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Abstract

We consider the problem of clustering a set of high-dimensional data points into sets of
low-dimensional linear subspaces. The number of subspaces, their dimensions, and their ori-
entations are unknown. We propose a simple and low-complexity clustering algorithm based
on thresholding the correlations between the data points followed by spectral clustering. A
probabilistic performance analysis shows that this algorithm succeeds even when the subspaces
intersect, and when the dimensions of the subspaces scale (up to a log-factor) linearly in the
ambient dimension. Moreover, we prove that the algorithm also succeeds for data points that
are subject to erasures with the number of erasures scaling (up to a log-factor) linearly in the
ambient dimension. Finally, we propose a simple scheme that provably detects outliers.

1 Introduction

Suppose we are given a set X of N data points in R
m, and assume that X = X1 ∪ ... ∪ XL ∪ O,

where the points in Xl lie in a (low-dimensional) linear subspace Sl of R
m, and O denotes a set of

outliers. The association of the data points with the sets Xl and O, the number of subspaces L,
their dimensions dl, and their orientations are all unknown. We consider the problem of clustering
the data points, i.e., of finding the assignments of the points in X to the sets Xl and O. Note
that once these associations have been identified, it is straightforward to extract the subspaces
Sl through principal component analysis (PCA). The problem we consider is known as subspace
clustering and has applications in, e.g., unsupervised learning, image processing, disease detection,
and, in particular, computer vision, see, e.g., [1] and references therein. Numerous approaches to
subspace clustering are known. We refer to [1] for an excellent overview.

Spectral clustering (SC) methods (see [2] for an introduction) have found particularly widespread
use. At the heart of SC lies the construction of an adjacency matrix A ∈ R

N×N , with the (i, j)th
entry of A measuring the similarity between the data points xi,xj ∈ X . A typical similarity mea-
sure is, e.g., e−dist(xi,xj), where dist(·, ·) is some distance measure [1]. Taking G to be the graph
with adjacency matrix A, the association of the points in X to the sets Xl (outliers are typically
removed in a preprocessing step) is obtained by finding the connected components in G, accom-
plished via singular value decomposition of the Laplacian of G followed by k-means clustering [2].
Whether a SC algorithm, or for that matter, any clustering algorithm, succeeds depends on the
number of subspaces L, their dimensions and relative orientations, and the number of points in each
subspace. Analytic results on the performance of SC methods are scarce. A notable exception is
the sparse subspace clustering (SSC) algorithm, recently introduced by Elhamifar and Vidal [3, 4].
At the heart of this algorithm lies a clever construction of A that uses ideas from sparse signal
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recovery. Soltanolkotabi and Candès [5] presented an elegant (geometric function) analysis of SSC
and proved that SSC succeeds under very general conditions. Most importantly, it is shown in
[5], using a probabilistic analysis, that SSC succeeds even when the subspaces Sl intersect, which
means the Sl do not need to be independent or disjoint1. Moreover, Soltanolkotabi and Candès
[5] provide a clever extension of SSC that provably detects outliers. To construct the adjacency
matrix A SSC requires the solution of N ℓ1-minimization problems, each in N unknowns; this can
pose significant computational challenges for large data sets.

Contributions: We introduce an algorithm, termed thresholding based subspace clustering
(TSC), which applies spectral clustering to an adjacency matrix A obtained by thresholding corre-
lations between the data points in X . TSC is shown to succeed even when the subspaces intersect,
and when their dimensions scale (up to a log-factor) linearly in the ambient dimension. While SSC
shares these desirable properties, TSC is computationally much less demanding, as the construction
of the adjacency matrix A in the TSC algorithm requires the computation of N2 inner products
followed by thresholding only. Moreover, the performance analysis of TSC, thanks to the algo-
rithm’s simplicity, does not need sophisticated mathematical tools; it is based on fairly standard
concentration results for order statistics only.

In practical applications the data points to be clustered are often subject to erasures, caused by,
e.g., scratches on images. The literature is essentially void of corresponding analytic performance
results. We prove that TSC succeeds even when the data points in X are subject to massive
erasures. Specifically, the number of erasures is allowed to scale (up to a log-factor) linearly in
the ambient dimension. We finally propose a simple scheme that provably detects outliers, and
we corroborate our findings by numerical results. Proofs of the theorems in this paper, results on
clustering noisy data points, and numerical results for real data sets are provided in [6].

We finally note that Lauer and Schnorr [7] also apply SC to an adjacency matrix constructed
from correlations between data points, albeit, without thresholding. Moreover, no analytic perfor-
mance results are available for the algorithm in [7].

