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Abstract

We introduce a mixture of generalized hyperbolic distributions as an alternative to

the ubiquitous mixture of Gaussian distributions as well as their near relatives of which

the mixture of multivariate t and skew-t distributions are predominant. The mathe-

matical development of our mixture of generalized hyperbolic distributions model re-

lies on its relationship with the generalized inverse Gaussian distribution. The latter

is reviewed before our mixture models are presented along with details of the afore-

said reliance. Parameter estimation is outlined within the expectation-maximization

framework before the performance of our mixture models is illustrated in clustering

applications on simulated and real data. In particular, the ability of our models to

recover parameters for data from underlying Gaussian, t-, and skew-t distributions is

demonstrated. Finally, the role of these models as a superclass as well as the antici-

pated impact of these models on the model-based clustering, classification, and density

estimation literature is discussed with special focus on the role of Gaussian mixtures.

1 Introduction

Finite mixture models are based on the underlying assumption that a population is a convex
combination of a finite number of densities. They therefore lend themselves quite natu-
rally to classification and clustering problems. Formally, a random vector X arises from a
parametric finite mixture distribution if, for all x ⊂ X, its density can be written f(x |
ϑ) =

∑G
g=1 πgfg(x | θg), where πg > 0 such that

∑G
g=1 πg = 1 are the mixing proportions,

f1(x | θg), . . . , fG(x | θg) are called component densities, and ϑ = (π, θ1, . . . , θG) is the vec-
tor of parameters with π = (π1, . . . , πG). The component densities f1(x | θ1), . . . , fG(x | θG)
are usually taken to be of the same type, most commonly multivariate Gaussian. The
popularity of the multivariate Gaussian distribution is due to its mathematical tractability

∗Department of Mathematics & Statistics, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.

E-mail: rbrowne@uoguelph.ca.

1

http://arxiv.org/abs/1305.1036v1


and flexibility for density estimation. In the event that the component densities are mul-
tivariate Gaussian, the density of the mixture model is f(x | ϑ) =

∑G
g=1 πgφ(x | µg,Σg),

where φ(x | µg,Σg) is the multivariate Gaussian density with mean µg and covariance ma-
trix Σg. The idiom ‘model-based clustering’ is used to connote clustering using mixture
models. Model-based classification (e.g., Dean et al., 2006; McNicholas, 2010), or partial
classification (cf. McLachlan, 1992, Section 2.7), can be regarded as a semi-supervised ver-
sion of model-based clustering, while model-based discriminant analysis is supervised (cf.
Hastie and Tibshirani, 1996).

The recent burgeoning of non-Gaussian approaches to model-based clustering includes
work on the multivariate t-distribution (Peel and McLachlan, 2000), the skew-normal distri-
bution (Lin, 2009), the skew-t distribution (Lin, 2010; Lee and McLachlan, 2011; Vrbik and McNicholas,
2012), as well as other approaches (Karlis and Meligkotsidou, 2007; Handcock et al., 2007;
Browne et al., 2012). In this paper, we add to the richness of the pallet of non-Gaussian
mixture model-based approaches to clustering and classification by introducing a mixture of
generalized hyperbolic distributions, which is a sort of superclass containing the aforesaid
models as special or limiting cases (cf. Section 5).

In Section 2, our methodology is developed drawing on connections with the generalized
inverse Gaussian distribution. Parameter estimation is described (Section 3) before both
simulated and real data analyses are used to illustrate our approach (Section 4). The paper
concludes with a summary and suggestions for future work in Section 5.

2 Methodology

2.1 Generalized Inverse Gaussian Distribution

The generalized inverse Gaussian (GIG) distribution was introduced by Good (1953) and
its statistical properties were laid down by Barndorff-Nielsen and Halgreen (1977), Blæsild
(1978), Halgreen (1979), and Jørgensen (1982). Write Y ∽ GIG(ψ, χ, λ) to indicate that the
random variable Y follows a generalized inverse Gaussian (GIG) distribution with parameters
(ψ, χ, λ) and density

p(y | ψ, χ, λ) = (ψ/χ)λ/2 yλ−1

2Kλ

(√
ψχ

) exp

{

−ψy + χ/y

2

}

, (1)

for y > 0, where ψ, χ ∈ R
+, λ ∈ R, and Kλ is the modified Bessel function of the third kind

with index λ. There are several special cases of the GIG distribution, such as the gamma
distribution (χ = 0, λ > 0) and the inverse Gaussian distribution (λ = −1/2).

