hard to specify in practice. That is, it is either difficult to define or is not unique in many practical problems. And it is even harder to find a pair (, a) that is sufficient. In DiCiccio (2008), a comment on the conclusion of Efron and Hinkley (1978) appears as: “One obstacle to extending the results for translation families to more general scalar parameter models is that typically no exact ancillary statistic a exists such that (, a) is sufficient”. Thus, the conditional variance approach might not be as applicable in practical problems. Besides, theoretical conclusions in Efron and Hinkley (1978) only hold for one-parameter translation families, which is another constraint on general application. 

Despite the practical limitations discussed above, the main message of Efron and Hinkley (1978), that the variance estimates for MLE should be constructed from observed information, is still widely accepted; see, for example, McLachlan and Peel (2000), Agresti (2002), and Lawless (2002). However, it has been found in the literature that some papers use the conclusions of Efron and Hinkley (1978) without strictly following the underlying assumptions. For example, in Caceres et. al. (1999), Efron and Hinkley (1978) is cited to validate the use of observed information in variance estimation of MLE for confidence interval construction. But no discussion on ancillary statistics is seen throughout the paper. Similar reference of Efron and Hinkley’s result can also be found in Hosking and Wallis (1987), Kass (1987), and Raftery (1996). The presence of such references reflects the fact that the theoretical foundation for a good covariance estimate for MLE is of great interest and value in the literature. However, there is no solid theoretical development in this area yet. This fact further motivates the pursuit of a theoretical analysis for covariance estimation of MLE in this dissertation.







Unlike Efron and Hinkley (1978), Lindsay and Li (1997) avoided the concept of ancillarity. They showed that for p-dimensional parameter models, if an error of magnitude  is ignored,  is the optimal estimator of the realized squared error among all asymptotically linear estimators (see Hampel (1974) and Bickel, Klaassen, Ritov, and Wellner (1993, p.19)). That is, for all i, j = 1, 2, …, p,  solves the optimization problem:  





,                          (1.6)







where (∙)i,j denotes the (i, j)th entry of a matrix and T(X)  is any statistic chosen from a class of asymptotically linear estimators based on the sample data X. Here asymptotically linear estimators are defined as linear combinations of functions of each observation plus a term that converges to zero asymptotically. This class of estimators includes , , etc. 



The construction of (1.6) indicates that Lindsay and Li’s work does not directly estimate the variance of MLE. Instead, the estimation target is the realized squared error rather than the covariance matrix of normalized , where the two differ by an operation of expectation. Specifically, the expectation of the realized squared error is the covariance matrix. Lindsay and Li’s work does not directly solve our problem of interest, which is on covariance matrix estimation of MLE. However, the paper has great value in stimulating the approach that follows. 



Compared to (1.6), Cao and Spall (2009, 2010) proposed an alternative to determining the best approximation to the variance of  when θ is a scalar. Specifically, the optimization problem is revised with the adjustment of the estimation target: 





             ,                                     (1.7)



















where  denotes an estimate of the variance of normalized  based on sample data X. In Cao and Spall (2009, 2010),  is constrained to two candidates:  or . This idea of minimizing the mean squared error of estimation was discussed in Sandved (1968) in the context of approximating a measure of accuracy for a parameter estimate. In Cao and Spall (2009), it is shown that for scalar θ,  is a better estimator of nvar() than  under criterion (1.7) with some reasonable conditions. In this paper, we generalize the above scalar result to multivariate θ. 





















The comparison of  and  has also been done in other aspects. For example, in a score test, the numerator of the test statistic is the squared score function, which is the first derivative of the log-likelihood function with respect to the parameter of interest. The denominator of the test statistic can be either  or  .  In practice,  is preferred to  since the latter may result in a negative test statistic; see Morgan et al (2007), Verbeke et al (2007), and Freedman (2007). The relative merit of  and  is also discussed in the context of iterative calculation of MLE, where Newton’s method or scoring method can be used for situations in which closed form of MLE is not attainable; see Fisher (1925), Green (1984), and Garwood (1941). Another area where  and  is compared is the construction of confidence regions, see Royal (1986) and Rust, et. al. (2011). 



1.3 New approach

In this section, we first lay out the problem settings discussed in this work and then briefly introduce the approach we take to achieve the theoretical conclusion. 

To keep our context as general as possible, we consider sequences of i.n.i.d. random vectors, which is often of more practical interest than i.i.d samples, throughout our discussion. The parameter considered is multivariate to accommodate for general practical situations. 







The main goal of this work is to compare the performance of  and  in estimating the scaled covariance matrix of MLE, which is denoted by . We follow the idea used in Lindsay and Li (1997) and Cao and Spall (2009). We want to solve the following optimization problem: 





 ,                                 (1.8)







Specifically, our current discussion focuses on T(X) being either  or . Generalization to other estimation candidate T(X) may be considered in future work. 







In essence, we compare the performance of  and  at the individual entry level. If we can show that one is better than the other for every matrix entry, then we have found the better of the two in estimating .



1.4 Background

Standard results have been established for large sample properties for i.i.d. samples including the central limit theorem (CLT) for the raw data, and the weak law of large numbers (WLLN). In reality, however, observations are frequently not generated from i.i.d samples. In this section, we discuss the CLT, and the WLLN for i.n.i.d. samples. Specifically, we present sufficient conditions that lead to these properties. These conditions will be used in the theoretical development in Chapter 2. All limits below are as n → ∞. 



1.4.1. The central limit theorem

The CLT states that under certain conditions, the distribution of a normalized sample mean of a sequence approaches a normal distribution, i.e.,





,









where {η1, η2, …, ηn} is a sequence of i.n.i.d random variables with corresponding variances {,, …, }. Various studies of conditions under which the above asymptotic distribution holds have been made by Chebyshev (1980), Feller (1935), Levy (1935), Lindberg (1922), Lyapunov (1900, 1901), Markov (1900), and others. 

For a random sample {η1, η2, …, ηn}, the following well-known Lindberg-Feller condition guarantees the CLT result:

A1. η1, η2, …, ηn is a sequence of independent samples;





A2. For every  > 0, , where  and 1{…} is the indicator function. 



1.4.2. Weak law of large numbers 

The WLLN states that under certain conditions, the sample mean of a sequence converges in probability to the average population mean:





,





where {η1, η2, …, ηn} is a sequence of independent random variables and denotes convergence in probability.

A set of sufficient conditions for WLLN for i.n.i.d samples is presented in Chung (2005, Theorem 5.2.3):

B.1. η1, η2, …, ηn is a sequence of independent samples;



B.2.  where 1{A} is an indicator function which equals 1 if the condition denoted by A holds and 0 otherwise;



B.3. . 

In this dissertation, we apply conditions presented in Sections 1.4.1 and 1.4.2 for the CLT and the WLLN under i.n.i.d samples. We discuss more on the concrete forms of i.n.i.d sequences in Chapter 2. 

This dissertation is organized as follows. In Chapter 2, we present the theoretical development that leads to the main result. In Chapter 3, we present numerical studies on three distinct problems to support the main theoretical result. In Chapter 4, we summarize the achievement in this dissertation and discuss potential future work to extend the results of this dissertation. This dissertation also includes two appendices on topics of relevance to stochastic systems. In Appendix A, we discuss optimal perturbation distributions for the simultaneous perturbation stochastic approximation (SPSA) algorithm. In Appendix B, we consider Monte Carlo methods for computing FIMs when closed forms are not attainable. 











Chapter 2

Theoretical Analysis



In this chapter, we present the theoretical development in this dissertation on comparing the expected and observed FIM in estimating the covariance matrix of MLEs. In Section 2.1, we begin with notation definitions, followed by a discussion on a list of sufficient conditions used to achieve the theoretical conclusion in Section 2.2. In Section 2.3, we present preliminary results as a preparation for the main result. In Section 2.4, we present the main result.  

2.1 Notation





















As defined in Chapter 1, X = [X1 , X2 , …, Xn] is a collection of i.n.i.d. random vectors (variables) where Xi  q, i = 1, 2, …, n, and q ≥ 1. Each Xi may contain discrete or continuous components. If we let  and  denote the sub-vectors of discrete and continuous components of Xi, respectively, then dim() + dim() = q, where dim(∙) denotes the dimension of a vector. Either  or  may be a null sub-vector for a given Xi , i.e., dim() = 0 or dim() = 0. And dim() = 0 implies that all elements in Xi  are continuous and vice versa.  

























Recalling the definitions in Chapter 1, the probability density/mass function and the negative log-likelihood function of Xi are pi  (xi  , θ) and li(θ,xi) ≡ −log pi (xi  , θ), respectively, where θ = [t1 , t2 , …, tp]T  Θ is a p-dimensional vector valued parameter. The joint density/mass function and the negative log-likelihood function of X are p(x,θ) and l(θ, x) =  respectively. The MLE for θ based on X is denoted as  and the true value of θ is θ*  Let , , and  be the derivatives of li(θ,xi) according to  ≡∂li(θ,xi)/∂tr, ≡∂2li(θ,xi)/∂tr∂ts, and  ≡ ∂3li(θ,xi)/∂tr∂ts∂tt. Correspondingly, Ur , Urs , and Urst are the derivatives of l(θ, x) according to Ur ≡∂l(θ, x)/∂tr, Urs ≡∂2l(θ, x)/∂tr∂ts, and Urst ≡ ∂3l(θ, x)/∂tr∂ts∂tt. Note that Urs is the (r,s) entry of Hn (θ). 











Let us define null-cumulants for each observation Xi (e.g.,, etc.) and average null-cumulants per observation (e.g.,, etc.) as follows: (All expectations are well defined and the word “null” refers to the fact that the twin processes of differentiation and averaging both take place at the same value: , see McCullagh (1987, page 201)):





,                                                   (2.1a)



,                                                  (2.1b)



,                                                  (2.1c)



,                                 (2.1d)



,                                 (2.1e)





,                                                (2.2a)



,                                               (2.2b)



                                              (2.2c)



,                                             (2.2d)



                                             (2.2e)



The standardized likelihood scores, denoted by indexed Z’s, are the derivatives of the negative log-likelihood centered by its expectation and scaled by n−1/2. That is,





,                                        (2.3)



and 





.                                       (2.4)

































We assume that the likelihood function is regular in the sense that necessary interchanges of differentiation and integration are valid (more details are provided in Section 2.2 below). Furthermore, given the notation of  and , pi (xi , θ) can be decomposed as a product of two terms: pi(xi ,θ)  where  is the conditional density function of  given , and  is the marginal mass function of . Let  denote the support of  and  denote the support of  given  Now we are ready to show that with valid interchange of differentiation and integration, , for i = 1, 2, …, n and r = 1, 2, …, p. In fact,





              



                                  



                                                                   



                             (cancellation of pi(xi, θ))                                           



                    

                   (interchange of differentiation and integration)   



                



                 (mass/density function integrates to 1)



                 







 Thus,  for all i and r;  for all r according to the definition in (2.3). 











