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Abstract

The mean-shift algorithm is a popular algorithm in computer vision

and image processing. It can also be cast as a minimum gamma-divergence

estimation. In this paper we focus on the “blurring” mean shift algorithm,

which is one version of the mean-shift process that successively blurs the

dataset. The analysis of the blurring mean-shift is relatively more compli-

cated compared to the nonblurring version, yet the algorithm convergence

and the estimation consistency have not been well studied in the litera-

ture. In this paper we prove both the convergence and the consistency of

the blurring mean-shift. We also perform simulation studies to compare

the efficiency of the blurring and the nonblurring versions of the mean-

shift algorithms. Our results show that the blurring mean-shift has more

efficiency.

keywordsMean-shift, Convergence, Consistency, Clustering, γ-divergence,

Super robustness.

1 Introduction

The mean-shift algorithm is a popular algorithm in computer vision and image
processing. It was initially designed for kernel density estimation (Fukunaga and Hostetler,
1975), which iteratively uses the sample mean within a local region to estimate
the gradient of a density function. The mean-shift algorithm was further ex-
tended and analyzed by Cheng (1995). Comaniciu and Meer (2002) later ap-
plied the mean-shift algorithm to the problem of image segmentation. Since then
the algorithm has become more well-known in the computer science community
than in the statistics community. For more related works on the mean-shift
algorithm, see Fashing and Tomasi (2005); Carreira-Perpinan (2006, 2007). In
recently years, methods that use iterative processes on minimizing γ-divergence
were proposed for robust parameter estimation (Fujisawa and Eguchi, 2008) and
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for robust clustering (Chen et al., 2012). These methods can also be viewed as
the mean-shift based approaches.

Suppose S = {x1, . . . , xN} are sample points and T = {y1, . . . , yM} are
cluster centers. The nonblurring mean-shift updating rule can be defined as
follows:

y
(t+1)
i =

N
∑

j=1

f(xj − y
(t)
i )w(xj)xj

∑N
k=1 f(xk − y

(t)
i )w(xk)

, (1)

where f is a kernel function, w is a weight function, and y
(0)
i = yi. The con-

vergence of the nonblurring version of mean-shift was studied in Cheng (1995),
Comaniciu and Meer (2000, 2001), and Li et al. (2007).

When T = S, the updating rule becomes

x
(t+1)
i =

N
∑

j=1

f(x
(t)
j − x

(t)
i )w(xj)x

(t)
j

∑N
k=1 f(x

(t)
k − x

(t)
i )w(x

(t)
k )

, (2)

where x
(0)
i = xi. This is called the blurring mean-shift. Note that the weighted

average is over the updated data points, instead of the original data. The
convergence analysis on the blurring mean-shift is therefore more complicated
than the nonblurring one. Cheng (1995) proved the convergence of the blurring
mean-shift algorithm for the following two limited cases. When the mutual
influence between each pair of data points is nonzero, Theorem 3 in Cheng
(1995) showed that all data points eventually converge to a single cluster. When
in practice the iterative process is simulated by a digital computer such that
data points can never go arbitrarily close to each other, Theorem 4 in Cheng
(1995) guaranteed that the algorithm converges in a finite number of steps. In
Section 2, we show that there is a gap in the proof of Theorem 4 by Cheng
(1995). We also discuss related work and the condition on f and w.

In Section 3, we present a more general result on the convergence of the blur-
ring mean-shift algorithm than Theorem 4 in Cheng (1995). The convergence of
the blurring mean-shift is guaranteed under the general definition: data points
eventually become arbitrarily close to some locations. Since the number of data
points is always finite, there exists a common t∗, such that each data point is
close enough to where it converges after the t∗-th iteration. That is to say, the
convergence under the general definition can imply the convergence in a finite
number of steps subject to floating point precision. In addition, Theorem 3 in
Cheng (1995) is an immediate implication of our result, which is listed in our
Corollary 1.

While the mean-shift algorithm is originally designed for mode seeking using
kernel density estimation, it is questioned that whether this estimation produces
results that converge to the true parameter values when the number of data
points goes to infinity. Windham (1995) proposed a robust model fitting, which
can be viewed as a nonblurring approach. Fujisawa and Eguchi (2008) proposed
a robust estimation by minimizing γ-divergence and proved the consistency of
their proposed estimation. This is also a nonblurring approach. In the literature,
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the consistency of blurring processes has not been well studied. We present the
consistency of the blurring processes in Section 4.

In additional to convergence and consistency, in Section 5 we present simu-
lation studies to compare the performance of the blurring and the nonblurring
processes. Discussions and conclusions are given in Section 6.

In this section we present a proof of the convergence of the blurring mean-
shift process. We will first discuss related work, and introduce some conditions
on f and w in (2).

2 Related Work and Conditions

Before we start the proof of convergence, it is necessary to bring out some of
our comments on related works Cheng (1995); Chen and Shiu (2007).

