
ar
X

iv
:1

30
3.

25
06

v1
 [

cs
.L

G
]

11
 M

ar
 2

01
3

Monte-Carlo utility estimates for Bayesian reinforcement learning

Christos Dimitrakakis

Abstract— This paper introduces a set of algorithms for
Monte-Carlo Bayesian reinforcement learning. Firstly, Monte-
Carlo estimation of upper bounds on the Bayes-optimal value
function is employed to construct an optimistic policy. Secondly,
gradient-based algorithms for approximate upper and lower
bounds are introduced. Finally, we introduce a new class of
gradient algorithms for Bayesian Bellman error minimisation.
We theoretically show that the gradient methods are sound.
Experimentally, we demonstrate the superiority of the upper
bound method in terms of reward obtained. However, we also
show that the Bayesian Bellman error method is a close second,
despite its significant computational simplicity.

I. I NTRODUCTION

Bayesian reinforcement learning [1], [2] is the decision-
theoretic approach [3] to solving the reinforcement learning
problem. Unfonrtunately, calculating posterior distributions
can be computationally expensive. Morever, the Bayes-
optimal decision can be intractable [4], [5], [1], and even
calculating an optimal solution in a restricted class can be
difficult [6]. This paper proposes a set of algorithms that
take actions by estimating bounds on the Bayes-optimal
utility through sampling. They include a direct Monte-
Carlo approach, as well as gradient-based approaches. We
demonstrate the effectiveness of the proposed algorithms
experimentally.

A. Setting

In the reinforcement learning problem, an agent is acting
in some unknown Markovian environmentµ ∈ M, according
to some policyπ ∈ Π. The agent’s policy is a procedure for
selecting actions, with the action at timet being at ∈ A.
The environment reacts to this action with a sequence of
statesst ∈ S and rewardsrt ∈ R. Since the agent may be
learning from experience, this interaction may depend on the
complete history,ht ∈ H, whereH , (S ×A×R)∗ is the
set of all state action reward sequences.

The completeMarkov decision process(MDP) is specified
as follows. The agent’s action at timet depends on the history
observed so far:

at | ht = (st, rt, at−1) ∼ P
π(at | s

t, rt, at−1), (1)

wherest is a shorthand for the sequence(si)ti=1; similarly,
we usestk for (si)ti=k. We denote the environment’s response
at time t+ 1 given the history at timet by:

st+1, rt+1 | ht = (st, rt, at) ∼ Pµ(st+1, rt+1 | st, at) (2)

Finally, the agent’s goal is determined through its utility:

U =

∞
∑

t=1

γt−1rt, (3)

which is a discounted sum of the total instantaneous rewards
obtained, withγ ∈ [0, 1]. Without loss of generality, we
assume thatU ∈ [0, Umax]. The optimal agent policy
maximisesU in expectation, i.e.

max
π∈Π

E
π
µ U, (4)

where P
π
µ,E

π
µ denote probabilities and expectations under

the process jointly specified byµ, π. However, as in the
reinforcement learning problem the environmentµ is un-
known, the above maximisation is ill-posed. Intuitively, the
agent can increase its expected utility by either: (i) Trying to
better estimateµ in order to perform the maximisation later
(exploration), or (ii) Use a best-guess estimate ofµ to obtain
high rewards (exploitation).

In order to solve this trade-off, we can adopt a Bayesian
viewpoint [3], [7], where we consider a (potentially infinite)
set of environment modelsM. In particular, we select aprior
probability measureξ onM. For an appropriate subsetB ⊂
M, the quantityξ(B) describes our initial belief that the
correct model lies inB. We can now formulate the alternative
goal of maximising the expected utility with respect toξ:

E
∗
ξ U , max

π
E
π
ξ U = max

π

∫

M

(Eπ
µ U) dξ(µ). (5)

This makes the problem formally sound. A policyπ∗
ξ ∈

argmaxπ E
π
ξ U is called Bayes-optimalas it solves the

exploration-exploitation problem with respect to out prior
belief ξ. However, its computation is generally hard [8]
even in restricted classes of policies [6]. On the other
hand, simple heuristics such as Thompson sampling [9], [1]
provide an efficient trade-off [10], [11] between exploration
and exploitation.