Let  be the (v,u) element of the inverse matrix of , where  is a p × p matrix whose (s, t) element is , s, t = 1, …, p. Throughout this paper, the double bar notation () indicates a special summation operation. Specifically, for the argument under the double bar, summation is implied over any index repeated once as a superscript and once as a subscript. For example, 





;









This short-hand notation of summation is the same as the index notation used in McCullagh (1987) and Lindsay and Li (1997) except that we add the double bar notation to distinguish the summation from each individual summand. 

To orthogonalize Zr and Zst , we define 









Given the definition above, we have cov (Zr , Yst) = 0, r, s, t = 1, …, p, which is an important property used in Sections 2.3 and 2.4. The uncorrelatedness is seen by noting:





cov (Zr , Yst) = cov (Zr , )



                   =   

                       (definitions (2.3) and (2.4))                                        



                  



                                       



                                                            



                    =    

                     (independence between observations)



                    =    (definitions (3.1d) and (3.1e) )                                         



                    =  (definitions (3.2d) and (3.2e))                                         



                    = 

                    = 0.













In the discussion below, we frequently use the stochastic big-O and little-o terms: Od(n−1),  op(n−1), and op(1). Specifically, Od(n−1) denotes a stochastic term that converges in distribution to a random variable when multiplied by n;  denotes a product of two Od(n−1) terms; op(n−1) is a stochastic term that converges in probability to zero when multiplied by n; and op(1) is a stochastic term that converges in probability to zero, i.e., op(1) = n ×op(n−1). In addition, for simplicity, we introduce  to denote a summation of a finite number of Od(n−1) terms and  to denote a summation of a finite number  of   terms. 



2.2 Conditions

In this section, we introduce sufficient conditions for the analytical development below. We provide some interpretation of the conditions immediately following the presentation of the conditions below. 

A1. Necessary interchanges of differentiation and integration are valid for the following functions denoted generally as g (xi, θ):

I. pi(xi  ,θ), i = 1, 2, …, n; 



II.exp{− li (xi  , θ)},  i = 1, 2, …, n and r, s =1, 2, …, p. 

Specifically, the following conditions hold for g (xi, θ):  

A1(a). g (xi  , θ) and ∂g (xi  , θ)/∂tj are continuous on Θ × q for j = 1, 2, …, p;

A1(b). There exist nonnegative functions q0(xi  ) and q1(xi  ) such that 







| g (xi , θ)| ≤ q0(xi  ), |∂g (xi  , θ)/∂tj| ≤ q1(xi  ) for all xi    q and θ Θ,





where < ∞ and < ∞. 

A2. The negative log-likelihood function l(x, θ) has continuous partial derivatives with respect to θ up to the fourth order and all expectations in (2.1a–e) are well defined. 







A3. Fn() is positive definite,  ≡ limn→∞  exists and is invertible.

A4. The following limits exist and are finite in magnitude:





A4(a): limn→∞  = limn→∞  for r, s, t = 1, 2, …, p;                                                          



A4(b): limn→∞ |θ = θ* for r, s, i = 1, 2, …, p;                                   



A4(c): limn→∞  |θ = θ*  for r, s, i, j = 1, 2, …, p;                            

A4(d): limn→∞ n−1 E(Urstv)|θ = θ* for r, s, t, v = 1, 2, …, p.  



A5. The Lindberg-Feller condition holds for the following independent sequences denoted generally as :



I.  for r = 1, 2, …, p.



II.  for r, s  = 1, 2, …, p.



III.   for r, s, t = 1, 2, …, p.







Specifically,  for every  > 0, where , is the variance of i, and  1{…} is the indicator function. 



A6. Conditions for the WLLN hold for the following independent sequences denoted generally as : 





I.  for r = 1, 2, …, p and θ in a neighborhood of 





II.  for r, s = 1, 2, …, p and θ in a neighborhood of 





III.  for r, s, t = 1, 2, …, p and θ in a neighborhood of 





IV.  for r, s, t, v = 1, 2, …, p and θ in a neighborhood of 



V.  for i = 1, 2, …, n and r, s, t, v = 1, 2, …, p;



VI.  for i = 1, 2, …, n and r, s, t, v = 1, 2, …, p. 



Specifically, the following holds for the i.n.i.d sequence :



A6(a).;



A6(b). . 

A7. The dominated convergence theorem (DCT) applies to all stochastic high order terms op(1). As a result, for any stochastic term that converges in probability to zero, the corresponding expectation converges to zero as well. Specifically, all op(1) terms throughout this paper are formed as a linear combination of a finite number of the following terms and each coefficient converges in probability to a constant:



I.  for r, v, s, t = 1, 2, …, p;



II.  for r, v, s, t, u, w = 1, 2, …, p;



III.  for r, i, j = 1, 2, …, p;



IV.  for r, s, t, i, j = 1, 2, …, p;



V.  for i, j, k, g = 1, 2, …, p; 



VI.  for i = 1, 2, …, n and r, s, t, v = 1, 2, …, p;



VII.  for i = 1, 2, …, n and r, s, t, v = 1, 2, …, p. 













A8. The null-cumulants defined in (2.2a–e) are bounded in magnitude for all n, i.e. , where  represents , , , for r, s, t = 1, 2, …, p. 







A9. There exist entries (r, s) such that there is a subsequence {n1, n2, n3, …} of {1, 2, 3, …} so that  and  differ for all n = n1, n2, n3, …. And for all such entries (r, s), . 



























Condition A1 ensures valid interchange of differentiation and integral on relevant functions, which is crucial in proving  for i = 1, 2, …, n, r = 1, 2, …, p and an intermediate result in Lemma 2 below. Sufficient conditions for interchange of differentiation and integral on likelihood functions are also discussed in Wilks (1962, pp. 408–411 and 418–419) and Bickel and Doksum (2007, p.179). Condition A2 is to guarantee that all null-cumulants are well defined in (2.1a–e). Condition A3 guarantees the limit of the Fisher information exists and is invertible. Limits in Condition A4 are to ensure necessary convergence in the proof of the lemmas below. Specifically, we assume finite limits for average null-cumulants and its derivatives with respect to components of the parameter. Condition A5 describes Lindberg-Feller condition of the CLT for i.n.i.d. samples. In our context, we assume that the CLT holds for sequences of 1st, 2nd, and 3rd derivatives of the log-likelihood function with respect to elements of the parameter. Note that we keep the analysis at individual element level, so we require CLT conditions only for scalar sequences, even though we consider multiple-dimension parameters in our context. Condition A6 presents sufficient conditions for the WLLN for i.n.i.d samples (Chung 2005, Theorem 5.2.3). Condition A6(a) implies that the relevant i.n.i.d samples should not have heavy tails; condition A6(b) indicates that the variance of the sequence cannot grow too fast.  Condition A7 assumes that the DCT applies to relevant sequences, which guarantees that the rate of convergence in stochastic sense is preserved after expectation. This condition is implicitly used in Lindsay and Li (1997) and McCullagh (1987, Chapter 7). In condition A8, the imposed boundedness on null-cumulants is to guarantee that any stochastic term multiplied by these cumulants preserve the convergence rate. Condition A9 states that for any entry where  and  differ for a subsequence, the limit inferior of the variance term in the condition is positive. This condition is used to show the superiority of  over  in the main theorem. In fact, the term inside the variance function in condition A9 is random only through the 1st and 2nd derivatives of the log-likelihood function. The condition requires a certain level of variability for the 1st and 2nd derivatives of the log-likelihood function. This is not surprising because if the variability is too low,  and  are very close to each other or even identical. Besides, the concept of “subsequence” in condition A9 allows for the flexibility where  and  do not have to be different for every single term of the sequence. In fact, we only require that  and  be different for infinite terms. Obviously, condition A9 is applicable to situations where  and  differ for all n. All the above assumptions are assumed in this dissertation as sufficient conditions for the main result. As discussed above, these are reasonable assumptions that hold for a wide class of problems like other standard conditions. 



2.3 Preliminary results

Before we present the main result, let us summarize some preliminary results that are essential to our analysis. 

Lemma 1



For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the estimation error of   has the following form:



,                                   (2.5)



for r = 1, 2, …, p. 





Proof: For r = 1, 2, …, p, the MLE  satisfies the equation , which can be expanded in a Taylor’s series around θ* as follows:





 (2.6)







where  is an intermediate point between  and θ*. Let us write the error term in the following form 





,                                        (2.7)





where Rni needs to be determined. In order to show that (2.5) is true, we now show that Rni =, for i = 1, 2, …, p. Given (2.7), we show that (2.6) can be rewritten as follows:





            



                              



                    



                 



                        



                     



               ,      



                                                 (2.8) 





























where the third equality follows from the fact that , which implies   for r, s = 1, 2, …, p; and the last equality follows from a cancellation due to the fact that . By condition A5, we know that by the CLT for i.n.i.d samples, both Zri and Zu converge in distribution to a normal random variable. Thus, the first term in the last equality of (2.8) is . By condition A6, we know that by the WLLN for i.n.i.d samples, n−1converges in probability to limn→∞ , which is a constant by condition A4(a), for i, j = 1, 2, …, p. Thus, by Slutsky’s theorem, n−1  for i, j = 1, 2, …, p, and, consequently, the third term in the last equality of (2.8) is . Now, (2.8) can be rewritten as 





                                  (2.9)



Equation (2.9) holds for r = 1, 2, …, p, which can be presented in the following matrix form:





,                                (2.10)

















where Z ≡ [Zri] r, i = 1, 2, …, p, ≡ []r, i = 1, 2, …, p,  Rn ≡ [Rn1, Rn2, …, Rnp]T , Od(n−1) ≡ [Od(n−1), Od(n−1), …, Od(n−1)]T, and . With condition A6, we know that by the WLLN for i.n.i.d samples, n−1/2Z converges to zero in probability. Thus by the continuous mapping theorem (Mann and Wald, 1943) and condition A3,  converges in probability to , i.e. = + op(1), where op(1) is a p × p matrix with each entry being a op(1) term. As a result, 









                  



                                                





Thus, Rni , which, combined with (2.7), produces (2.5).  

