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Abstract

This paper reconsiders the problem of calculating the expected set of probabilities 〈pi〉,

given the observed set of items {mi}, that are distributed among n bins with an (unknown)

set of probabilities {pi} for being placed in the ith bin. The problem is often formulated

using Bayes theorem and the multinomial distribution, along with a constant prior for the

values of the pi, leading to a Dirichlet distribution for the {pi}. The moments of the pi

can then be calculated exactly. Here a new approach is suggested for the calculation of the

moments, that uses a change of variables that reduces the problem to an integration over

a portion of the surface of an n-dimensional sphere. This greatly simplifies the calculation

by allowing a straightforward integration over (n − 1) independent variables, with the

constraints on the set of pi being automatically satisfied. For the Dirichlet and similar

distributions the problem simplifies even further, with the resulting integrals subsequently
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factorising, allowing their easy evaluation in terms of Beta functions. A proof by induction

confirms existing calculations for the moments. The advantage of the approach presented

here is that the methods and results apply with minimum or no modifications to numerical

calculations that involve more complicated distributions or non-constant prior distributions,

for which cases the numerical calculations will be greatly simplified.

1 Introduction

Many problems involve placing N objects into n bins, with probabilities pi for the object being

placed into the ith bin. Given the values of the set of {pi}, the probability density P (m1, m2, ..., mn|p1, p2, ..., pn)

for the distribution of the set of {mi} objects can be calculated, and is well-know as the multi-

nomial distribution,

P (m1, m2, ..., mn|p1, p2, ..., pn) =
N !

m1!m2!...mn!
Πn

i=1p
mi

i (1)

with the constraint that
∑n

i=1 pi = 1 and
∑n

i=1mi = N . Bayes theorem, P (A|B)P (B) =

P (B|A)P (A) requires,

P (p1, p2, ..., pn|m1, m2, ..., mn)P (m1, m2, ..., mn) = P (m1, m2, ..., mn|p1, p2, ..., pn)P (p1, p2, ..., pn)

(2)

that in principle allows us to calculate P (p1, p2, ..., pn|m1, m2, ...mn), the probability of the set

of probabilities {pi} with i = 1 to i = n, given the observed set of {mi}. Often in such prob-

lems, P (p1, p2, ..., pn) is taken to be constant, and P (m1, m2, ..., mn) is chosen to ensure that

P (p1, p2, ..., pn) is correctly normalised [1]. Applying this approach to the multinomial distribu-

tion, leads to a Dirichlet distribution, for which exactly calculated moments can be obtained. A
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recent approach to this problem by Friedman [2], relied on an identity discovered by Gauss that

involves the integral representation of the hypergeometric distribution. The same is true of a

recent exact calculation that corrects conjectured but widely used mark-recapture estimates [3],

this and the coincidental timing of its revision on arXiv are what brought this problem to the

author’s attention.

Here an alternative method of calculation is considered. I suggest a change of variables that

elegantly leads to a simple calculation for the moments of the {pi}, and confirms existing results.

The advantage of the method is that it can be applied very generally, and allows comparatively

straightforward numerical integrations for the most general situations when analytical solutions

may not be possible. The crux of the problem is the integration of a function over all possible

values of pi between 0 and 1, subject to the constraint of
∑n

i=1 pi = 1. This appears in many

situations, the specific case considered here is the product Πn
i=1p

mi

i that arises in the Binomial,

Multinomial, and Dirichlet distributions for example.