Setting χ = ωη and ψ = ω/η or ω =
√
ψχ and η =

√

χ/ψ, we obtain a different but for
our purposes, more meaningful parameterization of the GIG density,

h(y | ω, η, λ) = (y/η)λ−1

2ηKλ (ω)
exp

{

−ω
2

(

y

η
+
η

y

)}

, (2)
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where η > 0 is a scale parameter, ω > 0 is a concentration parameter and λ is an index
parameter. Herein, we write Y ∽ Ip(ω, η, λ) to indicate that a p-dimensional random variable
Y has the GIG density as parameterized in (2). The GIG distribution has some attractive
properties including the tractability of the following expected values:

E [Y ] = η
Kλ+1 (ω)

Kλ (ω)
,

E [1/Y ] =
1

η

Kλ−1 (ω)

Kλ (ω)
=

1

η

Kλ+1 (ω)

Kλ (ω)
− 2λ

ωη
,

E [log Y ] = log η +
∂

∂v
logKλ (ω) = log η +

1

Kλ (ω)

∂

∂v
Kλ (ω) .

(3)

2.2 Generalized Hyperbolic Distribution

McNeil et al. (2005) give the density of a random variable X following the generalized hy-
perbolic distribution,

f(x | ϑ) =
[

χ+ δ (x,µ | ∆)

ψ +α′∆−1α

](λ−p/2)/2

×
[ψ/χ]λ/2Kλ−p/2

(

√

[ψ +α′∆−1α][χ+ δ(x,µ | ∆)]
)

(2π)p/2 |∆|1/2Kλ

(√
χψ

)

exp
{

(µ− x)′∆−1α
}

,

(4)

where δ (x,µ | ∆) = (x− µ)′ ∆−1 (x− µ) is the squared Mahalanobis distance between x

and µ, and ϑ = (λ, χ, ψ,µ,∆,α) is the vector of parameters. Herein, we use the notation
X ∽ Gp (λ, χ, ψ,µ,∆, α) to indicate that a p-dimensional random variable X has the gener-
alized hyperbolic density in (4). Note that we use ∆ to denote the covariance because, in
this parameterization, we need to hold |∆| = 1 to ensure idenitifiability (cf. Section 2.3).

A generalized hyperbolic random variable X can be generated by combining a random
variable Y ∽ GIG(ψ, χ, λ) and a latent multivariate Gaussian random variableU ∽ N (0,∆)
using the relationship

X = µ+ Yα+
√
YU, (5)

and it follows that X | (Y = y) ∽ N (µ+ yα, y∆). Therefore, from Bayes’ theorem,

f(y | x) = f(x | y)h(y)
f(x)

=

[

ψ +α′∆−1α

χ+ δ (x,µ | ∆)

](λ−p/2)/2
yλ+p/2−1 exp {− [y (ψ +α′∆−1α) + (χ+ δ (x,µ | ∆)) /y] /2}

2Kλ−p/2

(

√

[ψ +α′∆−1α] [χ+ δ (x,µ | ∆)]
) ,

and so we have Y | (X = x) ∽ GIG(ψ +α′∆−1α, χ+ δ (x,µ | ∆) , λ− p/2).
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McNeil et al. (2005) describe a variety of limiting cases for the generalized hyperbolic
distribution. For λ = 1, we obtain the multivariate generalized hyperbolic distribution such
that its univariate margins are one-dimensional hyperbolic distributions, for λ = (p + 1)/2,
we obtain the p-dimensional hyperbolic distribution, and for λ = −1/2, we obtain the inverse
Gaussian distribution. If λ > 0 and χ → 0, we obtain a limiting case of the distribution
known as generalized, Bessel function or variance-gamma distribution (Barndorff-Nielsen,
1978). If λ = 1, ψ = 2 and χ → 0, then we obtain the asymmetric Laplace distribution
(cf. Kotz et al., 2001) and if α = 0, we have the symmetric generalized hyperbolic distri-
bution (Barndorff-Nielsen, 1978). Other special and limiting cases include the multivariate
normal-inverse Gaussian (MNIG) distribution (Karlis and Meligkotsidou, 2007), the skew-t
distribution as well as the multivariate t-, skew-normal, and Gaussian distributions.

