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Monte-Carlo utility estimates for Bayesian reinforcementlearning

Christos Dimitrakakis

Abstract— This paper introduces a set of algorithms for which is a discounted sum of the total instantaneous rewards

Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-  gbtained, withy € [0, 1]. Without loss of generality, we

Carlo estimation of upper bounds on the Bayes-optimal value ; .
function is employed to construct an optimistic policy. Seandly, assume that_U € [0 U_ma"] B The optimal agent policy
maximisesU in expectation, i.e.

gradient-based algorithms for approximate upper and lower
bounds are introduced. Finally, we introduce a new class of ™

. . . g max E7 U, (4)
gradient algorithms for Bayesian Bellman error minimisation. rell P

We theoretically show that the gradient methods are sound. T o - .
Experimentally, we demonstrate the superiority of the uppe where PM’EM denote probabilities and expectations under

bound method in terms of reward obtained. However, we also the process jointly specified by, 7. However, as in the
show that the Bayesian Bellman error method is a close second reinforcement learning problem the environments un-
despite its significant computational simplicity. known, the above maximisation is ill-posed. Intuitivelget
|. INTRODUCTION agent can increase its expected utility by either: (i) Tgyio
better estimate: in order to perform the maximisation later

Bayesian reinforcement learning [1], [2] is the deCiSion(eproration), or (ii) Use a best-guess estimate,ab obtain
theoretic approach [3] to solving the reinforcement leagni high rewards (exploitation)

problem. Unfonrtunately, calculating posterior disttibns In order to solve this trade-off, we can adopt a Bayesian

can be computationally _expensive. Morever, the Baye?ﬁewpoint [3], [7], where we consider a (potentially infiajt
optimal decision can be intractable [4], [5], [1]. and eveny. o environment model$1. In particular, we selectprior
calculating an optimal solution in a restricted class can b robability measure on M. For an appropriate subsBtC
dificult [.6]‘ This paper proposes a set of algorithms t_ha , the quantity¢(B) describes our initial belief that the
take actions by estimating bounds on the BayeS'Opt'm@l)rrect model lies irB. We can now formulate the alternative

utility through sampling. They include a direct Monte- . maximising the expected utility with respectgto
Carlo approach, as well as gradient-based approaches. We

demonstrate the effectiveness of the proposed algorithms E*U 2 maxET U — max/ (E" U) dé(p). (5)
experimentally. ¢ w e L VRl

This makes the problem formally sound. A poliey €
argmax, Ef U is called Bayes-optimalas it solves the

_ In thereinforcement learning probleyran agent is acting gy pjoration-exploitation problem with respect to out prio
in some unknown Markovian environment= M, according  pelief ¢. However, its computation is generally hard [8]

to some policyr < I1. The agents policy is a procedure forgyen in restricted classes of policies [6]. On the other
selecting actions, with the action at timebeing a; € A. hand, simple heuristics such as Thompson sampling [9], [1]

The environment reacts to this action with a sequence Bfrovide an efficient trade-off [10], [11] between explooati
statess; € S and rewards; € R. Since the agent may be and exploitation.

learning from experience, this interaction may depend en th
complete historyh; € H, whereH = (S x A x R)* is the B. Related work and our contribution
set of all state action reward sequences. One difficulty that arises when adopting a Bayesian
The completeMarkov decision proces$MDP) is specified approach to sequential decision making is that in many
as follows. The agent's action at timelepends on the history interesting problems, the posterior calculation itsetfuiees
observed so far: approximations, mainly due to partial observability [12]].
ot -1 - t ot -1 The second and more universal problem, which we consider
@ | he = (500 a0) ~ P (ay | 577, 070 @) in this paper, is that finding the Bayes-optimal policy ischar
wheres! is a shorthand for the sequenge)!_,; similarly, as the set of policies we must consider grows exponentially
we uses’ for (s;)!_,. We denote the environment's responsevith the horizon7'. However, heuristics exist which, given
at timet + 1 given the history at time by: the current posterior, can obtain a near-optimal policy,[13
[14], [1], [15], [6], [16]. In this paper we shall focus on
model-based algorithms that use approximate lower and
Finally, the agent’s goal is determined through its utility ~upper bounds on the Bayes-optimal utility to select actions
o The general idea of computing lower and upper bounds
U— thflrt, A3) via Monte-Carlo sampling in model-based Bayesian rein-
P forcement learning was introduced in [5]. This sampled MDP

A. Setting

)

St1srea1 | he = (85,7 a") ~ Pu(sear,req | st ar) (2)
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models from the current belief to estimate stochastic uppexpected utility for the policyr acting in an MDPy, given

and lower bounds. These bounds were then used to perfothat we start at state, i.e.

a stochastic branch and bound search for an optimal policy.