2 The Calculation

Consider the integration of the product Πn
i=1p

mi

i , over all sets of values of the pi, subject to the

constraints of 0 ≤ pi ≤ 1 for all i, and
∑n

i=1 pi = 1. In Casella and Berger [4], the moments

are obtained by a delightful trick (page 181), that simplifies the problem to integration over a

binomial distribution. In Friedman [2] the integral is accomplished by a nested set of integrals,

each of which depends on the calculation of the integrals within it, with for n = 3 for example,

I3 =
∫ 1

p1=0
dp1

∫ 1−p1

p2=0
dp2p

m1

1 pm2

2 (1− p1 − p2)
m3 (3)
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where
∑3

i=1 pi = 1 has been used to write p3 = 1−p1−p2. Here I start in a similar way, writing,

Πn
i=1p

mi

i =

(

1−
n−1
∑

i=1

pi

)mn

Πn−1
i=1 p

mi

i (4)

that for n = 3 is pm1

1 pm2

2 (1 − p1 − p2)
m3 . Eq. 4 recognises that the constraint of

∑n
i=1 pi = 1

leads to (n − 1) free parameters, or 2 free parameters for n = 3. For a radius of r = 1 the

n-dimensional polar co-ordinates are:

x1(n) = cos θ1

x2(n) = sin θ1 cos θ2

x3(n) = sin θ1 sin θ2 cos θ3

... ...

xn−1(n) = sin θ1 sin θ2... sin θn−2 cos θn−1

xn(n) = sin θ1 sin θ2... sin θn−2 sin θn−1

(5)

Notice that xi(n) and xi(n)
2 will vary continuously between 0 and 1 as the set of θi are varied

continuously between 0 and π/2. Also notice that
∑n

i=1 xi(n)
2 = 1, and consequently that

xn(n)
2 = 1 −

∑n−1
i=1 xi(n)

2. Therefore the substitutions of p1 = x1(n)
2, p2 = x2(n)

2, ... ,

pn−1 = xn−1(n)
2, will ensure that

∑n
i=1 pi = 1, and integrals over θi from θi = 0 to π/2 will

allow pi to vary continuously over all values between 0 and 1.

Note that the constraint of
∑n

i=1 pi = 1 leads to (n − 1) free parameters, that after the

change of variables, correspond to the set of θi with i = 1 to (n−1). Also note that although we

are using polar co-ordinates in n dimensions, because we have set r = 1, there are only (n− 1)

free parameters.

The Jacobian of the co-ordinate transformation is J = |∂xi(n)
2/∂θj |. Notice from Eq. 5
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that ∂xi(n)
2/∂θj = 0 for j > i. Consequently the determinant has zeros above the diagonal,

and will evaluate easily to give J = Πn−1
i=1 |∂xi(n)

2/∂θi|.

Before proceeding to the general case, consider again the case with n = 3, for which case,

x1(3) = cos θ1

x2(3) = sin θ1 cos θ2

x3(3) = sin θ1 sin θ2

(6)

The product
(

1−
∑n−1

i=1 pi
)mn

Πn−1
i=1 p

mi

i becomes, after the change of variables,

(1− p1 − p2)
m3 pm1

1 pm2

2 =
(

sin2 θ1 sin
2 θ2

)m3

(cos2 θ1)
m1

(

sin2 θ1 cos
2 θ2

)m2

=
(

cos2m1 θ1 sin
2(m2+m3) θ1

) (

cos2m2 θ2 sin
2m3 θ2

)

(7)

The Jacobian is,

J =

∣

∣

∣

∣

∣

∣

∣

∣

∣

−2 cos θ1 sin θ1 0

2 sin θ1 cos θ1 cos
2 θ2 −2 sin2 θ1 sin θ2 cos θ2

∣

∣

∣

∣

∣

∣

∣

∣

∣

=
(

2 cos θ1 sin
3 θ1

)

(2 sin θ2 cos θ2)

(8)

Therefore using Eqs. 7 and 8 the integral in Eq 3 can be equivalently calculated from,

I3 =
∫ π/2

0
dθ1

∫ π/2

0
dθ2

(

cos2m1 θ1 sin
2(m2+m3) θ1

) (

cos2m2 θ2 sin
2m3 θ2

) (

2 cos θ1 sin
3 θ1

)

(2 sin θ2 cos θ2)

(9)