Lemma 2



For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the inverse of the Fisher information matrix  has the following expansion: 





        (2.11)





where  is the (r,s) element of .





Proof: By a Taylor expansion around , the (r, s) element of can be expressed as:  









                      



                    



                      



   ,                               (2.12)

























where  is an intermediate point between  and and the second equality follows from the result of Lemma 1. Notice that n−1∂ E(Urs)/∂ti |θ = θ* converges deterministically by condition A4(b), the third term in (2.12) after the second equality is . With condition A6, we know that by the WLLN for i.n.i.d. samples, converges in probability to|θ = θ*, which is a constant by condition A4(b), for i, j = 1, 2, …, p. Thus, by Slutsky’s theorem,   for i, j = 1, 2, …, p and consequently, the fourth term in the last equality of (2.8) is . As a result, expression (2.12) is equivalent to the following:





     (2.13)

 

We now claim the following two facts:



(i) ; 



(ii) .

First, (i) follows from the definition of Urs and the equivalent form of FIM in (1.2):





.





To show (ii), we first rewrite  by definition:





                 



                               



             



Furthermore, by condition A1, 









      



                                 



                 

                                               (interchange of differentiation and integration)



                                 



                    



                                 

Thus, 







                             



                                                                 



                                                                 





.





Given (i), (ii), we re-express  in (2.13) as follows:





.                    (2.14)



By the definition of matrix inverse,  





                                (2.15)







We now develop the form for  in order to satisfy (2.15). Given the expression in (2.11), let us suppose  has the following representation:





,             (2.16)





where Wn (r,s)  is to be determined. In fact, we want to show that Wn (r,s) =, for r, s = 1, 2, …, p. 

By plugging (2.14) and (2.16) into (2.15), we have: 









  



     



  



    



     



     

      (expand the product and pass the summation sign to each individual term)



  



     



          



     



     



        



      



      



                                                             (2.17)



By the definition of matrix inverse, the first term after the last equality above is:









As a result, in order for expression (2.17) to equal the right hand side of (2.15), we must have the rest of the terms in the last equation of (2.17) sum up to zero, i.e.,













                                                      (2.18)



Group the left hand side of (2.18) by Wn(s, t), we have:





            



                



                             (2.19)

























For the left hand side of (2.19),  + = op(1), which follows from Slutsky’s theorem. For the right hand side of (2.19), by Slutsky’s therorem, the first term = op(n−1). The second term  by the fact that  = O(1) by condition A3. The last term . As a result, (2.19) can be rewritten as 





,                                  (2.20)



where the left hand side of (2.20) uses the comment below (2.19) and the right hand side follows from the analysis directly above. Equation (2.20) holds for all r, t = 1, 2, …, p. A matrix form representation is:





,                                   (2.21)





















where Wn ≡ {Wn(s, t)}s, t = 1, 2, …, p, ≡ {κr, s}r, s = 1, 2, …, p, op(1)  is a p  p matrix with each element being op(1), and is a p  p matrix with each element being . By condition A3,  converges to an invertible constant matrix , which implies that  converges in probability to  By the continuous mapping theorem (Mann and Wald, 1943), we have the following: 









                                                 .









As a result, each element in Wn is a linear combination of  terms plus some higher order terms which are dominated by . Thus, Wn(r, s) , for all r, s = 1, 2, …, p. Consequently, by (2.16),  





                   □



Lemma 3



For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the inverse of the observed Fisher information matrix  has the following expansion: 





,     (2.22)







where  is the (r,s) element of .



Proof: By Lemma 1 and the Taylor’s expansion, the (r,s) element of can be expanded as follows:









                            





              



                                          (2.23)



























where  is an intermediate point between  and . With condition A6, we know that by the WLLN for i.n.i.d samples,  converges in probability to , which exists and is constant by condition A4(a). Thus, the third term after the last equality in (2.23) is by Slutsky’s theorem. In addition, again by condition A6 and the WLLN for i.n.i.d samples,  converges in probability to limn→∞ n−1 E(Ursij)|θ = θ*, which is a constant by condition A4(d), for i, j = 1, 2, …, p. Thus, by Slutsky’s theorem,   for i, j = 1, 2, …, p and consequently, the fourth term in the last equality of (2.23) is . As a result, expression (2.23) is equivalent to the following:









                     



                                                  



                      



                         



                   ,                                         (2.24)























where the last equation follows from the facts that =  and that  converges in distribution to a normal random variable, according to condition A5 and the CLT for i.n.i.d data. Thus  . 



To show (2.22), let us first assume that  has the following form:



,      (2.25)





where Vn(r,s) is to be determined. We now want to show that Vn(r,s) = . By definition of matrix inverse, expression (2.25) must satisfy the following:





                           (2.26)



Plugging (2.24) and (2.25) into (2.26), we have the following:









  



  



  



           



      



     





     

      (Expand the product and pass the summation sign to each individual term)
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     (Rearrange the third term to find out that it can cancel out with the second term)



  



    





    





In order for the above expression to equal the right hand side of (2.26), we must have the collection of terms other than  satisfy :





         



             



            



.                                             (2.27)



Grouping the left hand side of (2.27) by Vn(s, t), we have:







 



   .                             (2.28)























For the left hand side of (2.28), = op(1) follows from Slutsky’s theorem. For the right hand side of (2.28), by Slutsky’s theorem, we have=op(n−1). The second term can be simplified as by the fact that = O(1) followed from condition A3. The last term of the right hand side of (2.28) . As a result, (2.28) can be rewritten as 





.                             (2.29)



Equation (2.29) holds for r, t = 1, 2, …, p. A matrix form representation is as follows:





,                                 (2.30)





















where Vn ≡ {Vn(r, s)}r, s = 1, 2, …, p, ≡ {κr, s}r, s = 1, 2, …, p, op(1)  is a p  p matrix with each element being op(1), and is a p  p matrix with each element being . By condition A3,  converges to an invertible constant matrix , which implies that  converges in probability to  By the continuous mapping theorem (Mann and Wald, 1943), we have the following: 





    



                                                   .









As a result, each element in Vn is a linear combination of  terms plus some higher order terms which are dominated by . Thus, Vn(r, s) , for r, s = 1, 2, …, p. Consequently, 





         □







Lemma 4





For i.n.i.d sample data with conditions A1–A8 in Section 2.2, the covariance between  and , for any r, s, can be expressed as: 









Proof: By Lemma 1 and the definition of covariance,





 



                



            



                        



                     





                                      (2.31)









































where the last equation follows from the fact that for r, u = 1, 2, …, p. The first term after the last equality in (2.31) can be rewritten as . For the second term in the last equality of (2.31), with condition A6, we know that by the WLLN for i.n.i.d data, n−1/2Zu → 0 in probability. Thus, by Slutsky’s theorem,  = op( n−1) and by condition A7 and the DCT, the second term in (2.31) is o(n−1). Similarly, for the third term in the last equality of (2.31),  → 0 in probability, which follows from Slutsky’s theorem. Again by condition A7, the third term in (2.31) is o(n−1). Now, we want to show the last term in the last equality of (2.31) is also o(n−1). It suffices to show that → 0. As a matter of fact,   → 0 in probability by Slutsky’s theorem. Condition A7 implies  → 0, and thus →0, i.e. the last term in (2.31) is o(n−1). Consequently, the covariance between  and , for any r, s, can be expressed as:





.                                         □

                                                    







Lemma 5

If we define 











,                         (2.33)



then the following are true:

(a). E(AnrsBnrs) = 0.



(b). .



(c). . 

Proof :

(a). By definition, E(Ytu) = 0 and E(Zw) = 0, which implies that E(Anrs) = E(Bnrs) = 0; since cov(Zr , Yst) =0 for r, s, t = 1, …, p, E(AnrsBnrs) = cov(Anrs, Bnrs) =0. 

(b). Rewrite Anrs as:





                              



                                      



                                      



.                              (2.34)



Equation in (2.34) reveals that Anrs is a sample mean of a sequence of independent random variables, each of which has mean zero. By condition A6, we know that the WLLN for i.n.i.d sample implies that Anrs → 0 in probability. Similarly, 









       



    .                      (2.35)







Equation (2.35) indicates that Bnrs is a sample mean of a sequence of independent random variables, each of which has mean zero. By condition A6 and the WLLN for i.n.i.d sample, Bnrs → 0 in probability. Thus, (Anrs+ Bnrs) =op(n−1) by Slutsky’s theorem. As a result, by condition A7 and the DCT,  E[(Anrs+Bnrs)] = o(n−1) . 







(c). From (2.34), we know that Anrs is a sample mean of a sequence of independent random variables, each of which has mean zero. Thus, E(Anrs) = 0, implying E(o(1) × Anrs) = o(1) × E(Anrs) = 0. Furthermore, by Slutsky’s theorem. Thus  by condition A7 and the DCT.                                             □

2.4 Main results     





















In this section, we present results that show the advantage of  over  in estimating , the scaled covariance matrix of . In our scheme, we compare the two matrices for an arbitrary corresponding entry. Specifically, we show that asymptotically,  estimates  at least as well as  under the mean squared error criterion for all r, s = 1, 2, …, p. Hence, in a limit sense,  is preferred to  in estimating 









There are degenerate cases where  for all n, and thus the equal performance of the two estimates:  and . The following lemma demonstrates situations when  for one-parameter i.i.d. exponential families. Please note that such situations do not satisfy condition A9 in Section 2.2. 

Lemma 6

If X = [X1 , X2 , …, Xn] is a sequence of i.i.d scalar random variables whose density belongs to the one-parameter exponential family, i.e., for i = 1, 2, …, n, 

  

pi  (xi  , θ) = h(xi)exp{η(θ)T(xi) − A(θ)},





where θ is a scalar parameter, h(∙), T(∙), η(∙), and A(∙) are known functions. Then  if and only if 





,







where  denotes the second derivative of η(θ) with respect to θ evaluated at θ = . 