In a follow-up paper [6], an attempt was made to obtain Vi(s) = EL(U | st = s). @

tighter lower bounds by finding a good memoryless policy.

An earlier class of approaches involving lower bounds is th& similar notion is expressed by th@-value functionQ7, :

work of [16], which sampled beliefs rather than MDPs toS x A — R, which is the expected utility for the policy

construct lower bound approximations. acting in an MDPy, given that we start at stateand take
In order to perform the approximations, we also introducéctiona, i.e.

a number of gradient-based algorithms. Relevant work m thi

domain includes the Gaussian process (GP) based algorithms Qi(s,a) 2EL(U | sy = 5,01 = a). (8)

suggested by [17], [18] and [19]. In particular, [17] perfar

an incremental temporal-difference fit of the value functio Similarly, and with a slight abuse of notation, we define

using GPs, implicitly using the empirical model of the prothe Bayesianvalue functionV” : S — R, and the related

cess. The other two approaches are model-based, with [1Bgyesian@-value functionQg : § x A — R. These are

estimating a gradient direction for policy improvement bydefined for any belief and policyr to be the corresponding

drawing sample trajectories from the marginal distributio €xpected value functions over all MDPs.

An analytic solution to the problem of policy improvement

with GPs is given by [19], which however relies on the Ve (s) é/ Vii(s) d€(p) 9)

expectedtransition kernel of the process and so does not M

appear to take the model uncertainty into account. Q7 (s, a) 2 / Q7 (s, a) dE(p) (10)
The approaches suggested in this paper are considerably M

simpler, as well as more general, in that they are appl|I')ue to the convexity of the Bayes-optimal expected util-

cable to any Bayesian model of the Markov process a : e
parametrisation of the value function. The fundamentahidgg/ [3] with respect to the beliet, it can be bounded from

stems from the observation that, in order to estimate thaebove and below also for the Bayesian RL problem [S]:
Bayes-utility of a policy, we can draw sample MDPs from y /
the posterior, calculate the (either current policy’s, e t m,’:‘X(Eg U)dé(p) = E¢(U) = Eg (U), v’ eI
optimal) utility for each MDP and average. The same effect (11)
can be achieved in an iterative procedure, by drawing onfgince it hard to find the Bayes-optimal policy [8], [20], [3],
one MDP, estimating the utility of our policy, and then[5], we may instead try and estimate upper and lower bounds
adjusting our parameters to approach the sampled utilitgn the expected utility, and consequently, on thevalue
This can be achieved with gradient methods. Finally, we udanction. These can then be used to implement a heuristic
the same sampling idea to minimise the Bellman error of thgolicy that is either exploratory (when we use upper bounds)
Bayes-expected value function, in a fully incremental fash or conservative (when we use lower bounds).
that explicitly takes into account the model uncertainty. To achieve this, we propose a number of simple algo-
rithms. First, we describe the direct upper bound estimatio
proposed in [5] in the context of tree search. Here, we apply
Imagine that the history:, € # of lengtht has been it to select a policy directly, in a manner similar to the
generated fron®;, the process defiend by an MDPe M |ower bound approach in [6]. We then describe gradient-
controlled with a history-dependent poliey Now consider a pased incremental versions of both algorithms. However, al
prior belief¢, on M with the property thago(- | 7) = &o(-),  of these algorithms require estimating the value function
i.e. that the prior is independent of the pOllcy used. Then tlbf a Samp|ed MDP, a potentia”y expensive process. For
posterior probability, given a history, generated by a policy this reason, we also derive a gradient-based algorithm for
=, thaty € B can be written as: minimising the Bayes-value function Bellman error. This is
 [5Pr(he) déo () © sh%wn_ to_fpen‘olrmI almost as we_II aslth](caf previous algorithms,
T B () Ao () with significantly less computational effort.