2.3 Identifiability and Re-Parameterizations

Suppose we relax the condition that |∆| = 1, in which case we use Σ to denote the covariance
matrix. An identifiability issue arises because the density of X1 ∽ Gp(λ, χ/c, cψ,µ, cΣ, cα)
and X2 ∽ Gp(λ, χ, ψ,µ,Σ, α) is identical for any c ∈ R

+. Using ∆, with |∆| = 1, instead of
Σ, solves this problem but would be prohibitively restrictive for model-based clustering and
classification applications. An alternative approach is to use the relationship in (5) to set
the scale parameter η = 1. This relationship is equivalent to X = µ+ Y ηα+

√
Y ηU = µ+

Y β+
√
YU, where β = ηα, Y ∽ I(ω, 1, λ) and U ∽ N (0,Σ). Under this parameterization,

the density of the generalized hyperbolic distribution is

f(x | θ) =
[

ω + δ (x,µ|Σ)

ω + β′Σ−1β

](λ−p/2)/2 Kλ−p/2

(
√

[

ω + β′Σ−1β
][

ω + δ (x,µ|Σ)
]

)

(2π)p/2 |Σ|1/2Kλ (ω) exp
{

− (x− µ)′ Σ−1β
}
, (6)

and Y | (X = x) ∽ GIG(ω + β′Θ−1β, ω + δ (x,µ|Θ) , λ − p/2). We use G∗

p(λ, ω,µ,Σ,β)
to denote the density in (6) and it is this parameterization that is used when we describe
parameter estimation (Section 3).

3 Parameter Estimation

Parameter estimation is carried out using an expectation-maximization (EM) algorithm
(Dempster et al., 1977). The EM algorithm is an iterative technique that facilitates maxi-
mum likelihood estimation when data are incomplete or treated as being incomplete. In our
case, the missing data comprise the group memberships and the latent variable. We assume
a clustering paradigm so that none of the group membership labels are known. Denote
group memberships by zig, where zig = 1 if observation i is in component g and zig = 0
otherwise. The latent variables Y1, . . . , Yn are assumed to follow GIG distributions and the
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complete-data log-likelihood is given by

lc(ϑ | x,y, z) =
n

∑

i=1

G
∑

g=1

zig

[

log πg +

p
∑

j=1

log φ
(

xi | µg + yiαg, yiΣg

)

+ log h(yi | ωg, λg)

]

= C − 1

2

n
∑

i=1

G
∑

g=1

zig log
∣

∣Σ−1
g

∣

∣+
n

∑

i=1

G
∑

g=1

zig log h(yi | ωg, λg)

− 1

2
tr

{

G
∑

g=1

Σ−1
g

n
∑

i=1

zig

[

1

yi
(xi − µg)(xi − µg)

′ − (xi − µg)α
′

g −αg(xi − µg)
′ + yiαα′

]

}

,

where C does not depend on the model parameters.
In the E-step, the expected value of the complete-data log-likelihood is computed. Be-

cause our model is from the exponential family, this is equivalent to replacing the sufficient
statistics of the missing data by their expected values in lc(ϑ | x,w, z), where the missing
data are the latent variables and the group membership labels. These two sources of miss-
ing data are independent and so we are only required to calculate the marginal conditional
distribution for the latent variable and group memberships given the observed data. We
require following expectations:

E [Zig | xi] =
πgf(xi | θg)

∑G
h=1 πhf(xi | θh)

=: ẑig,

E [Wi | xi, Zig = 1] = η
Kλ+1(ω)

Kλ(ω)
=: aig,

E [1/Wi | xi, Zig = 1] =
1

η

Kλ+1(ω)

Kλ(ω)
− 2λ

ωη
=: big,

E [log(Wi) | xi, Zig = 1] = log η +
1

Kλ (ω)

∂

∂v
Kλ (ω) =: cig,

and we use the notation ng =
∑n

i=1 ẑig, Ag = (1/ng)
∑n

i=1 ẑigai, Bg = (1/ng)
∑n

i=1 ẑigbi, and
Cg = (1/ng)

∑n
i=1 ẑigci hereafter.