Remarks: Conditions above hold for the following situations:







I. T(x) = x, , and , where  denotes the sample mean. Examples that satisfy these conditions include the Poisson distribution, binomial distribution, and normal distribution with unknown mean. 



II. . An example that satisfies this condition is pi  (xi  , θ) = exp{−θxi  + logθ}.



Proof: The negative log-likelihood function of X is 

       



. 



The second derivative of l(θ, x) with respect to θ is 





. 



Thus, 
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, 

and 







                                                  , 





where the second equality follows from the fact that X1 , X2 , …, Xn  are i.i.d. As a result,  if and only if 





.                                      □









Now let us present the main theorem which shows the superiority of  over  in estimating . 









Theorem 1

Under conditions A1–A8 in Section 2.2, for every pair (r,s), r, s = 1, 2, …, p





                            (2.36)



Furthermore, if condition A9 in Section 2.2 is satisfied, then the strict inequality (> 1) in (2.36) holds. 























Remark: The inequality in (2.36) indicates that, asymptotically,  produces no greater mean squared error than  in estimating  at each element level. In addition, if the difference between   and  is significant enough (see condition A9 and the corresponding comments in Section 2.2), then the strict inequality in (2.36) holds, i.e.,  produces strictly smaller mean squared error than  asymptotically. Please note that condition A9 requires that the referred function of the first and the second derivative of the log-likelihood has variance strictly positive asymptotically. This is common in situations where   and  are unequal for all n. Condition A9 is general enough to allow for other settings, as well, given its requirement that  and  be non-identical on only a subsequence. 



Proof: By Lemmas 2–4, we derive the following decomposition:









   



   



      



   



   



                                                                                    (2.37)                                                                                 















where Anrs and Bnrs are as defined in (2.32) and (2.33). The op(n−1) term in the last equality of (2.37) follows from a product of two  terms, each of which converges in probability to zero when multiplied by , which is implied by Slutsky’s theorem. Consequently, n×converges in probability to zero by Slutsky’s theorem, indicating × = op(n−1). Taking expectation of both sides of (2.37), we now have









               



                                             



               ,                                                                                        (2.38)                                                                                               



where the last equality follows from Lemma 5. Consequently, 















≥ 1,                                                                                                                                (2.39)







where the last inequality follows from (2.38) and the fact that ≥ 0. 

Now we want to demonstrate that if, in addition, condition A9 is satisfied, the strict inequality in (2.39) holds. In fact, we have





        



            



            



            

> 0,                                                                                                                    (2.40)



where the first equality follows from the fact that E(Anrs) = 0; the third equality is due to the fact that observations across i are independent; and the inequality at the end follows from condition A9. Consequently,  





                                     



                                        



                                        



                                        ,







where the last inequality follows from (2.40) and the fact that  = 0. Furthermore, we have 









            

 >1.                                                                                                □









In summary, Theorem 1 indicates that, asymptotically,  performs at least as well as  in estimating the scaled covariance matrix of  for each matrix entry. An immediate practical problem is that in many situations, the closed analytical form of the Fisher information is not attainable (e.g. Example 1 in Section 3.1). Given the relation between expected and observed Fisher information in (1.2), one way to get around with this issue is to use numerical approximations. A few Monte Carlo-based techniques are introduced in Appendix B, which include a basic resampling method, a feedback-based method, and an independent perturbation per measurement method. 















Chapter 3

Numerical Studies



In this chapter, we show three numerical examples to demonstrate the superiority of the expected FIM in estimating the covariance matrix of MLEs. The first example considers a mixture Gaussian model, which is popularly used in practice to deal with statistical populations with two or more subpopulations. The second example covers a signal-plus-noise situation, which is commonly seen in practical problems where statistical inferences are made in the presence of noise. The last example discusses a linear discrete-time state-space model, which has wide applications in areas such as engineering, economics, and finance. 









Before we present the examples, let us introduce the common notation that is used throughout all three cases. To compare the performance of expected and observed FIM in estimating the covariance matrix of MLEs, we define discrepancy matrices MH and MF such that the (r,s) entry of MH is MH(r,s)  and the (r,s) entry of MF is MF(r,s)   Correspondingly, we use RH and RF to denote matrices composed of relative square root of mean squared error for each component, i.e., RH(r,s)  and RF(r,s) Notice that the performance is assessed at a component level, which is consistent with the approach used in Theorem 1 of Chapter 2. However, in the examples that follow, we are not able to provide true MH (or MF) or RH (or RF) because closed forms of the expectations are not attainable. We present numerical estimates as replacements, which are derived from an average of a large number of sample values. 













For each example, we also show a typical value of both  and . We first generate 1001 independent values of  or . We then rank the 1001 matrices by their (Euclidean) distance to the true (or approximated) . The outcome with the median distance from is picked as the typical outcome. 



3.1 Example 1—Mixture Gaussian distribution

The mixture Gaussian distribution is of great interest and is popularly used in practical applications (Wang, 2001; Stein et al., 2002). In this study, we consider a mixture of two univariate Gaussian distributions. Specifically, let X = [x1, x2, …, xn]T be an i.i.d. sequence with probability density function:





,









where  and σ1, σ2 are known. There is no closed form for MLE in this case. We use Newton’s method to achieve numerical approximation of . The covariance matrix of  is approximated by the sample covariance of 106 values of   from 106 independent realizations of data. This is a good approximation of the true covariance matrix because the first four post-decimal digits do not change as the number of independent realizations increases. The analytical form of the true FIM is not attainable. But the closed form of the Hessian matrix is computable (see Boldea and Magnus, 2009). We approximate the true FIM using the sample average of the Hessian matrix over 105 independent replications. This is a good approximation since the first four post-decimal digits do not vary as the amount of averaging increases beyond 105.





In this study, we consider two cases when  = [0.5, 0, 4]T with n = 50, and  =[0.5, 0, 2] T with n = 100, where for both cases σ1 = σ2 = 1. For the second case, we use a bigger sample size n to allow for adequate information to achieve reliable MLE when two individual Gaussian distributions have closer mean. We estimate MH and MF by sample averages over 105 independent replications. This is a good approximation of the mean squared error matrix because the first three post-decimal digits do not change as the number of independent realizations increases.  Simulation results are summarized in Table 3.1.







Table 3.1: Simulation results for Example 1. The scaled covariance matrix  is approximated by the sample covariance matrix of 106 values of   from 106 independent realizations; MH and MF are approximated by sample averages over 105 independent replications.
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Results in Table 3.1 are consistent with theoretical conclusion in Chapter 2. For  = [0.5, 0, 2]T, every entry of  has a lower MSE in estimating the corresponding component in  than . The difference in MSEs is quite significant. For  = [0.5, 0, 4]T, almost every entry of  has a lower MSE than the corresponding entry in  except for the (1,1)entry. However, the difference in MSEs for the (1,1)entry is very small and we believe this might correspond to the higher order term that we ignore in the theoretical discussion. Moreover, for both values of θ*, typical values of  are closer to  than the typical values of . Specifically, typical values of  produce smaller sum of squared errors over all entries than typical values of .



3.2 Example 2—Signal-plus-noise problem

The signal-plus-noise situation represents a class of common problems in practice. Examples of application for this statistical model include estimation of the initial mean vector and covariance matrix in a state-space (Kalman filter) model from a cross-section of realizations (Shumway et al., 1981), dose response analysis (Hui and Berger, 1983), estimation of parameters for random-coefficient linear models (Sun, 1982), small area estimating in survey sampling (Ghosha and Rao, 1994), sensitivity studies (Spall, 1985a; Spall and Chin, 1990), and nuisance parameter analysis (Spall, 1989). 



 This study is a generalization of the numerical study in Cao and Spall (2009), where a scalar case of θ is discussed. Consider a sequence of i.n.i.d random vectors X1 , X2 , …, Xn . For each i  {1, 2, …, n}, Xi is multivariate normal:



Xi ~ N (μ, Σ+ Qi),



where μ is the common mean vector across observations, Σ is the common part of the covariance matrices and Qi  is the covariance matrix of noise for observation i. In practice, the Qi are known and θ contains unique elements in μ and Σ. 





There are no closed forms for  or its covariance matrix. We use Newton’s method to find a numerical approximation of  and estimate the covariance matrix based on 106 MLEs from 106 independent realizations. This is a good approximation of the true covariance matrix because the first four post-decimal digits do not change as the number of independent realizations increases. Closed forms of FIM for this signal-plus-noise Gaussian model are provided in Shumway (1982) and closed forms of the corresponding Hessian matrix are provided in Spall (1985b). Spall (2003) shows the same for the special case of scalar data. 



In this study, we consider 4-dimensional Xi  and diagonal Σ: Σ = diag{ Σ11, Σ22, Σ33, Σ44}. Thus, θ = [μ1, μ2, μ3, μ4, Σ11, Σ22, Σ33, Σ44]T is an 8 × 1 vector. The underlying true value of the parameters in this study is θ* = [0, 0, 0, 0, 1, 1, 1, 1]T. The known Qi matrices are constructed in the following way: let U be a 4 × 4 deterministic matrix where each entry is drawn from uniform (0, 0.1)-distribution. Qi is defined as Qi = UTU. 

In our study, we use the following UTU matrix:









The sample size in this study is n = 80. We estimate MH and MF by sample averages over 105 independent replications. This is a good approximation of the mean squared error matrix because the first three post-decimal digits do not change as the number of independent realizations increases. Simulation results are summarized in Table 3.2.



















Table 3.2: Simulation results for Example 2. The scaled covariance matrix  is approximated by the sample covariance matrix of 106 MLEs from 106 independent realizations. Both MH and MF are approximated by sample averages over 105 independent replications.
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(Table continues next page)



(Table 3.2, continued)
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(Table 3.2, continued)
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Numerical results in Table 3.2 are consistent with the theoretical conclusion in Chapter 2. Every entry of  produces a smaller error in estimating the corresponding component in  than . Notice that large numbers appear in the 4 × 4 lower right sub-matrix in MH and RH . This is due to the fact that enormous values happen in same realizations of the Hessian matrix . However, we do not see large numbers in MF or RF due to the expectation effect in , which avoids enormous values. Notice that there are entries in RF that exactly equal to one. This is due to the fact that the corresponding entries in are zero, making the relative root of MSE being 100%.  Moreover, the typical outcome of  is closer in value to  than the typical outcome of . Specifically, the typical value of  produces smaller sum of squared error over all entries than the typical value of .