F_ortunately, the _dependence on the policy can be remov%i', Direct upper bound estimation

since the posterior is the same for all policies that put non-

zero mass on the observed data. Thus, in the sequel we shallhe idea of the following algorithm stems directly from
simply write & for the posterior probability over MDPs at the definition of the upper boundl(5). In fact, [5] had

Il. GRADIENT BAYESIAN REINFORCEMENT LEARNING

&(B | m) £ & (B | by, m)

time ¢. previously used such upper bounds in order to guide tree
. search, while [6] had useldwer boundddirectly for taking
A. Value functions actions. However, to our knowledge the simple idea of

Value functions are an important concept in reinforcememstimating the upper bound] (5) and using it to directly take
learning. Briefly, a value functiow[ : S — R gives the actions has never been tried before in practice.



Consequently,w;, can be used to obtain the following
stochastic approximation [23], [24] algorithm

We can estimate an upper bound value v&nﬁdoy direct
Monte Carlo samplir%from our beliefé:

=i e @2 Busr = 0= (00(s) = n(s) Vouo(s). (47)
=1

This idea is significantly simpler than that constructangd- wherenkaust be a step-size parameter satisfylig n =
00, Y. M < 0o. A similar approach can be used to estimate

ible intervals(see for example [22]). In addition, estimation ! . . L }
of Q;,, for each sampled MDP is easy. This is in contrasttheQ value function with an approximatiap : &x.A — R:

with the lower bound approach advocated in [6]. Bt = O — e (qo(s, @) — winls,a)) Vogo(s,a),  (18)

glgorit_hm Rl_l U-MCBRL: Upper-bound Monte-Carlo where wy(s,a) = Q (s,a). This update can also be
ayesian . _ performed over the complete state-action space
Input prior &, value vectory, initial statesy, number of
samplesN. Okt1 =0k — e Y  Di(s,a), (19)
fort=0,...do sza:
if switch-policythen Di(s.a) = s.a) — wils. a)) Voae(s. a). 20
s i~ G /I SampleN MDPs e(5,a) = (g0(s,a) = wi(s,a)) Voao (s, a) (20)
(é_:f ~ iz @, /I GetQ upper bound.  The same procedure can be applied to approximate the
end i

/I Act in the real MDP
/I Observe next state, reward
/l Update posterior

Gy = argmax,c 4 gs,a-
St41,Tt4+1 ~ U
§t+1(') = §t(' | St+1,Tt+1, St,(lt)

wi(s,a)

upper bound[{11). This only requires a trivial modification
to the above algorithms, by settingx(s) = Vj (s) or

5. (s,a) in either case. It is easy to see that
the above approximation still holds.

end for

. . . Algorithm 2 DGBRL: Direct gradient Bayesian RL.
The algorithm is presented in Alg.1. A hyperparameter of Input_prior £, parameterd,, initial state s
the algorithm is the number of sampl@é to take at each foft pr 0&5 0 0

iteration, as well as the points at which to switch pcﬁicy iy
This paper uses the simple strategy of linearly incremgntin Zt - é’f (or 0%)
the switching interval. Let us now see how we can directly P H
: . Or41=0: —mi >, . Dr(s,a) [/l Update parameters
approximate both lower bounds such as those in [6], and 4 — arema 8,0 (s, a) I/ Act in the real MDP
upper bounds, such as this in Ald. 1, via gradient methods. ¢ = e MaXae A 40,15, 4)-
Str1,Ter1 ~ M /I Observe next state, reward

C. Direct gradient approximation &y1(:) = & (| St41,7e41, St,a¢) 1/ Update posterior

We now present a simple class of algorithms for gradient €nd for
Bayesian reinforcement learning. First, let us consider th
estimation for a specific policy, which will correspond to To make the approximation faster, we can take a single
approximating a IOWer bound. Deﬁne a fam"y Of funCtiOI’IQ\ADp Samp'e at every Step, take an action' and then use
vy : & = R, {vg | # €O} We consider the problem of the previous approximation for the next step. If the belief
estimating the expected value function given some bélief ¢, changes sufficiently slowly then this will be almost as