Notation: We use lowercase boldface letters to denote (column) vectors, e.g., x, and uppercase
boldface letters to designate matrices, e.g., A. For the vector x, [x]q and xq denote the qth entry
and for the matrix A, Aij stands for the entry in the ith row and jth column. The spectral norm

of A is ‖A‖2→2 := max‖v‖
2
=1 ‖Av‖2, its Frobenius norm is ‖A‖F :=

√

∑

i,j(Aij)2, and I denotes

the identity matrix. The superscript T stands for transposition and log(·) for the natural logarithm.
The cardinality of the set T is |T |. We write N (µ,Σ) for a Gaussian random vector with mean µ

and covariance matrix Σ. The unit sphere in R
m is Sm−1 := {x ∈ R

m : ‖x‖2 = 1}.

2 The TSC algorithm

The formulation introduced below assumes that outliers have already been removed from X , e.g.,
through the outlier detection scheme in Sec. 5. Given a set of data points2 X and the parameter q
(the choice of q is discussed below), the TSC algorithm consists of the following steps:

1The linear subspaces Sl are called disjoint if Sl ∩ Sk = {0} for all l 6= k, and independent if dim(⊕lSl) =
∑

l
dl,

where ⊕ stands for direct sum. An independent set of subspaces is disjoint, but the converse is not necessarily true.
Two subspaces are said to intersect if Sl ∩ Sk 6= {0}.

2We assume the data points to be either normalized or to be of comparable norm. This assumption is not restrictive
as the data points can be normalized prior to clustering.
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Step 1: For every xj ∈ X , identify the set Tj ⊂ {1, ..., N} \ j of cardinality q such that

|〈xj ,xi〉| ≥ |〈xj ,xp〉| for all i ∈ Tj and all p /∈ Tj (1)

and let zj ∈ R
N be the vector with ith entry |〈xj,xi〉| if i ∈ Tj, and 0 if i /∈ Tj. Construct the

adjacency matrix according to Aij = |[zj ]i|+ |[zi]j|.
Step 2: Estimate the number of subspaces using the eigengap heuristic [2] according to L̂ =

argmaxi=1,...,N−1(λi+1 − λi), where λ1 ≤ λ2 ≤ ... ≤ λN are the eigenvalues of the normalized
Laplacian of the graph with adjacency matrix A.

Step 3: Apply normalized SC [2] to (A, L̂).
TSC is said to succeed if the TSC subspace detection property according to the following

definition holds.

Definition 1. The TSC subspace detection property holds for X = X1 ∪ ... ∪ XL and adjacency
matrix A if

i. Aij 6= 0 only if xi and xj belong to the same set Xl

and if
ii. for all i = 1, ..., N , Aij 6= 0 for at least q pairs xi and xj that belong to the same set Xl.

The idea behind Def. 1, inspired by the ℓ1 subspace detection property introduced in [5], is
the following. If the TSC subspace detection property holds, then each node in the Graph G with
adjacency matrix A is connected to at least q other nodes, all of which correspond to points in
the same subspace. In the SC step, the assignments of the points to clusters are then determined
through identification of the connected components of G. We will see in the numerical results
section, that even if the TSC subspace detection property does not hold strictly, but the Aij for
pairs xi,xj belonging to different subspaces are sufficiently small, SC can still yield the correct
result.

Assumptions for performance analysis: For expositional convenience we take all subspaces
to have equal dimension d, and let the number of points in each of the subspaces be n, (i.e.,
|Xl| = n, l = 1, ..., L).

Choice of q: Choosing q too small/large will lead to over/under-estimation of the number of
subspaces L. A sensible choice is to take q to be a fraction of n. This motivates setting q = n/ρ,
where ρ ≥ 1. The results we obtain will ensure that, under certain conditions, the TSC subspace
detection property holds, provided that ρ is not too small, while the specific choice of ρ will not
matter. Moreover, numerical results in [6] indicate that TSC is not sensitive to the specific choice
of q.

3 Deterministic subspaces

In order to understand the impact of the relative orientations of the subspaces on the performance
of TSC, we take the subspaces to be deterministic and the points in the subspaces to be random.