2.1 A GAP in the Proof of Theorem 4 in Cheng (1995)

As mentioned in the previous section, there is a gap in the proof of Theorem 4
in Cheng (1995). Quote from the proof of Theorem 4 in (Cheng, 1995):

Lemma 2 says that the radius of data reaches its final value in
finite number of steps. Lemma 2 also implies that those points at this
final radius will not affect other data points or each other. Hence,
they can be taken out from consideration for further process of the
algorithm.

This implication of Cheng’s Lemma 2 is questionable in two respects. First,
when the radius of data points reaches its final value, it is not trivial to conclude
that there do not exist two data points alternatively switching their locations
to be at the final radius, meaning that data points in such a situation fail
to converge. Although this situation will not happen during the mean-shift
iterative process, it requires to be proven. See our Lemma 2 and its proof.

Second, the convergence of some points at the final radius does not imply
that these points do not affect other points. Although these points no longer
move, it is possible that they still receive influences from other points, which
are just too small to induce a move larger than the floating point precision. The
accumulated influences from these converged data points at the same location
may be large enough to affect other data points and to induce them a different
move. Therefore, these converged data points should not be immediately taken
out for future process of the algorithm.

2.2 The weight function w

It was stated (Cheng, 1995) that the weight function w can be either fixed
through the process or re-evaluated after each iteration, the convergence was
only studied for the case when w is fixed. In fact, we found that the process does
not converge for arbitrary w’s that change over the iterations. The following
example illustrates this.
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Example 1.

Assume the number of data points is 3. Let x1 = δ1, x2 = 1/2 + δ2,
x3 = −1/2− δ3, where 0 < δi < 1/4. Let

f(d) =







1 d = 0,
1/2 0 < d < 1,
0 1 < d.

Since x2 − x3 > 1, f(x2 − x3) = 0, meaning that x2 and x3 do not influence
each other in the next update. Let w(x) = 1 for −1/2 < x < 1/2. Therefore,
w(x1) = 1. Now we can assign large value to w(x2) and w(x3) so that

x
(1)
2 =

w(x2)x2 + x1/2

w(x2) + 1/2
> 1/2,

x
(1)
3 =

w(x3)x3 + x1/2

w(x3) + 1/2
< 1/2.

We can also assign a large enough value to w(x3), so that

−1/2 < x
(1)
1 =

x1 + w(x2)x2/2 + w(x3)x3/2

1 + w(x2) + w(x3)
< 0.

These inequalities show that after the first update, x
(1)
1 becomes negative, and

x
(1)
2 and x

(1)
3 remain outside [-1/2, 1/2].

At each iteration, we can assign large enough values to w(x2) and w(x3),

so that x
(t)
1 is positive when t is even and is negative when t is odd. We can

further control the absolute value of x
(t)
1 to be away from zero, so that x

(t)
1

and consequently the whole system do not converge. Note that x
(t)
2 and x

(t)
3 do

converge in this case.
Having seen the above example, in the next section we only prove the con-

vergence under the condition when w(x
(t)
i )’s are fixed throughout the process

meaning that w(x
(t)
i )’s depend on i. It is worth noted that the convergence of

the iterative process in fact also holds for varying w(x
(t)
i )’s with limt w(x

(t)
i )

existing for each i.

2.3 The influence function f

While the mean-shift algorithm was originally developed for kernel density es-
timation, it is natural to have f in (2) to be integrable. A weaker condition of
f , however, suffices to guarantee the convergence of the iterative process.

Chen and Shiu (2007) proposed a self-updating process (SUP) for clustering
as follows:

(i) x
(0)
1 , . . . , x

(0)
N ∈ Rp are data points to be clustered.
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(ii) At time t+ 1, every point is updated to

x
(t+1)
i =

N
∑

j=1

f(x
(t)
i , x

(t)
j )

∑N
k=1 f(x

(t)
i , x

(t)
k )

x
(t)
j , (3)

where f is some function that measures the influence between two data
points at time t.

(iii) Repeat (ii) until every point converges.

Although not specified in the notation, the f function in (3) is allowed to be
inhomogeneous with respect to t. That is to say, it is more general compared
to the f function in the mean-shift updating rule in (2). Chen and Shiu (2007)
has demonstrated the use inhomogeneous f ’s in several of their experiments.
The f function in (3) does not require to be integrable. It is proposed to satisfy
the following PDD condition.

Definition 1. The function f in (3) is PDD (positive and decreasing with
respect to distance), if

(i) 0 ≤ f(u, v) ≤ 1, and f(u, v) = 1 if and only if u = v.

(ii) f(u, v) depends only on ‖u− v‖, the distance from u to v.

(iii) f(u, v) is decreasing with respect to ‖u− v‖,

Note that f in (2) is already defined to be only depending on u− v. In the

following, we will prove the convergence under (i) f is PDD and (ii) w(x
(t)
i ) only

depends on i.