In the M-step, we maximize the expected value of the complete-data log-likelihood to
get the updates for the parameter estimates. The update for the mixing proportions is
π̂g =

∑n
i=1 ẑig/n. Updates for µg and αg are given by

µ̂g =

∑n
i=1 xiẑig(Agbig − 1)

∑n
i=1 ẑig(Agbig − 1)

and α̂g =

∑n
i=1 xiẑig(big − Bg)

∑n
i=1 ẑig(Agbig − 1)

,

respectively.
The update for Σg is given by

Σ̂g =
1

ng

n
∑

i=1

ẑigbig(xi − µ̂g)(xi − µ̂g)
′ − α̂g

(

xg − µ̂g

)

′ −
(

xg − µ̂g

)

(α̂g)
′ + Agα̂g(α̂g)

′, (7)
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where xg = (1/ng)
∑n

i=1 zigxi. To demonstrate that Σ̂g is positive-definite, first note that

1

E [Wi]
≤ E

[

1

Wi

]

for all i = 1, . . . , n, from Jensen’s inequality. It follows that 1/aig ≤ big and so

Ag =
1

n

∑

i=1

ẑigaig ≥
1

n

∑

i=1

ẑig
big
.

Now, by replacing Ag with (1/n)
∑n

i=1(ẑig/big), we obtain

Σ∗

g =
1

ng

n
∑

i=1

zigbig

(

xi − µ̂g −
1

big
α̂g

)(

xi − µ̂g −
1

big
α̂g

)

′

and the inequality
Σ̂g � Σ∗

g ≻ 0

holds, ensuring that Σ̂g is positive-definite.
To update ωg and λg we maximize the function

qg(ωg, λg) = − log (Kλ (ω)) + (λ− 1)Cg −
ω

2
(Ag +Bg) ,

using a general optimization routine via the optim package for R.
The Aitken acceleration (Aitken, 1926) can used to estimate the asymptotic maximum of

the log-likelihood at each iteration of an EM algorithm and thereby to determine convergence.
The Aitken acceleration at iteration k is

a(k) =
l(k+1) − l(k)

l(k) − l(k−1)
,

where l(k) is the log-likelihood at iteration k. An asymptotic estimate of the log-likelihood
at iteration k + 1 is

l(k+1)
∞

= l(k) +
1

1− a(k)
(l(k+1) − l(k)),

and the algorithm can be considered to have converged when l
(k)
∞ − l(k) < ǫ (Böhning et al.,

1994; Lindsay, 1995). This criterion is used for the analyses in Section 4, with ǫ = 10−2.
In many practical applications, the number of mixture components G is unknown. In our

illustrative data analyses (Section 4), G is treated as unknown and the Bayesian information
criterion (BIC; Schwarz, 1978) is used to select it. The BIC can be written as BIC = 2l(x, θ̂)−
ρ log n, where l(x, θ̂) is the maximized log-likelihood, θ̂ is the maximum likelihood estimate
of θ, ρ is the number of free parameters in the model, and n is the number of observations.
The use of the BIC for mixture model selection has been motivated through Bayes factors
(Kass and Raftery, 1995; Kass and Wasserman, 1995; Dasgupta and Raftery, 1998) and has
become popular due to its widespread use within the Gaussian mixture modelling literature.
While many alternatives have been proffered, none have proved superior.
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Table 1: Mean parameter estimates from the application of our mixture of generalized hy-
perbolic distributions to 100 simulated data sets from a two-component mixture of Gaussian
distributions.