/[ Sample an MDP
/I Get value of sample

min f(6),

£(60) 2 /S o(B:5)dx(s),  (13)

9(0;5) = [lvg(s) = VT (s)]| (14)

wherey is a measure o5, and|| - || is the Euclidean norm.
Then the derivative of(14) can be written as:

Vog(0;s) =2 (ve(s) — VT (s)) Vovg(s). (15)

Let wi(s) Vi (s), be the value function of an MDP
sampled from the belief, i.eur, ~ &. Then, due to the
linearity of expectations, it is easy to see that:

Vog(0;s) = Ee [2 (vo(s) — wr(s)) Vovg(s)] -

IFor continuous spaces, this can be defined on a set of repatigen
states.

2Due to the Hoeffding bound [21] and the boundedness of thaeval
function, it is easy to see that this estimatedil /+/N)-close to the upper
bound [T1) with high probability.

Ssince re-sampling and calculating new value functions Eeasive

(16)

good as taking multiple samples and finding the best approx-
imation at every step. The complete algorithm is shown in
Alg 2l The advantage of this idea over the upper and lower
bound approach advocated in [5], [6], is that we can re-
use information from previous steps without needing to take
multiple MDP samples.

In either case, the computational difficulty is the calcula-
tion of V,,, which we still need to do once at every step.
The next section discusses another idea where the complete
estimation of a value function for each sampled MDP is not
required.

D. Temporal difference-like error minimisation

One alternative idea is to simply estimate a consistent
value function approximation, similar to those used in
temporal-difference (TD) methods (in particular the gesut
based view of TD-like methods in [24]). The general idea is



to form the following minimisation problem:
: A .
minf(0). 50) 2 [ g(6:5) (o).
6592 [ 10(6: 1. 5)] )
M

B0 1, ) 2 va(s) — pls) — 7 /;9(5') dP7(s' | 5).  (23)

Now let us sample a statg ~ x from the state distribution,
an MDP p; ~ ¢ from the belief and a next statg ~
]P)TI'

Mk

(21)

(22)

for || - || and taking the gradient with respectéave obtain:

Dy, = 2h(0k; i, sk) (Vove,, (sk) — vV, (52)) (24)
Or+1 = Op — i Dy. (25)

By choosing an appropriate approximation architecturg, e.
a linear approximation with bounded bases, the following

corollary holds:

Corollary 1 If |[Vavg| < ¢ and ||[VZuvg|| < ¢ with ¢,¢’ <
oo, then £(6,) converges, withim; ., Vo f(6x) = 0.

Proof:

(s" | sx) from the transition kernel of the sampled MDP
given the sampled current state. Using the euclidean norm

It easy to see that Corollafyl 1 is also applicable to this
update sequence. When the state sequence is generated from
a particular policy, rather than being drawn from some
distribution y, we obtain Ald.3.

Algorithm 3 BGBRL: Bellman gradient Bayesian RL
Input prior &, parameterd, initial statesg
for t=0,...do
p ~ &
sp~ P, (seq1 | se)

/[ Sample an MDP
/l Sample a next state

Oir1 =6, — Dy /I Update parameters using {30)

a; = argmax,c 4 go,(s,a). I/ Actin the real MDP

Str1,Ter1 ~ M /I Observe next state, reward

Ei41(:) = & (- | 8441, 7141, 5¢,a¢) /I Update posterior
end for

IIl. EXPERIMENTS

We present experiments illustrating the performance of
U-MCBRL and BGRL and compare them with other al-
gorithms. In particular we also examine the lower-bound
algorithm presented in [6], the well known UCRL [25]

This results follows from Proposition 4.1 algorithmid andQ()), for completeness.

in [24], since the the sequence satisfies the four con Experiment design

ditions in Assumption 4.2. (a)f > 0. (b) f is twice

differentiable and its second derivative is bounded, as

1[5 Vava(s) dP(s" | s)]| < [s[|Vava(s)]| dPL(s" | 5) <

c. (¢) By taking expectations over the sample, it is easy t

Since all algorithms have hyperparameters, we followed
a principled experiment design methodology. Firstly, we
gelected a set of possible hyperparameter values for each

see thatt Dy, = Vi f(6;). (d) follows from the boundedness algorithm. For each evaluation domain, we performigd

of the first derivative.
E. Bellman error minimisation

runs for each hyperparameter choice and chose the one
with the highest total reward over these runs. We then
measured the performance of the algorithms a\@r runs.