3 Convergence

Theorem 1. If the function f in (2) is PDD, and if the weight function

w(x
(t)
j ) = wj in (2) depends only on j, there exists {x∗

1, . . . , x
∗
N}, such that

lim
t→∞

x
(t)
i = x∗

i ∀i.

Below we outline the proof for Theorem 1.

• First, consider the convex hull of all data points in each iteration. The
convex hulls with respect to iterations are nested (Lemma 1) and converge.

• Next, for each vertex of the converged convex hull, there exists at least one
sequence of the updated data points converging to this vertex (Lemma 2).

• The influence from the converged data points at the vertices of the con-
verged convex hull goes down to zero to other data points (Lemma 3).

5



• Consider the convex hull of the rest data points (exclude those already
converged). Using the same arguments again, we have a few more con-
verged data points. We can repeat this process over and over again until
all data points converge.

Definition 2. The convex hull C(X) for a set of points X in a vector space V
is the minimal convex set containing X.

Lemma 1. Let C
(t)
1 be the convex hull of {x(t)

1 , . . . , x
(t)
N }. Then

C
(0)
1 ⊇ . . . ⊇ C

(t)
1 ⊇ . . . .

Proof. The convex hull C(X) for a set of points X is the minimal convex set
containing X . Since

x
(t+1)
i =

N
∑

j=1

f(x
(t)
i − x

(t)
j )wjx

(t)
j

N
∑

j=1

f(x
(t)
i − x

(t)
j )wj

,

x
(t+1)
i is a weighted average of x

(t)
j for j = 1, . . . , N . Therefore, x

(t+1)
i ∈ C

(t)
1 .

Since the above is true for each i, we have

C
(t)
1 ⊇ C({x(t+1)

1 , . . . , x
(t+1)
N }) = C

(t+1)
1 .

Note that the nested structure presented in Lemma 1 ensures the convergence

of convex hulls {C(t)
1 }. Let C1 be the limit of C

(t)
1 ,

C1 ≡ lim
t→∞

C
(t)
1 =

∞
⋂

t=0

C
(t)
1 .

On the other hand, since the convex hull of any finite set of points in Rp is a

polytope, each C
(t)
1 is a polytope. Each vertex of C

(t)
1 therefore must contain at

least one x
(t)
i for some i, otherwise the polytope would have been smaller. With

the convergence of convex hulls {C(t)
1 }, Lemma 2 claims that for each vertex of

C1, there exists at least one equence of {x(t)
i } which converges to this vertices.

Lemma 2. If the function f in (2) is PDD, for each vertex v1,i of C1, there
exists at least one j, such that

lim
t→∞

x
(t)
j = v1,i. (4)
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Proof. Since C1 = limt→∞ C
(t)
1 for each i, there exists a sequence of v

(t)
1,i ’s (ex-

change vertex indices if necessary), such that limt→∞ v
(t)
1,i = v1,i, where v

(t)
1,i is a

vertex of C
(t)
1 . Since for any t and i, v

(t)
1,i = x

(t)
k for at least one k, there exists

j, such that x
(t)
j = v

(t)
1,i for infinite many t’s. Therefore, there exists an infinite

time sequence tn’s, such that

x
(tn)
j = v

(tn)
1,i ∀n,

which leads to
lim
n→∞

x
(tn)
j = v1,i.

If x
(t)
j = v

(t)
1,i except for any finite t, then equation (4) is established. Otherwise,

there exists j′ 6= j and another infinite time sequence sn’s, such that

x
(sn)
j′ = v

(sn)
1,i ∀n.

Without loss of generality, assume that v
(t)
1,i = x

(t)
j or x

(t)
j′ for all t > t̃. Assume

wj ≥ wj′ . From equation (3), if x
(s)
j = x

(s)
j′ for some s, x

(t)
j = x

(t)
j′ for all

t > s. Therefore, for any s > 0, there exists t > s, such that v
(t)
1,i = x

(t)
j and

v
(t+1)
1,i = x

(t+1)
j′ . We claim that this case, however, can never happen: when t

is large enough, it is impossible that a data point inside the convex hull later
becomes a new vertex, since it is closer to other points than the current vertex
is. In the following we prove this claim only for the one dimensional case. For
higher dimensional cases, consider the supporting hyperplane contained v1,i.
Since v1,i is a vertex of a convex set, a supporting hyperplane can be chosen
such that no other point is in the hyperplane. Now we can project all data points
onto to the straight line which is perpendicular to the supporting hyperplane
and pass through v1,i. Then we can make the same argument on the projected
data points.