3.3 Example 3—State-space model

A state-space model is a mathematical description of a physical system as a set of input, output and state variables. Before we introduce the state-space model, let us define some necessary notation. Assume that xt is an unobserved l-dimensional state process, A is an l × l transition matrix, and wt is a vector of l zero-mean, independent disturbances with covariance matrix Q. Let yt be an observed m-dimensional process, C be an m × l design matrix, and vt be a vector of m zero-mean, independent disturbances with covariance matrix R. The mean and covariance matrix of x0 (the initial xt) are denoted by μ and Σ, respectively. It is assumed that μ and Σ are known and that x0, wt, and vt are mutually independent and multivariate normal. 

The state-space model considered is defined by the equations



xt = Axt−1 + wt,                                                        (3.1) 

yt = Cxt + vt,                                                          (3.2)



for t = 1, 2,…, n time periods. 

In our context, we consider situations where l = 3, m = 1 and A, C, R are known. The unknown parameters of interest are the unique elements in diagonal Q, i.e., θ = [Q11, Q22, Q33]T, where









Given the definition of θ above, the log-likelihood function L(θ) for the system described in (3.1) and (3.2) is (neglecting constant terms) (Gibson and Ninness, 2005):





                     (3.3)



whose computation requires Kalman Filter equations:





                                                               (3.4)
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                                                (3.7) 



                                                         (3.8)



                                                         (3.9)







Given (3.3)–(3.9), it is not hard to derive the Hessian matrix Hn(θ) in a recursive form. In addition, the FIM Fn(θ) is also attainable for this state-space model (Cavanaugh and Shumway, 1996). The closed form for the MLE  is not available. We use stochastic search method Algorithm B in Spall (2003, pp. 43–45) to approximate . 

Our simulation is based on the specific model:







C = [1  0   0],

R = 1,

μ = [0   0   0]T,







The true input for θ is θ* = [1, 1, 1]T, i.e., 

















The forms of A and C above are chosen according to the process described in Ljung (1999, Chapter 4). The transition matrix A is designed in such a way that the system is identifiable. Given that there is no closed form for its covariance matrix cov(), we approximate cov() using the sample covariance matrix of 104 independent estimates of , where each  is computed from a sequence of observations y1, y2,…, y100. This is a good approximation since the first three post-decimal digits do not change as the amount of averaging increases beyond 104.

In this study, we consider two sample sizes: n = 100 and n = 200. We estimate MH and MF by sample averages over 104 independent replications. This is a good approximation since the first three post-decimal digits do not change as the amount of averaging increases beyond 104.The simulation results are summarized in Table 3.3 (n =100) and Table 3.4 (n =200). 























Table 3.3: Simulation results for Example 3 (n = 100). For n = 100, the scaled covariance matrix  is approximated by the sample covariance matrix of 104 values of   from 104 independent realizations. Both MH and MF are approximated by sample averages over 104 independent replications.

		



		





		Typical 





		





		Typical 





		





		MH

		





		MF

		





		MH −MF

		





		RH

		





		RF

		













Table 3.4: Simulation results for Example 3 (n = 200). For n = 200, the scaled covariance matrix  is approximated by the sample covariance matrix of 104 values of   from 104 independent realizations. Both MH and MF are approximated by sample averages over 104 independent replications.               
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Both Table 3.3 and Table 3.4 show significant advantage of  over  in estimating ncov(). For both sample sizes n = 100 and n = 200,  has smaller MSE in estimating the corresponding component in  than . Because the observed Fisher information (Hessian) matrix is sample dependent, even one enormous outcome can result in a big MSE for . But this is not the case for the expected FIM due to the averaging effect that is embedded. In both tables above, typical values of  presents a better estimate of  than typical values of . Specifically, the typical value of  produces smaller sum of squared error over all entries than the typical value of .













Comparing Table 3.3 and Table 3.4, we find that for the larger n, the difference between the MSEs of  and  is smaller. This is not surprising because as sample size grows,  converges to . Furthermore, for the larger sample size, the accuracy of  increases. This makes sense because as we get more information (sample data), we have a better estimate of .  





















Chapter 4

Conclusions and Future Work 



In Section 4.1, we summarize the research contribution of this dissertation. In Section 4.2, we discuss potential extensions of the work presented in this dissertation. We propose a few approaches which are preliminary ideas but are likely to be explored as future work. 



4.1 Conclusions

In this dissertation, we compare the relative performance of the expected and observed Fisher information in estimating the covariance matrix of MLE. The discussion throughout this work applies broadly to many contexts with i.n.i.d samples and multi-dimensional parameters of interest. We demonstrate that under a set of reasonable conditions, the inverse expected Fisher information outperforms the inverse observed Fisher information in estimating the covariance matrix of MLE. Specifically, in estimating each entry of the covariance matrix of the MLE, the corresponding entry of the inverse Fisher information (evaluated at the MLE) has no greater mean squared error than the corresponding entry of the observed Fisher information (evaluated at the MLE) in an asymptotic sense, i.e.,





  



for r, s = 1, 2, …, p. Note that zero difference in the mean squared errors occurs when the corresponding entries of the inverse expected and the inverse observed Fisher information (evaluated at the MLE) are identical. This can happen even if the two matrices are not identical.

This dissertation provides the theoretical foundation as well as numerical demonstration to support the conclusion above. In Chapter 2, we present detailed theoretical analysis that we developed to reach the final conclusion. All analysis is done at element level, even though the expected and observed Fisher information under consideration are in matrix form. In Chapter 3, three numerical examples are illustrated to support the theoretical conclusion. We first consider an i.i.d mixture Gaussian distribution with three unknown parameters, which is a degenerate case of i.n.i.d samples. The second example demonstrates the theory in a signal-plus-noise situation, where each observation is independent but comes with a different level of noise. The last example considers system identification and parameter estimation in a state-space model, which is of great interest in engineering and other fields. All three examples show the advantage of the expected Fisher information over the observed Fisher information in estimating the covariance matrix of the MLE. 

The conclusion of this dissertation provides a theoretical foundation for the choice between expected and observed Fisher information in estimating the covariance matrix of MLE. The development of such foundation has been missing in the literature, though there is great need for constructing accurate approximations to the covariance matrix. Due to the popularity of the MLE as a standard estimation method, people in practice are also interested in the variance/covariance of the MLE. However, there was no solid theory readily available in the literature to provide guideline in choosing a good estimate of the variance/covariance of the MLE. Consequently, people often chose whichever works easier for their problems, regardless of the accuracy of the estimate chosen in estimating the variance/covariance of the MLE. Motivated by the fact that the theoretical foundation for choosing a good estimate for the covariance of MLEs is of great interest in the literature, this dissertation successfully develops theoretical guideline for the choice of a good estimate. We demonstrate that the expected Fisher information performs better under reasonable conditions. 

The conclusion of this dissertation may sound contradictory to some known results in the literature. For example, both Efron and Hinkley (1978) and Lindsay and Li (1997) favor the observed Fisher information over the expected Fisher, which the opposite of our conclusion. However, we need to be aware that the context and problem of interest are different in the three cases. In Efron and Hinkley (1978), the variance of the MLE for scalar parameters is discussed in the context of ancillary statistics. Specifically, the problem of interest considers the conditional variance of the MLE given an ancillary statistics. In our discussion, the covariance matrix calculation is in an unconditional setting where no conditional statistics are needed, which is of broader interest in practice. In fact, the reliance on ancillarity imposes a practical limitation on Efron and Hinkley’s result. In many situations, ancillarity statistics are difficult to define and in some cases, the definition is not unique. In addition, discussions in Efron and Hinkley (1978) are limited to problems with scalar parameters. And the theoretical analysis in only provided for translation families. Both of these facts impose strong further limits on the practical application of Efron and Hinkley’s conclusion. For Lindsay and Li (1997), there is no condition on ancillary statistics and no limitation to scalar parameter and translation families. However, the problem of interest is the realized mean squared error of MLE rather than the covariance. And by definition, the latter equals the expectation of the former. In other words, the estimation target in Lindsay and Li (1997) is an observation-dependent quantity. Thus, it is not surprising that the observed Fisher information is preferred to the expected Fisher in estimating the realized squared error. In contrast, this dissertation considers the unconditioned covariance matrix of MLE for any i.n.i.d observations, which, to our knowledge, has not been discussed in theoretical depth in the literature. 



This dissertation includes two appendices. In Appendix A, we discuss the optimal perturbation distribution for small-sample SPSA. We show that if the number of observations is small, the segmented uniform distribution may outperform the asymptotically optimal Bernoulli 1 distribution in generating the perturbation vectors for this stochastic algorithm. In Appendix B, Monte-Carlo based approximating techniques are discussed for computing the FIM for complex problems. To elaborate, in the main part of this dissertation, we have shown that under certain conditions, the expected Fisher information is preferred in estimating the covariance matrix of MLE. An immediate practical problem is that in many situations, the closed analytical form of the Fisher information is not attainable (e.g. Example 1 in Section 3.1). Given the relation between expected and observed Fisher information in (1.2), one way to get around with this issue is to use numerical approximations. A few approximating techniques are introduced in Appendix B, which include a basic resampling method, a feedback-based method, and an independent perturbation per measurement method. 



4.2 Future work 

This dissertation has been focusing on comparing the relative performance of two estimates, the inverse expected and inverse observed Fisher information matrix (both evaluated at the MLE), for approximating the covariance matrix of the MLE. It is also of interest to explore other estimates that can possibly obtain better estimation accuracy under different conditions. We introduce a few approaches that we can possibly take to extend the result of this dissertation. Note that these are preliminary thoughts and need to be explored more in the future work.