g = 1 g = 2
True Estimated True Estimated

µg (3.00, 3.00) (2.91, 2.97) (−3.00,−3.00) (−2.74,−3.14)
αg (0.00, 0.00) (0.09, 0.03) (0.00, 0.00) (−0.26, 0.14)
Σg (1.00,−0.75, 1.00) (0.96,−0.72, 0.98) (1.00,−0.75, 1.00) (0.98,−0.74, 0.99)
ωg 0.00 0.00 0.00 0.00
λg → −∞ −96.38 → −∞ −94.98

4 Data analyses

4.1 Overview

The mixture of generalized hyperbolic distributions model is illustrated on simulated and
real data. We consider cluster analyses, but these mixture models could equally well be
applied for semi-supervised classification, discriminant analysis, or density estimation. In
each of our clustering analyses, the true classifications are known but treated as unknown for
illustration. While this sort of synthetic clustering example may not be considered quite akin
to real clustering, it is representative of what has become the norm with the model-based
clustering literature. Furthermore, the real data sets that we use are selected because of
their popularity as benchmark data sets within the aforesaid literature.

Because we know the true group memberships, we can assess the performance of these
mixture models in terms of classification accuracy, which we measure using the adjusted
Rand index (ARI; Rand, 1971; Hubert and Arabie, 1985). The ARI has expected value 0
under random classification and takes the value 1 for perfect class agreement. Negative values
of the ARI indicate classification worse than would be expected under random classification.

4.2 Simulated data analyses

To illustrate the flexibility of our mixture of generalized hyperbolic distributions model and
the efficacy of EM algorithm model fitting, they were applied to data simulated from a
mixture of Gaussian distributions and a mixture of skew-t distributions. In each case, 100
two-component data sets were simulated with n1 = n2 = 250 and the models were fitted
within the model-based clustering paradigm for G = 1, . . . , 5. In all cases, a G = 2 com-
ponent model was selected, perfect classification results were obtained, and the parameter
estimates are close to the true values (Tables 1 and 2).
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Table 2: Mean parameter estimates from the application of our mixture of generalized
hyperbolic distributions to 100 simulated data sets from a two-component mixture of skew-t
distributions.

g = 1 g = 2
True Estimated True Estimated

µg (3.00, 3.00) (2.95, 3.04) (−3.00,−3.00) (−2.89,−3.11)
αg (2.00,−2.00) (2.05,−2.06) (−1.00, 1.00) (−1.30, 1.36)
Σg (1.00,−0.75, 1.00) (0.99,−0.74, 0.98) (1.00,−0.75, 1.00) (1.01,−0.76, 1.01)
ωg 0.00 0.00 0.00 0.00
λg −4.00 −4.12 −10.00 −10.51

Table 3: Classifications for the chosen mixture of generalized hyperbolic distributions and
Gaussian mixture model for the crabs data.

Gen. Hyperbolic Gaussian
1 2 3 4 1 2

Blue
Male 39 11 21 29
Female 50 26 24

Orange
Male 50 24 26
Female 4 46 9 41

4.3 Real data analyses

4.3.1 Leptograpus crabs data

Campbell and Mahon (1974) reported data on five biological measurements of 200 crabs
from the genus leptograpus. The data were collected in Fremantle, Western Australia and
comprise 50 male and 50 female crabs for each of two species: orange and blue. The data
were sourced from the MASS library for R which contains data sets from Venables and Ripley
(1999). These data were used by Raftery and Dean (2006) to illustrate the performance of
a variable selection technique for model-based clustering.

Mixtures of generalized hyperbolic distributions were fitted to these data forG = 1, . . . , 10.
The model chosen by the BIC had G = 4 components and the resulting MAP classifications
gave ARI=0.82. For a Gaussian mixture model fitted over the same range of G, the BIC
chose a G = 2 component model that classification performance akin to guessing (ARI=0.03;
cf. Table 3). The performance of our mixture of generalized hyperbolic distributions on these
data compares favourably with other analyses throughout the literature. For example, the
famous MCLUST models (Fraley and Raftery, 2002) select a G = 10 component model with
ARI=0.46.
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Table 4: Classifications for the chosen mixture of generalized hyperbolic distributions and
Gaussian mixture model for the Italian wine data.