Without loss of generality, assume v1,i = 0, x
(t)
j ≤ 0, and x

(t)
k > 0 for k 6= j

or j′. If x
(t+1)
j′ later becomes the new vertex, then

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wk

<

N
∑

k=1

f(x
(t)
j − x

(t)
k )wkx

(t)
k

N
∑

k=1

f(x
(t)
j − x

(t)
k )wk

. (5)

Moreover, since x
(t+1)
j′ is the new vertex,

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wk

≤ 0 =⇒
N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k ≤ 0.
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Since x
(t)
j is the current vertex, ‖x(t)

j − x
(t)
k ‖ > ‖x(t)

j′ − x
(t)
k ‖ for all k, and hence

f(x
(t)
j − x

(t)
k ) < f(x

(t)
j′ − x

(t)
k ). Then

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k

= wj′x
(t)
j′ + f(x

(t)
j′ − x

(t)
j )wjx

(t)
j +

∑

k 6=j,j′

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k

≥ wjx
(t)
j + f(x

(t)
j′ − x

(t)
j )wj′x

(t)
j′ +

∑

k 6=j,j′

f(x
(t)
j − x

(t)
k )wkx

(t)
k

=

N
∑

k=1

f(x
(t)
j − x

(t)
k )wkx

(t)
k .

Since
N
∑

k=1

f(x
(t)
j − x

(t)
k )wkx

(t)
k ≤

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k < 0,

and

0 <
N
∑

k=1

f(x
(t)
j x

(t)
k )wk <

N
∑

k=1

f(x
(t)
j′ x

(t)
k )wk,

we have
N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wkx

(t)
k

N
∑

k=1

f(x
(t)
j′ − x

(t)
k )wk

<

N
∑

k=1

f(x
(t)
j − x

(t)
k )wkx

(t)
k

N
∑

k=1

f(x
(t)
j − x

(t)
k )wk

,

which is a contradiction to (5).

Having shown that at least some points converge under the iterative up-
dates, hereafter we consider the rest of the data points. Let Ω1 be the set of

points shown converging to the vertices of C1. Define C
(t)
2 be the convex hull

of {x(t)
i }i/∈Ω1

. Note that {C(t)
2 } may not be nested at early stages of iterations:

points not in Ω1 may move outside the current convex hull C
(t)
2 due to the influ-

ence from Ω1, the volume of the convex hull therefore may increase by iteration.
This nested property, however, would hold after some iteration when all data
points in Ω1 converge. Explicitly,

C
(t)
2 ⊇ C

(t+1)
2 ∀t ≥ t̃ for some t̃,

which also implies the convergence of {C(t)
2 },

C2 ≡ lim
t→∞

C
(t)
2 .
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We introduce the following Lemma 3, which can lead to the nested property of

{C(t)
2 }. It states that when all data points in Ω1 converge, points in Ω1 receive

no influence from points not in Ω1, otherwise they would have been attracted
inwards. That is to say, data points not in Ω1 also no longer receive influence
from points in Ω1, meaning that the influence from points in Ω1 goes down to
zero.

Lemma 3. For an arbitrary xi ∈ Ω1, we have

lim
t→∞

f(x
(t)
i − x

(t)
j ) = 0,

for all j such that limt→∞ x
(t)
j 6= limt→∞ x

(t)
i .

Proof. Without loss of generality, assume that x
(t)
i is the only data point that

converges to vi,1.

N
∑

j=1

f(x
(t)
i − x

(t)
j )wjx

(t)
j

N
∑

j=1

f(x
(t)
i − x

(t)
j )wj

= x
(t+1)
i

⇒

N
∑

j=1

f(x
(t)
i − x

(t)
j )wj · (x(t)

j − x
(t+1)
i )

N
∑

j=1

f(x
(t)
i − x

(t)
j )wj

= 0

⇒
N
∑

j 6=i

f(x
(t)
i − x

(t)
j )wj · (x(t)

j − x
(t+1)
i ) = wi · (x(t+1)

i − x
(t)
i ). (6)

Since x
(t)
i converges to vi,1, x

(t+1)
i and x

(t)
i become arbitrarily close to each

other when t is large enough. That is, the right-hand side of (6) goes down to

zero. On the other hand, since x
(t)
j does not converge to vi,1 for j 6= i, there

is a gap between x
(t)
j and x

(t+1)
i . To force the left-hand side of (6) to be zero,

f(x
(t)
i − x

(t)
j ) must go down to zero as well. This sketches the proof for Lemma

3. The precise details are given in the following.

Because x
(t)
j does not converge to vi,1 for j 6= i, there exists ǫ > 0, for any

t0 > 0, there exists t > t0 such that ‖x(t)
j − vi,1‖ > ǫ. In fact, x

(t)
j can not go

arbitrarily close to vi,1 when t is large enough, otherwise the updating process

will move x
(t)
j and x

(t)
i closer and closer to each other. That is, there exists

ǫ0 > 0 and t1 such that ‖x(t)
j − vi,1‖ > ǫ1 for all t > t1. On the other hand,

because x
(t)
i → vi,1, for any ǫ2 > 0, there exists t2, such that ‖x(t)

i −x
(t+1)
i ‖ < ǫ2

for t > t2.
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Since v1,i is a vertex of the convex set C1, there exists x ∈ C1, such that the
inner product of x− v1,i and y − v1,i is positive for any y ∈ C1. Let

vx =
x− v1,i

‖x− v1,i‖
.