Although we conclude that under certain conditions/circumstances, the inverse expected Fisher information outperforms the inverse observed Fisher information in estimating the covariance matrix of MLE. This does not imply that the expected Fisher information is the best among all estimates. In fact, for some situations, the observed Fisher information or even a mixture of both estimates may be a better estimate. As such, one generalization of the estimation method is to consider linear combinations of the inverse expected Fisher information and the inverse observed Fisher information. This allows for flexibility in constructing a good estimate by assigning appropriate weights to each element (expected Fisher information or observed Fisher information) under various conditions. The problem of interest is now an optimization problem with two scalar variables which are the coefficients of each components of the linear combination. Similar discussion on mixture of expected and observed Fisher information has been seen in Jiang (2005), where the data is generated from mixed linear models. 

A more ambitious extension of the problem is to consider all possible functions of the observations as an estimate of the covariance matrix of MLE. In other words, we are interested in extending the discussion to solving a functional optimization problem to find the best estimate of the covariance matrix of MLE. Specifically, we are looking for the solution T(X) which solves the optimization problem (1.8), where T(X) can be any feasible function of the observations. Here feasibility means that the matrix T(X) should be positive semi-definite as an estimate of a covariance matrix. Solving a functional optimization problem is challenging because the dimension of the space of feasible functions is infinite. In other words, any form of function can be applied to the observations as long as the resulting matrix is positive semi-definite. As such, many tools developed in finite-dimensional optimization are not applicable. 

Given the challenge of finding the analytical solution of a functional optimization problem, we can start with sub-optimal solutions through approximate functional optimization methods; see Daniel (1971) and Gelfand and Fomin (1963). For example, we can exploit linear approximation schemes based on a certain number of basis functions. Specifically, each entry of T(X) can be expressed as a linear combination of a set of basis functions such as polynomial, sines, and cosines, as long as the resulting matrix T(X) is positive semi-definite. In such an approach, the original functional optimization problem is reduced to a nonlinear programming problem, where the objective is optimized only through the coefficients of the linear combination. The rationale behind this sub-optimal approach is that when the number of basis functions becomes sufficiently large, the resulting sub-optimal solution should resemble the properties of the optimal solution of the original functional optimization problem. Other than the approaches mentioned above, there are other methods to solve the above functional optimization as well. We have not yet pursued these more general possibilities. 

In summary, this dissertation has shown the advantage of the inverse expected FIM over the inverse observed FIM in estimating the covariance matrix of MLEs. In the future work, we may attempt to extend the results by considering other estimation methods besides the inverse expected FIM and the inverse observed FIM. We would first focus on the two possible approaches discussed above in finding the sub-optimal solution of the functional optimization problem. Furthermore, we will explore other possible approaches in solving the functional optimization problem. 























Appendix A



Non-Bernoulli Perturbation Distributions for Small Samples in Simultaneous Perturbation Stochastic Approximation 



Stochastic approximation methods are a family of iterative stochastic optimization algorithms that attempt to find zeroes or extrema of functions which cannot be computed directly, but only estimated via noisy observations. Among various approximation methods, simultaneous perturbation stochastic approximation (SPSA) is a commonly used method because it is easy to implement and it has very nice asymptotic properties. In this appendix, we discuss the optimal distribution for perturbation vectors in SPSA, which is a crucial component of this algorithm. Specifically, we talk about small-sample SPSA, where a limited number of function evaluations are allowed. 
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A1. Introduction

Simultaneous perturbation stochastic approximation (SPSA) has proven to be an efficient stochastic approximation approach, see Spall (1992, 1998, and 2009). It has wide applications in areas such as signal processing, system identification and parameter estimation, see www.jhuapl.edu/SPSA/, Bhatnagar (2011), and Spall (2003). The merit of SPSA follows from the construction of the gradient approximation, where only two function evaluations are needed for each step of the gradient approximation regardless of the dimension of the unknown parameter. As a result, SPSA reduces computation demand as compared to the finite difference (FD) method, which requires 2p function evaluations to achieve each step of the gradient approximation, where p is the dimension of the problem, see Spall (2003, Chapters 6 and 7). Obviously, the savings in computation with SPSA is more significant as p gets large. 

The implementation of SPSA involves perturbation vectors. Typically, the Bernoulli ±1 distribution is used for the components of the perturbation vectors. This distribution is easy to implement and has been proven asymptotically most efficient, see Sadegh and Spall (1998). As a result, for large-sample SPSA, the Bernoulli distribution is the best choice for the perturbation vectors. However, one might be curious if this optimality remains when only small-sample stochastic approximation (SA) is allowed. Small-sample SA appears commonly in practice where it is expensive, either physically or computationally, to evaluate system performances. For example, it might be very costly to run experiments on a complicated control system. Under such circumstances, a limited number of function evaluations are available for SA. Unlike with large-sample SPSA, one might not be confident that the Bernoulli distribution is still the best candidate for the perturbation vectors in small-sample SPSA.

 In this appendix, we discuss the effective perturbation distributions for SPSA with limited samples. Specifically, we consider the segmented uniform (SU) distribution as a representative of non-Bernoulli distributions. The SU distribution has nice properties of easy manipulation both analytically and numerically. For instance, it has both a density function and a distribution function in closed form, making analytical computations possible. Moreover, it does not take much effort to generate SU random variables due to the nature of the SU density, resulting in time-efficient numerical analysis. In our discussion, we focus on one-iteration SPSA, which is a special case of small-sample SPSA. As a finite-sample analogue to asymptotic cases, the one-iteration case is a good starting point as it is easier to analyze and still captures insightful properties of general small-sample SPSA. Along with the analysis of the one-iteration scenario, we gain insights on the behavior of other small samples in the hope that the analysis can be generalized to more than one iteration cases. In fact, we demonstrate numerically that the one-iteration theoretical conclusions do apply to more than one iteration situations. 

Discussion and research on non-Bernoulli perturbation distributions in SPSA have been found in the literature, see Bhatnagar et al. (2003) and Hutchison (2002). In Bhatnagar et al. (2003), numerical experiments along with rigorous convergence proofs indicate that deterministic perturbation sequences show promise for significantly faster convergence under certain circumstances; while in Hutchison (2002), conjecture is made based on empirical results that the Bernoulli distribution maintains optimality for small-sample analysis given an optimal choice of parameters. However, no theoretical foundation is provided to validate this conjecture. The application of non-Bernoulli perturbations in SPSA is discussed in Maeda and De Figueiredo (1997) and Spall (2003, Section 7.3). 



A2. Methodology 

A2.1 Problem formulation







Let θΘRp denote a vector-valued parameter of interest, where Θ is the parameter space and p is the dimension of θ. Let L(θ) be the loss function, which is observed in the presence of noise: y(θ) = L(θ) + ε, where ε is i.i.d noise, with mean zero and variance ; y(θ) is the observation of L(θ) with noise ε . The problem is to 





.                                                       (A.1)



The stochastic optimization algorithm to solve (A.1) is given by the following iterative scheme:

  



,                                           (A.2)







where  is the estimate of θ at iteration k and  represents an estimate of the gradient of L at iteration k. The scalar-valued step-size sequence {ak} is nonnegative, decreasing, and converging to zero. The generic iterative form of (A.2) is analogous to the steepest descent algorithm for deterministic problems. 



A2.2 Perturbation distribution for SPSA

SPSA uses simultaneous perturbation to estimate the gradient of L. The efficiency of this method is that it requires only two function evaluations at each iteration, as compared to 2p for the FD method, see Spall (2003, Chapters 6 and 7). Let Δk be a vector of p scalar-valued independent random variables at iteration k: 





.



Let ck be a sequence of positive scalars. The standard simultaneous perturbation form for the gradient estimate is as follows:





                                          



To guarantee the convergence of the algorithm, certain assumptions on Δk should be satisfied:

I. {Δki} are independent for all k, i, and identically distributed for all i at each k. 

II. {Δki} are symmetrically distributed about zero and uniformly bounded in magnitude for all k, i. 



III. is uniformly bounded over k and i. 

Condition I has an important relationship with the finite inverse moments of the elements of Δk, see Spall (2003, p. 184). An important part of SPSA is the bounded inverse moments condition for the Δki .Valid distributions include the Bernoulli ±1, the segmented uniform, the U-shape distribution and many others, see Spall (2003, p. 185). Two common mean-zero distributions that do not satisfy the bounded inverse moments condition are the symmetric uniform and the mean-zero normal distributions. The failure of both these distributions is a consequence of the amount of probability mass near zero. 

In the discussion that follows, we compare the segmented uniform (SU) distribution with the Bernoulli ±1 distribution. To guarantee that the two distributions have the same mean and variance, the domain of SU, following from basic statistics and simple algebra, is given as 
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which is approximately (−1.4908, −0.4092) (0.4092, 1.4908), see Figure A.1. In our analysis, the sequences {ak} and {ck} take standard forms: ak = , ck , where a and c are predetermined constants. 

Moments of perturbations under the two distributions are summarized below in Table A.1. These moments will be used in Section A3. Subscripts i and j denote the elements of ∆0 and i ≠ j. The derivation follows from basic statistics and simple algebra. 
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Figure A.1: Mass/ probability density functions of the Bernoulli ±1 and the segmenteduniform distributions. Both distributions have mean 0 and variance 1.



		Table A.1: Moments of perturbations under two distributions



		Expectation

		Bernoulli

		SU



		



		0

		0



		



		0

		0



		



		1

		100/61



		



		1

		100/61











A3. Theoretical analysis

In this section, we provide conditions under which SU outperforms the Bernoulli distribution. To specifically analyze the development of the algorithm, we consider the extreme example of small samples where only one iteration takes place in SPSA, that is, k = 1. We start with this simple case as a basis for possible generalization for larger values of k, where the analysis is more complicated. In our analysis, mean squared error (MSE) is used to compare the performance of two distributions. 













Before we present the results, let us define necessary notations. Subscripts S, B denote SU and the Bernoulli distribution, respectively, e.g. a0S denotes the value of a0 under SU distribution; Li is the first derivatives of L with respect to the ith component of θ, all first derivatives are evaluated at the starting point ;  and  are the ith component of  and , respectively, where  is the true value of θ. Following the theorem statement below, we provide some interpretation of the main condition. 

Theorem A.1





Consider loss function L(θ) with continuous third derivatives. For one iteration of SPSA, the SU distribution produces a smaller MSE between  and  than the Bernoulli ±1 distribution if the starting point and the relevant coefficients (a0, c0, σ2) are such that the following is true:





                                             



                                                   



                   (A.4)





where the  term is due to the higher order Taylor expansion.