This integral factorises into,

I3 =

(

2
∫ π/2

0
dθ1 cos

2(m1+1)−1 θ1 sin
2(m2+m3+2)−1 θ1

)(

2
∫ π/2

0
dθ2 cos

2(m2+1)−1 θ2 sin
2(m3+1)−1 θ2

)

(10)

the above Eq. 10 will be used as a starting point for a proof by induction for the general case

later.
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Many readers will immediately recognise the integrals as Beta functions, and it is well known

that,

2
∫ π/2

0
dθ cos2m−1 θ sin2n−1 θ = B(m,n) =

Γ(m)Γ(n)

Γ(m+ n)
(11)

Consequently I3 is easily evaluated as,

I3 =
Γ(m1 + 1)Γ(m2 +m3 + 2)

Γ(m1 +m2 +m3 + 3)

Γ(m2 + 1)Γ(m3 + 1)

Γ(m2 +m3 + 2)
(12)

Cancelling terms and writing in terms of factorials this gives,

I3 =
m1!m2!m3!

(m1 +m2 +m3 + 2)!
(13)

For non-integer mi Eq. 11 must be left written in terms of Gamma functions.

If we now wish to calculate 〈p1〉 for example, we simply need to evaluate I3(m1+1, m2, m3)/I3(m1, m2, m3) =

(m1 + 1)/(m1 + m2 + m3 + 3) = (m1 + 1)/(N + 3) with N = m1 + m2 + m3, as found by

Friedman. Other moments are easily calculated in a similar way.

For the general case, consider the formulae,

In =
∫ π/2

0
dθ1

∫ π/2

0
dθ2...

∫ π/2

0
dθn−1Π

n−1
j=1Kj(n) (14)

Kj(n) = 2 cos2(mj+1)−1(θj) sin
2
∑n

l=j+1
(1+ml)−1(θj) (15)

where I note that
∑n

l=j+1(1 +ml) = (n− j) +
∑n

l=j+1ml, and the dependency on n of Kj(n) is

through the upper limit in the sum. Note that Eqs. 14 and 15 are true for n = 3, as can be seen

by comparison with Eq. 10. I will assume this is true for n = k then show that this implies it is

true for n = k + 1, and consequently for all k ≥ 3 by induction.
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Firstly consider the integral with n = k. For n = k the change of variables is,

p1 = x1(n)
2 = cos2 θ1

p2 = x2(n)
2 = sin2 θ1 cos

2 θ2

p3 = x3(n)
2 = sin2 θ1 sin

2 θ2 cos
2 θ3

... ...

pk−1 = xk−1(n)
2 = sin2 θ1 sin

2 θ2... sin
2 θk−2 cos

2 θk−1

pk = xk(n)
2 = sin2 θ1 sin

2 θ2... sin
2 θk−2 sin

2 θk−1

(16)

and the integrand is Πk
i=1p

mi

i , with a Jacobian that as noted previously, simplifies to J =

Πk−1
i=1 |∂(xi(k)

2)/∂θi|. This gives the integral Ik as,

Ik =
∫ π/2

0
dθ1...

∫ π/2

0
dθk−1Π

k
i=1xi(k)

2miΠk−1
j=1

∣

∣

∣∂xj(k)
2/∂θj

∣

∣

∣ (17)

Now consider n = k + 1, for which the change of variables is,

p1 = x1(n)
2 = cos2 θ1

p2 = x2(n)
2 = sin2 θ1 cos

2 θ2

p3 = x3(n)
2 = sin2 θ1 sin

2 θ2 cos
2 θ3

... ...

pk−1 = xk−1(n)
2 = sin2 θ1 sin

2 θ2... sin
2 θk−2 cos

2 θk−1

pk = xk(n)
2 = sin2 θ1 sin

2 θ2... sin
2 θk−2 sin

2 θk−1 cos
2 θk

pk+1 = xk+1(n)
2 = sin2 θ1 sin

2 θ2... sin
2 θk−2 sin

2 θk−1 sin
2 θk

(18)

and the integral Ik+1 is,

Ik+1 =
∫ π/2

0
dθ1...