An alternative formulation is Bellman error minimisation This ensures an unbiased evaluation.

([24], Sec. 6.10), where instead of minimising the errothwit
respect to the current policy, we minimise the error over
the Bellman operator applied to the current value function.

This is simplest to do when we are working witp+value
functions. Then the problem can be written as:

minf (9), f(G)éa; | 9:s,0)dx(s),  (26)
9(0:5,a) 2 / 1(6: 1.5, )] A€ (1) (27)
M

h(0; 1, 5,a) £ qo(s,a) — p(s) — 7/;19(% a*(s')) dPL(s" | s)
(28)
(29)

a*(s') £ argmax g (s’,a’).
a’€A
Using the same reasoning as in $ec.ll-D, we sample ¥,

wur ~ & from the belief and a next statg, ~ ]P’;k (s" | sk)

Methods | parameter| function
QM) €0 exploration
UCRL 1) confidence interval
MCBRL, U-MCBRL N number of samples
BGBRL, Q()\) 70 step size

TABLE I: Automatically tuned hyperparameters

The set of hyper-parameters that were automatically tuned

for each method are listed in Talle I. F@()), we fixed

A = 0.9 and used amr-greedy strategy with a decaying rate
and tuned initial value:g. For UCRL, we tune the inter-
val error probabilitys. Gradient algorithms require tuning
the initial step-size parameteg. Monte-Carlo algorithms
require tuning the number of sampl@é. UCRL, MCBRL

and U-MCBRL all used the same policy-switching heuristic.

B. Domains

from the transition kernel of the sampled MDP given the We employed standard domains from discrete-state

sampled current state. Using the euclidean nornj|fdrand
taking the gradient with respect fowe obtain the algorithm:

Dy, = 2h(O; ik, Sks ax) Vo, qo (K, ar) (30)
— Vs, (s}, a”(s},))]
Or+1 = O — i Dy. (31)

problems in exploration in reinforcement learning. Thus,
Bayesian inference is closed-form, as we can use a Dirichlet
product prior for the transitions and a Normal-Gamma prior

4Although UCRL is defined for undiscounted problems, it isi#i to
apply to discounted problems by adding replacing averadige vigeration
with discounted value iteration.



for the reward. Value function parametrisation is tabular, IV. CONCLUSION

l.e. there is one parameter per state-action pair. These do-This paper introduced a set of Monte-Carlo algorithms for
mains are the Chain problem [1], River-Swim [26], Doublegayesian reinforcement learning. The first, U-MCBRL is a
Loop [1]. In addition, we consider the mountain car domaifnggification of a lower-bound algorithm to an upper-bound

of [27], using a uniformb x 5 grid as features. All domains
employed a discount factey = 0.99.

Chain
QM) 1993.9 1999.7 2005.4 3
UCRL 3543.5 3547.5 3551.3 1613
MCBRL 3610.5 3616.1 3621.7 464
U-MCBRL 3617.8 3623.4 3629.1 1560
BGBRL 3593.6 3598.3 3602.7 48
Double Loop
Q) 2053.7 2058.1 2062.1 5
UCRL 3841.0 3841.0 3841.0 369
MCBRL 3949.5 3950.2 3951.0 2343
U-MCBRL 3946.7 3947.5 3948.3 5135
BGBRL 3925.3 3926.2 3927.0 96
River Swim
QM) 5.0 5.0 5.0 5
UCRL 312.4 313.8 315.3 240
MCBRL 624.0 625.4 626.8 1187
U-MCBRL 626.3 627.6 629.0 2329
BGBRL 600.3 601.7 603.2 69
Mountain Car5 x 5
QM) -9957.6 -9957.0 -9956.3 15
UCRL -9952.9 -9951.6 -9950.3 1908
MCBRL -9829.1 -9827.2 -9825.5 35733
U-MCBRL -9811.8 -9810.2 -9808.6 66252
BGBRL -9883.2 -9881.9 -9880.6 886
Method 95% lower | mean | 95% upper|| CPU (s)

TABLE II: Total reward and CPU time

C. Results

From the online performance results shown in Eig 1, i

is clear that apart fron@()), all algorithms are performing
relatively similarly in the simpler environments. However

setting, which has very good performance but has relatively
high computational complexity. The second, DGBRL, is a
type of gradient-based algorithm for approximating either
the lower or the upper bound, but nevertheless does not
necessarily alleviate the problem of complexity. FinaBs-

BRL defines a novel type of Bellman error minimisation, on
the Bayes-expected value function. By performing gradient
descent to reduce this error through sampling possible MDPs
we obtain an efficient and highly competitive algorithm.