There exists α > 0 and t3 > t1 such that

〈x(t)
j − v1,i, vx〉 ≥ α‖x(t)

j − v1,i‖ ∀t > t3 and ∀j 6= i,

where 〈, 〉 denotes the inner product. Take the inner product of both sides of
(6) with vx, we have

〈

N
∑

j 6=i

f(x
(t)
i − x

(t)
j )wj · (x(t)

j − x
(t+1)
i ), vx

〉

=

N
∑

j 6=i

f(x
(t)
i − x

(t)
j )wj ·

〈

x
(t)
j − x

(t+1)
i , vx

〉

=

N
∑

j 6=i

f(x
(t)
i − x

(t)
j )wj ·

(〈

x
(t)
j − v1,i, vx

〉

+
〈

v1,i − x
(t+1)
i , vx

〉)

≥
N
∑

j 6=i

f(x
(t)
i − x

(t)
j )wjα‖x(t)

j − v1,i‖

> max
j

wj · αǫ1
N
∑

j 6=i

f(x
(t)
i − x

(t)
j )

for t > t3, and
〈

x
(t+1)
i − x

(t)
i , vx

〉

≤ ‖x(t+1)
i − x

(t)
i ‖ < ǫ2

for t > t2. Therefore, for t > max(t3, t2),

max
j

wj · αǫ1
N
∑

j 6=i

f(x
(t)
i − x

(t)
j ) < wiǫ2.

Since ǫ2 can be arbitrarily small, the inequality above implies

N
∑

j 6=i

f(x
(t)
i − x

(t)
j ) → 0.

Since f ≥ 0, f(x
(t)
i − x

(t)
j ) → 0 for all j 6= i.

From the above, we can claim a similar result for C2 as Lemma 2 for C1: each
of the vertex of C2 has at least one data point converges to. The same argument
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can apply again and again to C3, C4, . . ., until all data points converge. This
completes the proof of Theorem 1.

Although Theorem 1 guarantees the convergence when f has PDD condition,
there are some f ’s that produce trivial clustering results, in which all data
points are clustered into one single group. We identify such f ’s in the following
corollary.

Corollary 1. Let rM ≡ maxi,j{||xi − xj ||}. If f is PDD with f(rM ) > 0, then
there exists c, such that

lim
t→∞

x
(t)
i = c ∀i.

Proof. Lemma 1 implies that ||x(t)
i − x

(t)
j || ≤ rM for every t, i andj. Since f is

decreasing with respect to distance, f(x
(t)
i −x

(t)
j ) ≥ f(rM ) > 0. Lemma 3 shows

that, however, the influence between any two points which do not converge to

the same position tends to zero. Thus, f(x
(t)
i − x

(t)
j ) ≥ f(rM ) > 0 for every i

and j, which implies that all data points converge to the same position.

For the purpose of clustering, it is not desirable to have all data points
converged to the same position. To prevent trivial clustering results, f has to
be zero on (r,∞) for some r < rM .

4 Consistency

In the previous section, we proved the convergence of the algorithm. In this
section, we study the estimation consistency of the algorithm. We show the
consistency for the Normal case and remark on more general cases. The difficulty
of our consistency proof arises from blurring process, i.e., the the iterative data
shrinkage update.

Assume xi’s ∈ Rp are i.i.d. sampled from N(0,Σ), and the mutual influence
function f adopted is exp(−(x−y)⊤(x−y)/2τ2), where (x−y)⊤ is the transpose
of vector x− y. Assume w = 1. The updating rule is:

x
(t+1)
i,n =

N
∑

j=1

f(x
(t)
i,n − x

(t)
j,n)

∑N
j=1 f(x

(t)
i,n − x

(t)
j,n)

x
(t)
j,n, (7)

where x
(t)
i,n denotes the updated xi at t-th iteration when considering only first

n samples. By Corollary 1 presented in the previous section, we know that for
all i

lim
t→∞

x
(t)
i,n = c

for the same c. Here we want to show that c will converge to zero almost surely,
which we state as the following theorem:

Theorem 2.

lim
n→∞

lim
t→∞

x
(t)
i,n = 0 a.s.

11



Proof. Let G(x; Σ) be the CDF of N(0,Σ), G
(t)
n (x) be the empirical CDF of the

n-sample at t-th iteration, and G(t)(x) = limn→∞ G
(t)
n (x). By Glivenko-Cantelli

theorem,
lim
n→∞

sup
x

|G(0)
n (x) −G(x,Σ)| = 0 a.s.