B. Related work and our contribution

One difficulty that arises when adopting a Bayesian
approach to sequential decision making is that in many
interesting problems, the posterior calculation itself requires
approximations, mainly due to partial observability [12],[4].
The second and more universal problem, which we consider
in this paper, is that finding the Bayes-optimal policy is hard,
as the set of policies we must consider grows exponentially
with the horizonT . However, heuristics exist which, given
the current posterior, can obtain a near-optimal policy [13],
[14], [1], [15], [6], [16]. In this paper we shall focus on
model-based algorithms that use approximate lower and
upper bounds on the Bayes-optimal utility to select actions.

The general idea of computing lower and upper bounds
via Monte-Carlo sampling in model-based Bayesian rein-
forcement learning was introduced in [5]. This sampled MDP

http://arxiv.org/abs/1303.2506v1

models from the current belief to estimate stochastic upper
and lower bounds. These bounds were then used to perform
a stochastic branch and bound search for an optimal policy.
In a follow-up paper [6], an attempt was made to obtain
tighter lower bounds by finding a good memoryless policy.
An earlier class of approaches involving lower bounds is the
work of [16], which sampled beliefs rather than MDPs to
construct lower bound approximations.

In order to perform the approximations, we also introduce
a number of gradient-based algorithms. Relevant work in this
domain includes the Gaussian process (GP) based algorithms
suggested by [17], [18] and [19]. In particular, [17] performs
an incremental temporal-difference fit of the value function
using GPs, implicitly using the empirical model of the pro-
cess. The other two approaches are model-based, with [18]
estimating a gradient direction for policy improvement by
drawing sample trajectories from the marginal distribution.
An analytic solution to the problem of policy improvement
with GPs is given by [19], which however relies on the
expectedtransition kernel of the process and so does not
appear to take the model uncertainty into account.

The approaches suggested in this paper are considerably
simpler, as well as more general, in that they are appli-
cable to any Bayesian model of the Markov process and
parametrisation of the value function. The fundamental idea
stems from the observation that, in order to estimate the
Bayes-utility of a policy, we can draw sample MDPs from
the posterior, calculate the (either current policy’s, or the
optimal) utility for each MDP and average. The same effect
can be achieved in an iterative procedure, by drawing only
one MDP, estimating the utility of our policy, and then
adjusting our parameters to approach the sampled utility.
This can be achieved with gradient methods. Finally, we use
the same sampling idea to minimise the Bellman error of the
Bayes-expected value function, in a fully incremental fashion
that explicitly takes into account the model uncertainty.

II. GRADIENT BAYESIAN REINFORCEMENT LEARNING

Imagine that the historyht ∈ H of length t has been
generated fromPπ

µ, the process defiend by an MDPµ ∈ M
controlled with a history-dependent policyπ. Now consider a
prior beliefξ0 onM with the property thatξ0(· | π) = ξ0(·),
i.e. that the prior is independent of the policy used. Then the
posterior probability, given a historyht generated by a policy
π, thatµ ∈ B can be written as:

ξt(B | π) , ξ0(B | ht, π) =

∫

B
P
π
µ(ht) dξ0(µ)

∫

M
P
π
µ(ht) dξ0(µ)

. (6)

Fortunately, the dependence on the policy can be removed,
since the posterior is the same for all policies that put non-
zero mass on the observed data. Thus, in the sequel we shall
simply write ξt for the posterior probability over MDPs at
time t.

A. Value functions

Value functions are an important concept in reinforcement
learning. Briefly, a value functionV π

µ : S → R gives the

expected utility for the policyπ acting in an MDPµ, given
that we start at states, i.e.