Remark A.1: The choice of the coefficients is not arbitrary. For example, a0 and c0 should be picked according to the standard tuning process, see Spall (2003, Section 7.5); the starting point should stay in a reasonable range given any prior information for the problem. To best use the result of Theorem A.1, one should follow these standards rather than arbitrarily picking the coefficients to make (A.4) true. 



Remark A.2: If the gains c0S and c0B are small enough such that  is negligible, the following conditions ((a) and (b)) are sufficient for (A.4) to hold: 

(a) The ratios of the gain sequences have the following relations:















(b) In particular, the following inequality is true: 





.



The above inequality means that the function is relatively flat and the starting point is not too far away from the true minimum.

Proof: By (A.2) and (A.3), the updated estimate of θ after one iteration is





          









where ε+ and ε− are the corresponding noise. By a Taylor expansion of the third order, 





                   





where the  term is due to the higher order Taylor expansion. Specifically, 





                        (A.7)













where Lijk denotes the third derivatives of L with respect to the elements i, j, k of θ,  and  are the intermediate points between  and ,  and , respectively. 





Given (A.5), (A.6) and (A.7), and following from algebraic calculation and necessary rearrangements, we compute the difference in MSE under two distributions as follows: 













         .                                                                      (A.8) 



The derivation of (A.8) involves the computation of relevant moments, which are summarized in Table A.1.                                                                                                                                                



Condition (A.8) in Theorem A.1 may be hard to check for general problems due to the unknown analytical form of the higher order term . However, if we know more information about the loss function L, condition (A.8) can be replaced by a sufficient condition, which is easier to manipulate in practice. 





Corollary A.1 







If we assume an upper bound for the magnitude of the third derivatives of L, say, for all i, j, k, where M is a constant, we can establish an upper bound U for the term  in (A.8), i.e. . As a result, a more conservative condition for the superiority of SU is 









                                                                           (A.9)                                    

 where U is defined as:





 









Proof: Given (A.7) and the assumption that for all i, j, k, we derive an upper bound U for the term  as in (A.10). To derive (A.10), we should first find the explicit form of the term  in (A.8) as follows:









where for h = S or B, as appropriate,













Given the upper bound in (A.10), it follows immediately that (A.9) is a sufficient and more conservative condition for the superiority (smaller MSE) of SU.               □

Notice that if L is quadratic, the higher order terms in (A.6) and (A.8) vanish, resulting in the following simpler form of the condition in Theorem A.1. 

Corollary A.2





For a quadratic loss function L, the SU distribution produces a smaller MSE between  and  than the Bernoulli ±1 distribution for one-iteration SPSA if the following holds: 









If p = 2, the special form of Corollary A.2 becomes the following, which we use in the numerical example A4.1 below.

Corollary A.3





For a quadratic loss function with p = 2, the SU distribution produces a smaller MSE between  and than the Bernoulli ±1 distribution for one-iteration SPSA if the following holds: 







           



              



                                                                          (A.11)









A4. Numerical examples

A4.1 Quadratic loss function





Consider the quadratic loss function , where θ = [t1, t2]T, σ2 = 1, aS = 0.00167, aB = 0.01897, cS = cB = 0.1, i.e. a0S = aS / (0+2)0.602 =0.0011, a0B =aB/(0+2)0.602 = 0.01252, c0S = cS / (0+1)0.101 = 0.1, c0B = cB / (0+1)0.101 =0.1, i.e., the parameters are chosen according to the tuning process, see Spall (2003, Section 7.5). The left hand side of (A.11) is calculated as −0.0114, which satisfies the condition of Corollary A.3, meaning SU outperforms the Bernoulli for k = 1. Now let us check this result with numerical simulation. We approximate the MSEs by averaging over 3×107 independent sample squared errors. Results are summarized in Table A.2. 



In Table A.2, for each iteration count k, the MSEs are approximated by averaging over 3×107 independent sample squared errors. P-values are derived from standard matched-pairs t-tests for comparing two population means, which in this case are the MSEs for the Bernoulli and SU. For k =1, the difference between MSEs under SU and the Bernoulli is −0.0115 (as compared to the theoretical value of −0.0114 computed from the expression in (A.11)), with the corresponding P-value being almost 0, which shows a strong indication that SU is preferred to the Bernoulli for k = 1. 









		Table A.2: Results for quadratic loss functions



		Number of iterations

		MSE for Bernoulli

		MSE for SU

		P-value



		k=1

		0.1913

		0.1798

		<10−10



		k=5

		0.2094

		0.1796

		<10−10



		k=10

		0.1890

		0.1786

		<10−10



		k=1000

		0.0421

		0.1403

		>1−10−10







101







We also notice that the advantage of SU holds for k = 5 and k = 10 in this example. In fact, the better performance of SU for k > 1 has been observed in other examples as well (e.g., Maeda and De Figueiredo, 1997; Spall, 2003, Exercise 7.7). Thus, even though this paper only provides the theoretical foundation for the k = 1 case, it might be possible to generalize the theory to k > 1 provided that k is not too large a number.



A4.2 Non-quadratic loss function





Consider the loss function , where θ = [t1, t2]T, the tuning process (see Spall, 2003, Section 7.5) results in aS = 0.05, aB = 0.15, cS = cB = 1. We estimate the MSEs by averaging over 106 independent sample squared errors. Results are summarized in Table A.3. 





		Table A.3: Results for non-quadratic loss functions



		Number of iterations

		MSE for Bernoulli

		MSE for SU



		k=1

		1.7891

		1.5255



		k=2

		1.2811

		1.2592



		k=5

		0.6500

		0.9122



		k=1000

		0.0024

		0.0049











In Table A.3, for each iteration count k, the MSEs are approximated by averaging over 106 independent sample squared errors. Results show that for k = 1, there is a significant advantage of SU over the Bernoulli. But as the sample size increases, this advantage fades out, as we expect given the theory of the asymptotic optimality of the Bernoulli distribution. 



A5. Conclusion

In this work, we investigate the performance of a non-Bernoulli distribution (specifically, the segmented uniform) for perturbation vectors in one step of SPSA. We show that for certain choices of parameters, non-Bernoulli will be preferred to the Bernoulli as the perturbation distribution for one-iteration SPSA. Furthermore, results in numerical examples indicate that we may generalize the above conclusion to other small sample sizes too, i.e., to two or more iterations of SPSA. In all, this paper gives a theoretical foundation for choosing an effective perturbation distribution when k = 1, and numerical experience indicates favorable results for a limited range of values of k > 1. This will be useful for SPSA-based optimization process for which available sample sizes are necessarily small in number. 















































Appendix B



Demonstration of Enhanced Monte Carlo Computation of the Fisher Information for Complex Problems 



In practice, it is often the case that closed forms of the Fisher information matrices are not attainable. To solve this problem, we use numerical approximations of the Fisher information matrices. In this appendix, we demonstrate some Monte Carlo methods in computing the Fisher information matrices for complex problems. 

B1. Introduction



The Fisher information matrix plays an essential role in statistical modeling, system identification and parameter estimation, see Ljung (1999) and Bickel and Doksum (2007, Section 3.4). Consider a collection of n random vectors Z = [z1, z2, …, zn]T, where each zi is a vector for i = 1, 2, …, n. These vectors are not necessarily independent and identically distributed. Let us assume that the probability density/mass function for Z is , where ζ is a dummy matrix representing a possible realization of Z; θ is the unknown p × 1 parameter vector. The corresponding likelihood function is          

             









Letting  be the negative log-likelihood function, the p × p Fisher information matrix F (θ) for a differentiable L is given by 





                                        (B.1)



where the expectation is taken with respect to the data set Z. 

Except for relatively simple problems, however, the definition of F(θ) in (B.1) is generally not useful in practical calculation of the information matrix. Computing the expectation of a product of multivariate nonlinear functions is usually a formidable task. A well-known equivalent form follows from the assumption that L is twice continuously differentiable in θ. That is, the Hessian matrix 









is assumed to exist. Furthermore, assume that L is regular in the sense that standard conditions such as in Wilks (1962, pp. 408–411 and 418–419) or Bickel and Doksum (2007, p. 179) hold. Under such conditions, the information matrix is related to the Hessian matrix of L through:





                                                              (B.2)



where the expectation is taken with respect to the data set Z. The form of F(θ) in (B.2) is usually more amenable to calculate than the product-based form in (B.1). 

In many practical problems, however, closed forms of F(θ) do not exist. In such cases, we need to estimate the Fisher information numerically, see Al-Hussaini and Ahmad (1984), Lei (2010), and Mainassara et al. (2011). Given the equivalent form of F(θ) in (B.2), we can estimate F(θ) using measurements of H(θ). The conventional approach uses resampling-based method to approximate F(θ). In this paper, we demonstrate two other enhanced Monte Carlo methods: feedback-based approach and independent perturbation approach; see Spall (2008). The Monte Carlo computation of F(θ) is discussed in other scenarios too, see Das et al. (2010) where prior information of F(θ) is used in estimation. The remainder of the paper is organized as follows: in Section B2, we introduce methodology of three different approaches discussed in this paper; some relevant theory is summarized in Section B3; section B4 includes two numerical examples and discussions on relative performance of the three methods; a brief conclusion is made in section B5. 

B2. Methodology

B2.1. Basic resampling-based approach





We first give a brief review of a Monte Carlo resampling-based approach to compute F(θ), as given in Spall (2005). Let Zpseudo(i) be a collection of Monte Carlo generated random vectors from the assumed distribution based on the parameters θ. Note that Zpseudo(i) is one realization of the collection of n random vectors Z. Let  represent the kth estimate of H(θ) at the data set Zpseudo(i). We generate  via efficient simultaneous perturbation (SPSA) principles:





                             (B.3)



















where , g(•) is the exact or estimated gradient function of L, depending on the information available; is a mean-zero random vector such that the scalar elements are i.i.d. symmetrically distributed random variables that are uniformly bounded and satisfy   denotes the vector of inverses of the p individual elements of , and  is a “small” constant. Each k represents different draw of random perturbation vectors . Notice that the second term in the summation in (B.3) is simply the transpose of the first term. It is deliberately designed this way so that the resulting  is symmetric. 