We claim that the the empirical distribution of the updated data points of each
iteration converges to a Normal distribution. In the following, we show that

lim
n→∞

sup
x

|G(t)
n (x) −G(t)(x)| = 0 a.s. (8)

where G(t)(x) = G(x; Σt). This is true for t = 0. Assume that it is true for
t = s, we want to show that it is true for t = s+ 1. Assume that

sup
x

|G(s)
n (x) −G(s)(x)| < ǫs,

for n > Nǫs . Define

KH(x) =

∫

y f(x− y) · y · dH(y)
∫

y f(x− y) · dH(y)
.

With the assumption that G(s)(x) = G(x; Σs), we have

f(x− y)dG(s) = cs exp(−
(x− y)⊤(x− y)

2τ2
) · exp(−y⊤Σ−1

s y

2
)dy

= cs exp

[

−1

2

{

1

τ2
(x⊤x− 2x⊤y) + y⊤(I/τ2 +Σ−1

s )y

}]

dy

= c′s(x) exp

[

−1

2

{

y − (I + τ2Σ−1
s )−1x

}⊤
(I/τ2 +Σ−1

s )

{

y − (I + τ2Σ−1
s )−1x)

}

]

dy.

Therefore,
KG(s)(x) = (I + τ2Σ−1

s )−1x. (9)

Since
|G(s)

n (x) −G(s)(x)| < ǫs

and f(x− y)y and f(x− y) are bounded, we have

||K
G

(s)
n

(x) −KG(s)(x)||2 < αsǫs (10)

for some positive number αs where || · ||2 is the L2 norm. Since

K
G

(s)
n

(x
(s)
i,n) =

∫

y
f(x

(s)
i,n − y) · y · dG(s)

n (y)
∫

y
f(x

(s)
i,n − y) · dG(s)

n (y)

=

∑N
j=1 fs(x

(s)
i,n − x

(s)
j,n)x

(s)
j,n

∑N
j=1 fs(x

(s)
i,n − x

(s)
j,n)

= x
(s+1)
i,n ,

12



we have

||x(s+1)
i,n − (I + τ2Σ−1

s )−1x
(s)
i,n||2

= ||K
G

(s)
n

(x
(s)
i,n)−KG(s)(x

(s)
i,n)||2

< αsǫs.

The empirical distribution of x
(s+1)
i,n is G

(s+1)
n (x), and that of (I+ τ2Σ−1

s )−1x
(s)
i,n

is G
(s)
n ((I + τ2Σ−1

s )x). Then

∣

∣

∣
G(s+1)

n (x)−G(s)
(

(I + τ2Σ−1
s )x

)

∣

∣

∣

≤ max
||∆x||<αsǫs

∣

∣

∣
G(s)

n

(

(I + τ2Σ−1
s )(x+∆x)

)

−G(s)
(

(I + τ2Σ−1
s )x

)

∣

∣

∣

≤ max
||∆x||<αsǫs

{
∣

∣

∣
G(s)

n

(

(I + τ2Σ−1
s )(x +∆x)

)

−G(s)
(

(I + τ2Σ−1
s )(x+∆x)

)

∣

∣

∣

+
∣

∣

∣
G(s)

(

(I + τ2Σ−1
s )(x+∆x)

)

−G(s)
(

(I + τ2Σ−1
s )x

)

∣

∣

∣

}

< ǫs + max
||∆x||<αsǫs

∣

∣

∣
G(s)

(

(I + τ2Σ−1
s )(x+∆x)

)

−G(s)
(

(I + τ2Σ−1
s )x

)

∣

∣

∣

≤ ǫs + max
||∆x||<αsǫs

||(I + τ2Σ−1
s )∆x||2 max

||∆x||<αsǫs
|| ∂
∂x

G(s)(x+∆x)||2

≤ ǫs + λαsǫs
1√

2π| det(I + τ2Σ−1
s )|1/2

,

where λ is the largest eigenvalue of I + τ2Σ−1
s . Therfore, |G(s+1)

n (x)−G(s)((I +
τ2Σ−1

s )x)| can be arbitrarily small by choosing a small enough ǫs. This com-
pletes the induction.

From (9), we have

Σs+1 = (I + τ2Σ−1
s )−1Σs(I + τ2Σ−1

s )−1.

Since Σs is a covariance matrix, it is symmetric and positive definite. Then Σs

can be factorized as
Σs = PΛsP

⊤

where PP⊤ = I and Λs is a diagonal matrix. Then

Σ−1
s = PΛ−1

s P⊤,

I + τ2Σ−1
s = P (I + τ2Λ−1

s )P⊤,

Σs+1 = (I + τ2Σ−1
s )−1Σs(I + τ2Σ−1

s )−1

= P (I + τ2Λ−1
s )−1Λs(I + τ2Λ−1

s )−1P⊤.