Gen. Hyperbolic Gaussian
1 2 3 1 2

Barolo 58 1 59
Grignolino 1 70 3 68
Barbera 1 47 48

4.3.2 Italian wine data

Forina et al. (1986) reported chemical and physical measurements on three varieties (Barolo,
Grignolino, Barbera) of wine from the Piedmont region of Italy. There are 178 samples and
thirteen measurements available within the gclus package (Hurley, 2004) for R. Mixtures
of generalized hyperbolic distributions were fitted to these data for G = 1, . . . , 10. The
BIC selected a G = 3 component model with ARI=0.95. Mixtures of Gaussian distribu-
tions were fitted over the same range of G and the BIC selected a G = 2 component model
with ARI=0.55. Again, the classification performance of our mixture of generalized hyper-
bolic distributions is favourable compared to the state-of-the-art. To illustrate this point,
MCLUST selects G = 10 component model with ARI=0.48.

5 Discussion

A mixture of generalized hyperbolic distributions has been introduced. Parameter estima-
tion, via an EM algorithm, was enabled by exploitation of the relationship with the GIG
distribution. The mixture models were illustrated in two real clustering applications where
they outperformed Gaussian mixture models and performed favourably when considered in
the context of the wider literature. Although illustrated for clustering, mixtures of general-
ized hyperbolic distributions can also be applied for semi-supervised classification, discrimi-
nant analysis, and density estimation. They represent perhaps the most flexible in a series
of alternatives to the Guassian mixture models for clustering and classification. What sets
the mixture of generalized hyperbolic distributions apart from other alternatives is its role
as a superclass containing the others as special or limiting cases (cf. Section 2.2).

The distinguishing parameters of the generalized hyperbolic distributions are the con-
centration parameter ω and the shape parameter λ. These two parameters arise from the
latent GIG variable. The concentration parameter is similar to the degrees of freedom in
the t-distribution in that it allows the shifting of density from the tails of the distribution to
the central mode, which is the mean if the skewness is zero. Multivariate distributions with-
out a concentration parameter, such as the the shifted asymmetric Laplace distribution and
the Gaussian distribution, can try to shift density in this way using their scale parameter;
however, this approach can often fail due to outliers.
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The precise impact of a superclass on what may become general practice is currently
open for debate. Certainly, we do not suggest that one should use our mixtures of general-
ized hyperbolic approaches exclusively, completely ignoring more well-established approaches
such as Gaussian mixtures. However, results obtained to date suggest that application of
mixtures of generalized hyperbolic in real cluster analyses can outperform its special cases
and this should not be ignored. Future work will focus on the introduction of parsimony
to mixtures of generalized hyperbolic distributions and a detailed study comparing the re-
sulting families to their special-case counterparts. Parsimony can be achieved by imposing
constraints on the Σ1, . . . ,ΣG, which is a somewhat natural approach because, for all but
very small p, most of the model parameters are there. These constraints could be in the form
of an eigen-decomposition, as used by MCLUST. There is also the possibility of considering a
generalized hyperbolic analogue of the mixture of factor analyzers (Ghahramani and Hinton,
1997; McLachlan and Peel, 2000) or mixture of common factors (Baek et al., 2010).

Before we could consider mixtures, an identifiability issue around generalized hyperbolic
distributions needed to be overcome in a fashion that would not be prohibitive for clustering
and classification. The re-parameterization that we used in Section 2.3 allowed us to relax
the restriction that |Σ| = 1 and thereby obtain meaningful clustering results. However, if
one wanted to look beyond clustering or classification results to interpreting the estimated
value of the skewness parameter α, another parameterization would be required. To see why,
consider X ∽ G∗

p(λ, ω,µ,Σ,β) and note that E[X] = µ+α; the consequences are apparent
by comparison of µg + αg and µ̂g + α̂g in Tables 1 and 2. To allow proper interpretation
of α, again set ω =

√
χψ but now fix

E [W ] =

√

χ

ψ

Kλ+1

(√
χψ

)

Kλ

(√
χψ

) = 1,

which allows proper interpretation of the skewness parameter α while also forcing

ψ = ω
Kλ+1

(√
χψ

)

Kλ

(√
χψ

) and χ = ω
Kλ

(√
χψ

)

Kλ+1

(√
χψ

) .
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