The algorithms were tested using an unbiased exper-
imental methodology, whereby hyperparameters were au-
tomatically selected from a small number of runs. This
ensures that algorithmic brittleness is not an issue. In all
of those experiments, U-MCBRL and its sibling, MCBRL
outperformed all alternatives. However, BGBRL was a close
runner-up, even though it is computationally much simpler,
as it does not require performing value iteration.

A subject that this paper has not touched upon is the
theoretical performance of U-MCBRL and BGBRL. For the
first, the results for MCBRL [6] should be applicable with
few modifications. The performance analysis of BGBRL-like
algorithms, on the other hand, is a completely open question
at the moment.

REFERENCES

[1] M. Strens, “A Bayesian framework for reinforcement leiag,” in

t ICML 200Q 2000, pp. 943-950.

[2] N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupeinforce-
ment Learning Springer, 2012, ch. Bayesian Reinforcement Learning,
pp. 359-386.

UCRL converges somewhat more slowly and is particularly[3] M. H. DeGroot, Optimal Statistical Decisions John Wiley & Sons,

unstable in the Mountain Car domalh.

A clearer view of the performance of each algorithm

1970.
[4] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptO¥®DBPs,”
in Advances in Neural Information Processing SystemsJ2(Platt,

is can be seen in Tablel ll, in terms of the average total D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT

reward obtained. It additionally shows tl96% lower and

upper confidence bound calculated on the mean (show

in the middle column) vial0* bootstrap samples. The

Press, 2008.

] C. Dimitrakakis, “Complexity of stochastic branch anouimd methods
for belief tree search in Bayesian reinforcement learhimg, 2nd
international conference on agents and artificial intedlige (ICAART

best-performing methods in each environment (taking into _ 2010) ISNTICC. Valencia, Spain: Springer, 2010, pp. 259-264.

account the bootstrap intervals) are shown in bold. On

] ——, “Robust bayesian reinforcement learning througghtilower
bounds,” inEuropean Workshop on Reinforcement Learning (EWRL

immediately notices that MCBRL and U-MCBRL are usually 2011) ser. LNCS, no. 7188, 2011, pp. 177-188.
tied for best. This is perhaps not surprising, as they havé’/] L.J. SavageThe Foundations of StatisticsDover Publications, 1972.

the same structure: in fact, fa¥ = 1, they are equivalent

8] M. O. Duff, “Optimal learning computational procedurés Bayes-
adaptive Markov decision processes,” Ph.D. dissertatimiversity of

to Thompson sampling [1], as mentioned in [6]. However,  Massachusetts at Amherst, 2002.

MCBRL uses dower boundon the value function, while U-
MCBRL an upper boundwhich makes it more optimist@.

[9] W. Thompson, “On the Likelihood that One Unknown ProligpEx-
ceeds Another in View of the Evidence of two Sampld&igmetrika
vol. 25, no. 3-4, pp. 285-294, 1933.

The most significant finding, however is that BGBRL[10] S. Agrawal and N. Goyal, *Analysis of thompson samplifoy the

is a relatively close second most of the time, performin

better than all the remaining algorithms. This is despge it

computational simplicity.

5Due to the discretisation, this domain is no longer fully evable.

6Although we did not explicitly consider Thompson samplimgg note
that the hyperparamete¥ = 1 corresponding to Thompson sampling was
never chosen by the automatic procedure as it always hae\werformance
than taking more samples. Nevertheless, its performaneetbe 103 runs
was always significantly worse than those of MCBRL and U-MCBR

multi-armed bandit problem,” i€OLT 2012 2012.

11] E. Kaufmanna, N. Korda, and R. Munos, “Thompson sangpliin
optimal finite time analysis,” ilALT-2012 2012.