Therefore, Σs and Σs+1 share the same eigenvectors. Assume that λ
(s)
i ’s are

13



the eigenvalues of Σs and λ
(s+1)
i ’s are those of Σs+1. Then

λ
(s+1)
i = (1 + τ2/λ

(s)
i )−1λ

(s)
i (1 + τ2/λ

(s)
i )−1

=
(λ

(s)
i )2

(λ
(s)
i + τ2)2

λ
(s)
i

≤ (λ
(0)
i )2

(λ
(0)
i + τ2)2

λ
(s)
i

≤
{

(λ
(0)
i )2

(λ
(0)
i + τ2)2

}s+1

λ
(0)
i .

Therefore λ
(s)
i → 0 as s → ∞. For any ǫ, there exists t0 such that mini λ

(t0)
i <

ǫ2/k, where k is a large integer. From (8), almost surely

sup
x

|G(t0)
n (x)−G(t0)(x)| → 0.

Equivalently,
sup
A

|G(t0)
n (A)−G(t0)(A)| → 0,

where G
(t0)
n (A) and G(t0)(A) denote the probabilities of x ∈ A. Therefore, for

any δ > 0, there exists nt0 such that

sup
A

|G(t0)
n (A) −G(t0)(A)| < δ

for all n > nt0 . Then

Pr(||x(t0)
i,n ||2 > ǫ) = G(t0)

n (x⊤x > ǫ2)

< G(t0)(x⊤x > ǫ2) + δ

= G(t0)(
1

mini λ
(t0)
i

x⊤x >
ǫ2

mini λ
(t0)
i

) + δ

≤ G(t0)(x⊤Σ−1
t0 x >

ǫ2

mini λ
(t0)
i

) + δ

≤ G(t0)(x⊤Σ−1
t0 x > k) + δ

= G(x⊤x > k; Ip) + δ,

where Ip is the identity matrix. This can be arbitrarily small by choosing k large
enough and δ small enough. Therefore, almost all updated data points are in
B(0, ǫ) at t0-th iteration, where B(0, ǫ) = {x : ||x||2 > ǫ}. For iteration t > t0,
all updated data points within B(0, ǫ) will not move outside B(0, ǫ), since there
are more updated data points and hence more influence in the direction toward

to zero. Therefore, |x(t)
i,n| ≤ ǫ for almost all i and for all t > t0 and n > nt0 . By

Corollary 1, all data points will converge to a single location. We have

|| lim
t→∞

x
(t)
i,n||2 ≤ ǫ.

14



for all i when n > nt0 , which completes the proof.

Remark 1. In this section, we present the results under the assumption that
both f and G are Normal. The results can be generalized to general second order
kernel functions with translation invariance. For this type of kernel functions,
the empirical distribution at each iteration still converges to some distribution,
and the variance is decreasing through iterations. The shrunk distribution, how-
ever, may not have a nice form as that in the Normal case.

Remark 2. If the data points are sampled from a finite mixture distribution,
the locations which the data points converge to through the iterative process may
not be consistent to the parameters. Take the mixture distribution α1N(µ1, 1)+
(1 − α1)N(µ2, 1) as an example. By choosing a proper f , data points will be
clustered into two groups. Since the domains of these two Normal distribution
are overlapped, the converged locations through the iterative process will not
converge to µ1 and µ2.

5 Simulation

In this section we consider a one dimensional case where the data is sampled
from N(0, σ2

0). The f function in (2) is taken to be f = exp(−(x−y)2/2τ2). We
used three experiments to compare the blurring and the nonblurring processes
in the following three aspects: the convergence rate, the efficiency, and the
robustness to the outliers.

5.1 Convergence rate

Based on (9), we have shown that

KG(s)(x) =

∫

y
f(x− y) · y · dG(s)(y)

∫

y
f(x− y) · dG(s)(y)

=
σ2
s

σ2
s + τ2

x.

For the nonblurring process, the integration is over the original data, instead

of updated data. The shrinkage ratio is therefore
σ2
0

σ2
0+τ2 , meaning that the

convergence rate of the blurring process is higher than that of the nonblurring
process. Take σ0 = 1 and τ = 2 as an example. For the blurring process,

σ1 = σ0
σ2
0

σ2
0 + τ2

=
12

12 + 22
= 0.2

σ2 = σ1
σ2
1

σ2
1 + τ2

= 0.2
0.22

0.22 + 22
≈ 0.002

σ3 = σ2
σ2
2

σ2
2 + τ2

= 0.002
0.0022

0.0022 + 22
≈ 0.000000002.
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For the nonblurring process,

σ
′

1 = σ
′

0

σ2
0

σ2
0 + τ2

=
12

12 + 22
= 0.2

σ
′

2 = σ
′

1

σ2
0

σ2
0 + τ2

= 0.2
12

12 + 22
= 0.04

σ
′

3 = σ
′

2

σ2
0

σ2
0 + τ2

= 0.04
12

12 + 22
= 0.008.
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Figure 1: The simulation results on 100 samplings from N(0,1). The solid line
is from the blurring process, and the dash line is from the nonblurring process.