∫ π/2

0
dθkΠ

k+1
i=1 xi(k + 1)2miΠk

j=1

∣

∣

∣∂xj(k + 1)2/∂θj
∣

∣

∣ (19)
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Now notice that for i = 1 to i = (k−1), xi(k) = xi(k+1). For i = k, xk(k+1) = xk(k) cos
2 θk.

Therefore,

Πk+1
i=1 xi(k + 1)2mi = Πk

i=1xi(k)
2mi cos2mk(θk)xk+1(k + 1)

= Πk
i=1xi(k)

2mi cos2mk(θk) sin
2mk+1(θ1) sin

2mk+1(θ2)... sin
2mk+1(θk)

(20)

Similarly the Jacobian can be written as,

J = Πk
i=1

∣

∣

∣

∂
∂θi

(xi(k + 1)2)
∣

∣

∣

=
∣

∣

∣

∂
∂θk

(xk(k + 1)2)
∣

∣

∣Πk−1
i=1

∣

∣

∣

∂
∂θi

(xi(k)
2)
∣

∣

∣

= −2 sin2(θ1) sin
2(θ2)... sin

2(θk−1) sin(θk) cos(θk)Π
k−1
i=1

∣

∣

∣

∂
∂θi

(xi(k)
2)
∣

∣

∣

(21)

Therefore we have,

Ik+1 =
∫ π/2
0 dθ1...

∫ π/2
0 dθk−1

∫ π/2
0 dθkΠ

k
i=1xi(k)

2Πk−1
i=1

∣

∣

∣

∂xi(k)2

∂θi

∣

∣

∣

sin2(mk+1+1)(θ1)... sin
2(mk+1+1)(θk−1)2 cos

2(mk+1+1)−1(θk) sin
2(mk+1+1)−1(θk)

(22)

Comparing Eq. 17 with the assumption of Eq. 14, we find,

Πk
i=1xi(k)

2miΠk−1
i=1

∣

∣

∣

∣

∣

∂xi(k)
2

∂θi

∣

∣

∣

∣

∣

= Πk−1
i=1Kj(k) (23)

with Kj(k) given by Eq. 15. Under this assumption the integrand of Eq. 22 can be written as,

[

2 cos2(mk+1+1)−1(θk) sin
2(mk+1+1)−1(θk)

]

Πk−1
i=1

[

Kj(k) sin
2(mk+1+1)(θj)

]

(24)

Note that,

Kj(k) sin
2(mk+1+1)(θj) = 2 cos2(mj+1)−1(θj) sin

2
∑k+1

l=j+1
(1+ml)−1

(θj)

= Kj(k + 1) for 1 ≤ j ≤ (k − 1)

(25)

The extra factor in Eq. 24 is,

2 cos2(mk+1+1)−1(θk) sin
2(mk+1+1)−1(θk) = Kk(k + 1) (26)
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Therefore we have,

Ik+1 =
∫ π/2

0
dθ1...

∫ π/2

0
dθkΠ

k
i=1Ki(k + 1) (27)

which is just Eq. 14 with n = (k + 1), and Ki(k + 1) as given by Eq. 15. Since we’ve shown

Eq. 27 to be true for n = 3 and that its truth for n = k implies it to be true for n = (k + 1),

then by induction Eqs. 14 and 15 are true for all n ≥ 3.