V π
µ (s) , E

π
µ(U | st = s). (7)

A similar notion is expressed by theQ-value functionQπ
µ :

S × A → R, which is the expected utility for the policyπ
acting in an MDPµ, given that we start at states and take
actiona, i.e.

Qπ
µ(s, a) , E

π
µ(U | st = s, at = a). (8)

Similarly, and with a slight abuse of notation, we define
the Bayesianvalue functionV π

ξ : S → R, and the related
BayesianQ-value functionQπ

ξ : S × A → R. These are
defined for any beliefξ and policyπ to be the corresponding
expected value functions over all MDPs.

V π
ξ (s) ,

∫

M

V π
µ (s) dξ(µ) (9)

Qπ
ξ (s, a) ,

∫

M

Qπ
µ(s, a) dξ(µ) (10)

Due to the convexity of the Bayes-optimal expected util-
ity [3] with respect to the beliefξ, it can be bounded from
above and below also for the Bayesian RL problem [5]:
∫

M

max
π

(Eπ
ξ U) dξ(µ) ≥ E

∗
ξ(U) ≥ E

π′

ξ (U), ∀π′ ∈ Π.

(11)
Since it hard to find the Bayes-optimal policy [8], [20], [3],
[5], we may instead try and estimate upper and lower bounds
on the expected utility, and consequently, on theQ-value
function. These can then be used to implement a heuristic
policy that is either exploratory (when we use upper bounds)
or conservative (when we use lower bounds).

To achieve this, we propose a number of simple algo-
rithms. First, we describe the direct upper bound estimation
proposed in [5] in the context of tree search. Here, we apply
it to select a policy directly, in a manner similar to the
lower bound approach in [6]. We then describe gradient-
based incremental versions of both algorithms. However, all
of these algorithms require estimating the value function
of a sampled MDP, a potentially expensive process. For
this reason, we also derive a gradient-based algorithm for
minimising the Bayes-value function Bellman error. This is
shown to perform almost as well as the previous algorithms,
with significantly less computational effort.

B. Direct upper bound estimation

The idea of the following algorithm stems directly from
the definition of the upper bound (5). In fact, [5] had
previously used such upper bounds in order to guide tree
search, while [6] had usedlower boundsdirectly for taking
actions. However, to our knowledge the simple idea of
estimating the upper bound (5) and using it to directly take
actions has never been tried before in practice.

We can estimate an upper bound value vector1 q by direct
Monte Carlo sampling2 from our beliefξ:

qs,a =
1

N

N
∑

i=1

Q∗
µi
(s, a), µi ∼ ξ. (12)

This idea is significantly simpler than that constructingcred-
ible intervals(see for example [22]). In addition, estimation
of Q∗

µi
for each sampled MDP is easy. This is in contrast

with the lower bound approach advocated in [6].

Algorithm 1 U-MCBRL: Upper-bound Monte-Carlo
Bayesian RL

Input prior ξ0, value vectorq, initial states0, number of
samplesN .
for t = 0, . . . do

if switch-policy then
µ1, . . . , µk ∼ ξt // SampleN MDPs
q = 1

N

∑N

i=1
Q∗

µi
// GetQ upper bound.

end if
at = argmaxa∈A qs,a. // Act in the real MDP
st+1, rt+1 ∼ µ // Observe next state, reward
ξt+1(·) = ξt(· | st+1, rt+1, st, at) // Update posterior

end for

The algorithm is presented in Alg.1. A hyperparameter of
the algorithm is the number of samplesN to take at each
iteration, as well as the points at which to switch policy3.
This paper uses the simple strategy of linearly incrementing
the switching interval. Let us now see how we can directly
approximate both lower bounds such as those in [6], and
upper bounds, such as this in Alg. 1, via gradient methods.