In this experiment, we sampled 100 data points fromN(0, 1). Fig. 1 presents
the simulation results by the blurring and the nonblurring process. In details,
Fig. 1(a) shows that both processes converged to very close to the true mean
of zero. Fig. 1(b) shows that the standard deviations of the updated data
points dropped way down at the first iteration and became nearly zero after the
second iteration. This illustrates that both processes converged very fast, while
the updated data points by the blurring process shrunk even much faster. Fig.
1(c) further presents the shrinkage of the updated data points in terms of the
log scale of the standard deviations in Fig. 1(b).

5.2 Efficiency

In this experiment we consider τ to be 0.5, 1 or 2. For each τ value, we simu-
lated 100,000 sets of 100 data points, which were again sampled from N(0, 1).
According to the simulated 100,000 sets, we summarized the means and the stan-
dard deviations of the following three statistics: the sample mean, the number
each set of data points converged to by the blurring process and that by the
nonblurring processes. The results were presented in Table 1.

In this experiment, we consider 100 data points were sampled from N(0, 1).
Now we experiments with τ = 0.5, 1 and 2. For each parameter, we simulate
100,000 times. The means and the standard deviations of the sample mean and
the converged numbers of blurring and nonblurring processes in these 100,1000
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simulations are presented in Table 1. There is no noticeable difference between
the means of three statistics. We did run multiple 100,000-sample sets, and
the orders (with respect to the absolute value) are different for different sets.
However, the standard deviations of the three statistics are clearly different.
The standard deviations of the sample means are close to 0.1, which is the
theoretic value. The standard deviations of the converged number from the
blurring process are smaller than that from the nonblurring process. Therefore,
the converged number from the blurring one seems to be a better estimator over
that from the nonblurring one.

Table 1: The mean and the standard deviation of the converged points
τ Sample Mean Blurring Nonblurring
0.5 -1.897*10−4 (0.1000) -5.697*10−4 (0.1210) -5.349*10−4 (0.2126)
1 1.260*10−4 (0.0997) 2.400*10−4 (0.1043) 4.185*10−4 (0.1239)
2 6.352*10−4 (0.0998) 5.842*10−4 (0.1008) 5.565*10−4 (0.1025)

There is no noticeable difference between the means of the three statistics.
We did run multiple 100,000-sample sets, and the orders (with respect to the
absolute value) are different for different sets. However, the standard deviations
of the three statistics were clearly different. The standard deviations of the
sample means were close to 0.1, which is the theoretical value. The standard
deviations of the numbers where the data points converged to by the blurring
process were closer to those of the sample mean, and were smaller than those
by the nonblurring process. This suggests that the blurring process produced
more efficient? estimates than the nonblurring process.

5.3 Robustness to outliers

n this experiment, each data set has 95 data points sampled from N(0, 1) and
another 5 data points from N(5, 1). We consider τ to be 0.5, 1, or 2. For each
τ value, we simulated 100,000 data sets.

By Corollary 1, all data points should converge to a single number. How-
ever, due to the floating precision, the outliers which are far from most of the
data points may converge to different numbers. For both the blurring and the
nonblurring process, we take the number that most of data points converged to
as the statistic. The results are presented in Table 2. While the sample mean
was no longer an unbiased estimator of the true mean when outliers are present,
Table 2 shows that the numbers where most of data points converged to by the
blurring and the nonblurring processes were still very close to the true mean
of zero. This suggests that both processes remained to produce good estimates
for the mean. The standard deviations produced by the blurring process were
again smaller than those by the nonblurring process.
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Table 2: The mean and the standard deviation of the converged points with 5%
outliers

τ Sample Mean Blurring Nonblurring
0.5 0.2495 (0.1003) -0.0006 (0.1241) -0.0038 (0.2167)
1 0.2495 (0.1000) -0.0106 (0.1102) 0.0002 (0.1276)
2 0.2503 (0.0998) 0.0928 (0.1046) 0.0220 (0.1080)

6 Discussion and Conclusion

In this paper, we first give a rigorous mathematical proof of the convergence
of the blurring mean-shift process. Our result is under the condition that f is
PDD and w depends only on data points.

We also prove the consistency of the blurring process, which ensures the
estimation to converge to the true values of the parameters as the number of
data points goes to infinity. Our consistency proof is for the Normal case,
in which we could show the explicit form of the shrinkage rate of the data
points. The consistency for more general kernel functions can be proven in
similar arguments.

From our simulation studies, both the blurring and the nonblurring processes
have good robustness against outliers. The estimations by the blurring process
usually yield smaller variances than those by the nonblurring process.
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