W.l.o.g. we represent the points in Sl as x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where a

(l)
j ∈ R

d and U(l) is a
basis for the d-dimensional subspace Sl. We present two results that depend on different notions
of affinity between subspaces, namely

affp(Sk, Sl) :=
∥

∥

∥
U(k)TU(l)

∥

∥

∥

2→2
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and [5, Def. 2.6]

aff(Sk, Sl) :=
∥

∥

∥
U(k)TU(l)

∥

∥

∥

F
/
√
d,

both of which can be interpreted as measures of the relative orientations of the subspaces. Through-
out this section, we assume that the U(l) are orthonormal bases, and hence 0 ≤ aff(Sk, Sl) ≤
affp(Sk, Sl) ≤ 1. The relation between the two affinity notions is brought out by noting that
affp(Sk, Sl) = cos(θ1) while aff(Sk, Sl) =

√

cos2(θ1) + ...+ cos2(θd)/
√
d, where θ1 ≤ ... ≤ θd are the

principal angles between Sk and Sl.

Theorem 1. Suppose n = ρq data points are chosen in each of the L subspaces at random according

to x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d. N (0, (1/d)I) and ρ ≥ 10/3. If

max
k 6=l

affp(Sk, Sl) ≤ c1

√
log ρ√

logL+ log n
, (2)

then the TSC subspace detection property holds with probability at least 1 − Lne−c2n − L
(L−1)3n2 ,

where c1 and c2 are absolute constants satisfying 0 < c1, c2 < 1.

Thm. 1 states that TSC succeeds with high probability if maxk 6=l affp(Sk, Sl) is sufficiently
small. Intuitively, we expect that clustering becomes easier when the number of data points in each
subspace increases. Thm. 1 confirms this intuition as, for fixed d, q, and L, the right hand side
(RHS) of (2) increases in ρ; moreover, the probability of success in Thm. 1 increases in n. If the
number of subspaces, L, increases, for fixed d, q and n, clustering intuitively becomes harder and,
indeed, the RHS of (2) is seen to decrease in L. Note that Thm. 1 does not apply to subspaces
that intersect as affp(Sk, Sl)=1 if Sk and Sl intersect and the RHS of (2) is strictly smaller than
1. We next present a result analogous to Thm. 1 that applies to intersecting subspaces.

Theorem 2. Suppose n = ρq data points are chosen in each of the L subspaces at random according

to x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d. uniform on Sd−1 and ρ ≥ 6. If

max
k 6=l

aff(Sk, Sl) ≤
1

13 logN
, (3)

then the TSC subspace detection property holds with probability at least 1− 3/N −Ne−cn, where c
is an absolute constant.

The interpretation of Thm. 2 is analogous to that of Thm. 1 with the important difference that
the RHS of (3), as opposed to the RHS of (2), decreases, albeit slowly, in n (recall that N = Ln).
For SSC a result in the flavor of Thm. 2 was reported in [5, Thm. 2.8].

4 Erasures

In practical applications the data points to be clustered are often corrupted by erasures, e.g., im-
ages that need to be clustered could exhibit scratches. Understanding the impact of erasures on
clustering performance is obviously of significant importance. The literature seems, however, essen-
tially void of corresponding analytic results. In the deterministic subspace setting such results will
necessarily depend on the specific orientations of the subspaces. In the following, we therefore take
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both the orientations of the subspaces and the points in each subspace to be random. Specifically,
we take the entries of the U(l) ∈ R

m×d to be i.i.d. N (0, 1/m), which ensures that each of the U(l)

is approximately orthonormal with high probability.

Theorem 3. Suppose n = ρq data points are chosen in each of the L subspaces at random according

to x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d. N (0, (1/d) I) and ρ ≥ 10/3. Assume that in

each xj up to s entries (possibly different for each xj) are erased, i.e., set to 0. Let the entries of
each matrix U(l) ∈ R

m×d be i.i.d. N (0, 1/m). If

m ≥ c2

√
logN√
log ρ

(

d log

(

c4

√
logN√
log ρ

)

+s log
(me

2s

)

+logL

)

+c0s,

then the TSC subspace detection property holds with probability at least 1 − Lne−c3n − L
(L−1)3n2 −

4e−c1m, where c0, c1, c2, c3, c4 > 0 are absolute constants.

Strikingly, Thm. 3 shows that the number of erasures is allowed to scale (up to a log-factor)
linearly in the ambient dimension.

For the fully random data model used in Thm. 3 we can furthermore conclude that TSC succeeds
with high probability even when the dimensions of the subspaces scale (up to a log-factor) linearly
in the ambient dimension. Drawing such a conclusion from Thm. 1 or Thm. 2 seems difficult as the
relation between m,d, and L is implicit in the affinity measures. These findings should, however,
be taken with a grain of salt as the fully random subspace model ensures that the subspaces are
approximately disjoint with high probability. In the erasure-free case, i.e., for s = 0, a result for
SSC, analogous to Thm. 3, was reported in [5, Thm. 1.2].