Eq. 27 is easy to evaluate. Because θi only appears in Ki(k + 1), the integral factors into,

Ik+1 = Πk
i=1

∫ π/2

0
dθiKi(k + 1) (28)

Noting Eq. 15 for Ki(k + 1), each of the integrals can be recognised as a Beta function, with,

∫ π/2
0 dθiKi(k + 1) = 2

∫ π/2
0 cos2(mi+1)−1(θi) sin

2
∑k+1

l=i+1
(1+ml)−1(θi)

=
Γ(mi+1)Γ

(

∑k+1

l=i+1
(1+ml)

)

Γ

(

∑k+1

l=j
(1+ml)

)

(29)

where in the denominator of the last line we used mi +1+
∑k+1

l=i+1(1+ml) =
∑k+1

l=i (1+ml). To

obtain an explicit value for the integral, now we simply need to multiply out the terms, with,

Ik+1 =
Γ(m1+1)Γ

(

∑k+1

l=2
(1+ml)

)

Γ

(

∑k+1

l=1
(1+ml)

) ×
Γ(m2+1)Γ

(

∑k+1

l=3
(1+ml)

)

Γ

(

∑k+1

l=2
(1+ml)

) × ...

...× Γ(mk−1+1)Γ(mk+mk+1+2)
Γ(mk−1+mk+mk+1+3)

× Γ(mk+1)Γ(mk+1+1)
Γ(mk+mk+1+2)

(30)

Cancelling successive terms, leaves,

Ik+1 =
Γ(m1 + 1)Γ(m2 + 1)...Γ(mk + 1)Γ(mk+1 + 1)

Γ
(

∑k+1
l=1 (1 +ml)

) (31)

which when written in terms of factorials and N =
∑k+1

l=1 ml, gives,

Ik+1 =
m1!m2!...mk+1!

(N + k)!
(32)
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For non-integral values of mi the Eq. 32 must be remain expressed in terms of Gamma functions.

Note that the above expression (32) is for n = k+1, and usually we will evaluate it with n = k,

for which case Ik = m1!m2!...mk!/(N + k − 1)!.

To obtain the qth moment of pi one simply needs to substitute (mi + q) for mi in Ik, and

calculate the ratio of Ik(mi + q)/Ik(mi), whose meaning is hopefully clear. For example, 〈pi〉 is

given by,

〈pi〉 =
m1!m2!...(mi + 1)!...mk!

(N + k)!

(N + k − 1)!

m1!m2!...mk!
=

mi + 1

N + k
(33)

where the notation 〈pi〉 is used to denote the moment of pi when there are k “bins”. Similarly,

〈p2i 〉 =
m1!m2!...(mi + 2)!...mk!

(N + k + 1)!

(N + k − 1)!

m1!m2!...mk!
=

(mi + 2)(mi + 1)

(N + k + 1)(N + k)
(34)

Giving the standard deviation as,

〈p2i 〉 − 〈pi〉
2 =

(mi + 1)(N + k −mi − 1)

(N + k)2(N + k + 1)
(35)

These results are in agreement with those of Friedman. Higher order moments are also easily

calculated. The difference of the skewness from zero for example, can give an indication of

the extent to which noise in the data should be regarded as non-Gaussian. Note that because

∑n
i=1 pi = 1, then,

1 =
∫

D dp1...dpk−1

(

∑k
i=1 pi

)

P (p1, ..., pk|m1, ..., mk)

=
∑k

i=1〈pi〉

(36)

where D is used as shorthand to indicate that the integral should be over the correct domain of

integration subject to the constraint of
∑n

i=1 pi = 1. Eq. 36 is correctly satisfied by Eq. 33.
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3 Remarks

There are a variety of distributions in which the {pi} only appear in a factor of Πn
i=1p

mi

i , and

the results here apply to those cases also. More generally the probability distribution or its prior

could involve any function of {pi}. For example, we might want to introduce a suitable prior

into the problem so as to bias against ”outliers”, or towards a particular set of {pi}. In these

more general cases the change of variables to n-dimensional spherical polars will still allow a

comparatively straightforward numerical integral. A numerical integral over the {pi} subject to

0 ≤ pi ≤ 1 and
∑n

i=1 pi = 1, without the change of variables to spherical polars, is not so easy.

For some combinations of priors and probability distributions the integral will remain factorisable

after the change of variables. This might continue to be useful for other analytical calculations.
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