The Monte Carlo approach of Spall (2005) is based on a double averaging scheme. The first “inner” average forms Hessian estimates at a given Zpseudo(i)  (i = 1, 2, …, N) from k = 1, 2, …, M values of  and the second “outer” average combines these sample mean Hessian estimates across the N values of pseudo data. Therefore, the “basic” Monte Carlo resampling-based estimate of F(θ) in Spall (2005), denoted as , is:









This resampling-based estimation method is easy to implement and works well in practice (Spall, 2005). However, this basic Monte Carlo approach could be improved by some extra effort. In the next two subsections, we introduce the use of feedback information and independent perturbation, respectively.



B2.2 Enhancements through use of feedback



The feedback ideas for FIM estimation in Spall (2008) are related to the feedback ideas presented with the most updates in Spall (2009), as applied to stochastic approximation. From Spall (2009), it is known that  in (B.3) can be decomposed into three parts:



                                              (B.4)









where  is a matrix of terms dependent on H(θ) and . Specifically, 













where  and Ip is the pp identity matrix. 









Notice that for any value of H, . If we subtract both sides of (B.4) by  and use  as an estimate of H(θ), we end up with reduced variance of the Hessian estimate while the expectation of the estimate remains the same. Ultimately, the variance of the estimate of F(θ) is also reduced. Based on this idea, Spall (2008) introduces a feedback-based method to improve the accuracy of the estimate of F(θ). The recursive (in i) form of the feedback-based form of the estimate of F(θ), say , is 











where . More recent work regarding the feedback-based approach includes Spall (2009), where the feedback ideas are applied to stochastic approximation. 



B2.3 Enhancements through use of independent perturbation per measurement







If the n vectors entering each Zpseudo(i) are mutually independent, the estimation of F(θ) can be improved by exploiting this independence. In particular, for the basic resampling-based approach, the variance of the elements of the individual Hessian estimates  can be reduced by decomposing  into a sum of n independent estimates, each corresponding to one of the data vectors. A separate perturbation vector can then be applied to each of the independent estimates, which produces variance reduction in the resulting estimate . The independent perturbations above reduce the variance of the elements in the estimate of F(θ) from O(1/N) to O(1/nN). 









Similarly, this independent perturbation idea can be applied to the feedback-based approach as well. Besides applying separate perturbation vectors to each of the independent estimates of , we also decompose the  in (B.5) into a sum of n independent estimates and then apply the  function to individual estimates to gain feedback information to improve the corresponding independent estimates of . 



B3. Theory 

The following results are given in Spall (2008) as a theoretical validation for the advantage of the feedback-based approach. 







Lemma B.1









For some open neighborhood of , suppose the forth derivative of the log-likelihood function exists continuously and that  is bounded in magnitude. Furthermore, let  then for any fixed M ≥ 1 and all c sufficiently small, 





 as N→∞,







where  is a bias matrix satisfying . 

Theorem B.1























Suppose that the conditions of the Lemma hold,  and Further, suppose that for some δ > 0 and  such that   is uniformly bounded in magnitude for all θ in an open neighborhood of , . Then the accuracy of  is greater than the accuracy of  in the sense that 





                                               (B.6)



Corollary B.1







Suppose that the conditions of the Theorem hold, rank, and the elements of  are generated according to the Bernoulli  distribution. Then, the inequality in (B.6) is strict.



B4. Numerical study







In this section, we show the merit of the enhanced Monte Carlo methods over the basic Monte Carlo resampling method. The performance of the estimation is measured by the relative norm of the deviation matrix:, where the standard spectral norm (the largest singular value) is used, is the true information matrix, and  stands for the estimated information matrix via either the basic or the enhanced Monte Carlo approach, as appropriate. For the purpose of comparison, we test under the cases where the true Fisher information is achievable or the exact Hessian matrix is computable, which are not the type of problems we would actually deal with in practice with these estimation methods. 







B4.1 Example 1—Multivariate normal distribution in a signal-plus-noise setting

Suppose that the zi are independently distributed N(µ, Σ+Pi) for all i, where µ and Σ are to be estimated and the Pi’s are known. This corresponds to a signal-plus-noise setting where the N(µ, Σ)-distributed signal is observed in the presence of independent N(0, Pi)-distributed noise. The varying covariance matrix for the noise may reflect different quality measurements of the signal. This setting arises, for example, in estimating the initial mean vector and covariance matrix in a state-space model from a cross-section of realizations (Shumway, Olsen, and Levy, 1981), in estimating parameters for random-coefficient linear models (Sun 1982), in small area estimating in survey sampling (Ghosha and Rao 1994), in sensitivity studies (Spall, 1985a; Spall and Chin, 1990), and in nuisance parameter analysis (Spall, 1989). 





Let us consider the following scenario: dim(zi) = 4, n = 30, and , where U is generated according to a 4×4 matrix of uniform (0, 1) random variables (so the Pi’s are identical except for the scale factor ). Note that once U is generated, it stays constant throughout the study. Let θ represent the unique elements in µ and Σ; hence, p = 4+4(4+1)/2 = 14. So, there are 14(14+1)/2 = 105 unique terms in Fn(θ) that are to be estimated via the Monte Carlo methods (basic or enhanced approaches). The value of θ used to generate the data is also used as the value of interest in evaluating Fn(θ). This value corresponds to µ = 0 and Σ being a matrix with 1’s on the diagonal and 0.5’s on the off-diagonals. The gradient of the log-likelihood function and the analytical form of the FIM are available in this problem (see Shumway, Olsen, and Levy, 1981).



Throughout the study, elements in perturbation  have symmetric Bernoulli ± 1 distribution for all k and i; M = 2; c = 0.0001. In each method, we estimate the Hessian matrix in two different approaches: using the gradient of the log-likelihood function or using the log-likelihood function values when the gradient is not available. Results based on 50 independent replications are summarized in Table B.1 (P-values correspond to t-tests of the comparison between the relative norms of the deviation matrices from two approaches). 

Table B.1 indicates that there is statistical evidence for the advantage of the feedback-based Monte Carlo method over the basic Monte Carlo resampling method. The difference between the two methods is more significant when the gradient information of the log-likelihood function is available (row 2) or the number of iterations increases when only likelihood function is available (rows 4). 

Keeping all other settings and parameters the same, we now test on the independent perturbation per measurement idea in section B2.3. Table B.2 summarizes the simulation results based on 50 independent realizations (P-values correspond to t-tests of the comparison between the relative norms of the deviation matrices from two approaches: independent perturbation alone and feedback and independent perturbation combined).











		

Table B.1: Sample mean value of with approximate 95% confidence intervals (CIs) shown in brackets. P-values based on one-sided t-test using 50 independent runs.



		Input Information

		Basic Approach

		Feedback-based Approach

		P-value



		Gradient Function

N = 40,000

		0.0104

[0.0096, 0.0111]

		0.0063

[0.0058, 0.0067]

		<10−10



		Log-likelihood Function Only

N = 40,000

		0.0272

[0.026, 0.0283]

		0.0261

[0.0251, 0.0271]

		0.0016



		Log-likelihood Function Only

N = 80,000

		0.0204

[0.0194, 0.0213]

		0.0191

[0.0184, 0.0198]

		2.52×10−5









Table B.2 demonstrates the improvement in estimation accuracy when the sample is independent and separate perturbation is applied to each independent measurement. Specifically, the estimation accuracy is improved by independent perturbation alone (column 2) and is improved even more by the combination of independent perturbation and feedback approach (column 3). 



		

Table B.2: Sample mean value of  when using independent perturbation per measurement. Approximate 95% CIs shown in brackets. P-value based on one-sided t-test using 50 independent runs.



		Input Information

		Indep. Perturbation Alone

		Feedback and Indep. Perturbation

		P-value



		Gradient Function

N = 40,000

		0.0066

[0.0043, 0.0103]

		0.0062

[0.0044, 0.0097]

		7.622×10−9









B4.2 Example 2—Mixture Gaussian distribution

Mixture Gaussian distribution is of great interest and is popularly used in practical applications (see Wang, 2001; Stein et al., 2002). In this study, we consider a mixture of two scale normal distributions. Specifically, let Z = [z1, z2, … , zn]T be an independent and identically distributed sequence with probability density function:





,





where  There are 5(5+1)/2 = 15 unique terms in Fn (θ) that are to be estimated. The analytical form of the true Fisher information matrix is not attainable in this case. But the closed form of the Hessian matrix is computable (see Boldea and Magnus 2009). We thus approximate the true Fisher information using the sample average of the Hessian matrix over a large number (106) of independent replications. This should be a fairly good approximation since the first three decimal digits do not vary as the amount of averaging increases. 



In this numerical study, we consider the case where θ = [0.2, 0, 1, 4, 9]T. As in Example 1, elements in perturbation  have symmetric Bernoulli ± 1 distribution for all k and i; M = 2; c = 0.0001. In each method, we estimate the Hessian matrix in two different approaches: using the gradient of the log-likelihood function or using the log-likelihood function values only. Results based on 50 independent replications are summarized in Table B.3 (P-values correspond to t-tests of the comparison between the relative norms of the deviation matrices from two approaches).



		

Table B.3: Sample mean value of with approximate 95% CIs shown in brackets. P-values based on one-sided t-test using 50 independent runs. 



		Input Information

		Basic Approach

		Feedback-based Approach

		P-value



		Gradient Function

N = 40,000

		0.0038

[0.0035, 0.0042]

		0.0013

[0.0011, 0.0015]

		<10−10



		Log-likelihood Function Only

N = 40,000

		0.0094

[0.0088, 0.01]

		0.0088

[0.0083, 0.0094]

		2.39×10−4



		Log-likelihood Function Only

N = 80,000

		0.0065

[0.006, 0.0069]

		0.0059

[0.0054, 0.0063]

		3.6×10−7





Table B.3 indicates statistical evidence for the advantage of the feedback-based Monte Carlo method over the basic Monte Carlo resampling method. The difference between the performances of the two methods is more significant when gradient information of the log-likelihood function is available (row 2) or the number of iterations increases when only likelihood function is available (row 4).



B5. Conclusions

This appendix demonstrates two enhanced Monte Carlo methods for estimating the Fisher information matrix: feedback-based approach and independent perturbation approach. Numerical examples show that both of these two methods improve the estimation accuracy as compared to the basic Monte Carlo approach.
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