5 Detection of outliers

Outliers are data points that do not lie in one of the low-dimensional subspaces Sl and have no
low-dimensional linear structure. Here, this is modeled by assuming random outliers distributed
uniformly on the unit sphere of R

m. The outlier detection criterion we employ does not need
knowledge of the number of outliers N0 and is based on the following observation. The maximum
inner product between an outlier and any other point in X is, with high probability, smaller
than c

√
logN/

√
m. We therefore classify xj as an outlier if maxp 6=j |〈xp,xj〉| < c

√
logN/

√
m. The

maximum inner product between any point xj ∈ Xl and the points in Xl \ xj is unlikely to be
smaller than 1/

√
d. Hence an inlier is unlikely to be misclassified as an outlier if d/m is sufficiently

small.

Theorem 4. Suppose n = ρq data points are chosen in each of the L subspaces at random according

to x
(l)
j = U(l)a

(l)
j , j = 1, ..., n, where the a

(l)
j are i.i.d. uniform on Sd−1 and each U(l) is orthonormal.

Let the N0 outliers be i.i.d. uniform on Sm−1. Declare xj ∈ X to be an outlier if maxp 6=j |〈xp,xj〉| <√
6 logN/

√
m. Then, with N = Ln+N0, provided that

d

m
≤ 1

6 logN
(4)

with probability at least 1− 2N0/N
2 −nLe− log(π/2)(n−1), every outlier is detected and no point in a

subspace is misclassified as an outlier.
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Figure 1: Errors as a function of the dimension of the subspaces, d, on the vertical and ρ on the
horizontal axis.

Since (4) can be rewritten as N0 ≤ e
m
6d − Ln, we can conclude that outlier detection succeeds,

even if the number of outliers scales exponentially in m/d, i.e., if d is kept constant, exponentially
in the ambient dimension! Note that this result does not make any assumptions on the orientations
of the subspaces Sl. The outlier detection scheme proposed in [5] allows to identify outliers under
a very similar condition. However, it requires the solution of N ℓ1-minimization problems, each in
N unknowns, while the algorithm proposed here needs to compute N2 inner products followed by
thresholding only.

6 Numerical results

We use the performance measures employed in [5, 8]. The clustering error (CE) is defined as
the ratio between the number of misclassified data points and the total number of points in X .
The error in estimating the number of subspaces L is denoted as EL and takes on the value 0
if the estimate is correct, else it is equal to 1. The feature detection error (FDE) is defined as
1
N

∑N
i=1

(

1− ‖bxi
‖2/‖bi‖2

)

, where bi is the ith column of the adjacency matrix A and bxi
is the

vector containing the entries of bi corresponding to the subspace xi lives in. The FDE measures
to which extent points from different subspaces are connected in G and is equal to zero if the TSC
subspace detection property holds.

Influence of d, ρ, and erasures: We generate L = 15 subspaces in R
50 at random, by choosing

the corresponding U(l) uniformly at random from the set of orthonormal matrices in R
m×d, and

vary the number of points n = dρ in each subspace. The points in the subspaces are chosen at
random according to the probabilistic model in Thm. 3. The results depicted in Fig. 1 show, as
indicated in Sec. 1, that TSC can, indeed, succeed even when the TSC subspace detection property
does not hold. Finally, we perform the same experiment, but erase the entries of xi with indices
in Di, where Di is chosen independently for each xi and uniformly from {D ⊆ {1, ...,m} : |D| = s}.
The results summarized in Fig. 2 show that TSC succeeds, even when a large fraction of the entries
is erased.

Detection of outliers: In order to allow for a comparison with the outlier detection scheme
proposed in [5], we perform our experiment with the same parameters as used in [5, Sec. 5.2].
Specifically, we set d = 5, vary m = {50, 100, 200}, and generate L = 2m/d subspaces and n = 5d
points in each subspace at random as in the previous paragraph. Each of the N0 = Ln outliers
is chosen i.i.d. uniformly on Sm−1. Note that we have as many outliers as inliers. We find a
misclassification error probability of {0.017, 1.510−4 , 2.510−5} for m = {50, 100, 200}, respectively.
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Figure 2: CE as a function of the dimension of the subspaces, d, on the vertical and ρ on the
horizontal axis.

Similar performance was reported for the scheme proposed in [5].
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