[12] P. Poupart and N. Vlassis, “Model-based Bayesian oeggiment
learning in partially observable domains,” linternational Symposium
on Artificial Intelligence and Mathematics (ISAIMJ008.

[13] J. Z. Kolter and A. Y. Ng, “Near-Bayesian exploration polynomial
time,” in ICML 2009 2009.

[14] P. S. Castro and D. Precup, “Using linear programmingBayesian
exploration in Markov decision processes,” lifCAI, M. M. Veloso,
Ed., 2007, pp. 2437-2442.



]E'f’t

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

......... Q(X\); ---- UCRL; -+-- MCBRL; = - -

U-MCBRL; — BGBRL

0.3

E?"t
ET‘t

0.2 -

0.1 \ ! ! ! [
0 2,000 4,000 6,000 8,000 10,000

t
(a) Chain

0.06 |-

0.04 |-

]ET‘t

0.02 -

| | | | |
0 2,000 4,000 6,000 8,000 10,000
t

(c) River Swim

T T
0.4 ; .
0.3 ‘ N
021 J——————Ee |
0.1 E -
| | | | | |
0 2,000 4,000 6,000 8,000 10,000
t
(b) Double Loop
T T T
—0.97 |
—0.98 | |
—-0.99 | |
4l S -
!

\ \ \ \ \
0 2,000 4,000 6,000 8,000 10,000
t
(d) Mountain Car5 x 5

Fig. 1: Reward per step, smoothed over 100 steps and avecaged0® runs.

M. Araya, V. Thomas, O. Buffetet al., “Near-optimal BRL using
optimistic local transitions,” inCML, 2012.

P. Poupart, N. Vlassis, J. Hoey, and K. Regan, “An amalgblution
to discrete Bayesian reinforcement learning,”|I@ML 2006 ACM
Press New York, NY, USA, 2006, pp. 697-704.

Y. Engel, S. Mannor, and R. Meir, “Bayes meets bellmame Gaussian
process approach to temporal difference learning,” IGML 2003
2003.

M. Ghavamzadeh and Y. Engel, “Bayesian policy gradagorithms,”
in NIPS 2006 2006.

M. P. Deisenroth and C. E. Rasmussen, “Pilco: A modekbaand
data-efficient approach to policy search,”limternational conference
on Machine Learning (ICML,)Bellevue, WA, USA, July 2011.

R. Dearden, N. Friedman, and D. Andre, “Model based Baye
exploration,” in Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence (UAI-99) K. B. Laskey and H. Prade, Eds.
San Francisco, CA: Morgan Kaufmann, San Francisco, CA, By
Aug. 1 1999, pp. 150-159.

W. Hoeffding, “Probability inequalities for sums of boded random
variables,” Journal of the American Statistical Associatiorol. 58,
no. 301, pp. 13-30, March 1963.

N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Giansprocess

[23]
[24]

[25]

[26]

[27]

optimization in the bandit setting: No regret and experitakdesign,”
in ICML 201Q 2010.

H. Robbins and S. Monro, “A stochastic approximationtimoel,” The
Annals of Mathematical Statisticpp. 400-407, 1951.

D. P. Bertsekas and J. N. Tsitsiklisleuro-Dynamic Programming
Athena Scientific, 1996.

T. Jacksh, R. Ortner, and P. Auer, “Near-optimal regbetinds
for reinforcement learning,Journal of Machine Learning Research
vol. 11, pp. 1563-1600, 2010.

A. Strehl and M. Littman, “An analysis of model-basedteirval
estimation for Markov decision processedgurnal of Computer and
System Sciencesol. 74, no. 8, pp. 1309-1331, 2008.

R. S. Sutton and A. G. Bartdreinforcement Learning: An Introduc-
tion. MIT Press, 1998.



	I Introduction
	I-A Setting
	I-B Related work and our contribution

	II Gradient Bayesian reinforcement learning
	II-A Value functions
	II-B Direct upper bound estimation
	II-C Direct gradient approximation
	II-D Temporal difference-like error minimisation
	II-E Bellman error minimisation

	III Experiments
	III-A Experiment design
	III-B Domains
	III-C Results

	IV Conclusion
	References