C. Direct gradient approximation

We now present a simple class of algorithms for gradient
Bayesian reinforcement learning. First, let us consider the
estimation for a specific policyπ, which will correspond to
approximating a lower bound. Define a family of functions
vθ : S → R, { vθ | θ ∈ Θ }. We consider the problem of
estimating the expected value function given some beliefξ:

min
θ∈Θ

f(θ), f(θ) ,

∫

S

g(θ; s) dχ(s), (13)

g(θ; s) , ‖vθ(s)− V π
ξ (s)‖ (14)

whereχ is a measure onS, and‖ · ‖ is the Euclidean norm.
Then the derivative of (14) can be written as:

∇θg(θ; s) = 2
(

vθ(s)− V π
ξ (s)

)

∇θvθ(s). (15)

Let ωk(s) = V π
µk
(s), be the value function of an MDP

sampled from the belief, i.e.µk ∼ ξ. Then, due to the
linearity of expectations, it is easy to see that:

∇θg(θ; s) = Eξ [2 (vθ(s)− ωk(s))∇θvθ(s)] . (16)

1For continuous spaces, this can be defined on a set of representative
states.

2Due to the Hoeffding bound [21] and the boundedness of the value
function, it is easy to see that this estimate isO(1/

√
N)-close to the upper

bound (11) with high probability.
3since re-sampling and calculating new value functions is expensive

Consequently,ωk can be used to obtain the following
stochastic approximation [23], [24] algorithm

θk+1 = θk − ηk (vθ(s)− ωk(s))∇θvθ(s), (17)

whereηk must be a step-size parameter satisfying
∑

k ηk =
∞,

∑

k η
2
k < ∞. A similar approach can be used to estimate

theQ-value function with an approximationqθ : S×A → R:

θk+1 = θk − ηk (qθ(s, a)− ωk(s, a))∇θqθ(s, a), (18)

where ωk(s, a) = Qπ
µk
(s, a). This update can also be

performed over the complete state-action space

θk+1 = θk − ηk
∑

s,a

Dk(s, a), (19)

Dk(s, a) = (qθ(s, a)− ωk(s, a))∇θqθ(s, a). (20)

The same procedure can be applied to approximate the
upper bound (11). This only requires a trivial modification
to the above algorithms, by settingωk(s) = V ∗

µk
(s) or

ωk(s, a) = Q∗
µk
(s, a) in either case. It is easy to see that

the above approximation still holds.

Algorithm 2 DGBRL: Direct gradient Bayesian RL.
Input prior ξ0, parametersθ0, initial states0
for t = 0, . . . do
µt ∼ ξt // Sample an MDP
ωt = Qπ

µt
(or Q∗

µ) // Get value of sample
θt+1 = θt − ηk

∑

s,a Dk(s, a) // Update parameters
at = argmaxa∈A qθt(s, a). // Act in the real MDP
st+1, rt+1 ∼ µ // Observe next state, reward
ξt+1(·) = ξt(· | st+1, rt+1, st, at) // Update posterior

end for

To make the approximation faster, we can take a single
MDP sample at every step, take an action, and then use
the previous approximation for the next step. If the belief
ξt changes sufficiently slowly then this will be almost as
good as taking multiple samples and finding the best approx-
imation at every step. The complete algorithm is shown in
Alg.2. The advantage of this idea over the upper and lower
bound approach advocated in [5], [6], is that we can re-
use information from previous steps without needing to take
multiple MDP samples.

In either case, the computational difficulty is the calcula-
tion of Vµk

, which we still need to do once at every step.
The next section discusses another idea where the complete
estimation of a value function for each sampled MDP is not
required.

D. Temporal difference-like error minimisation

One alternative idea is to simply estimate a consistent
value function approximation, similar to those used in
temporal-difference (TD) methods (in particular the gradient-
based view of TD-like methods in [24]). The general idea is

to form the following minimisation problem:

min
θ∈Θ

f(θ), f(θ) ,

∫

S

g(θ; s) dχ(s), (21)

g(θ; s) ,

∫

M

‖h(θ;µ, s)‖ dξ(µ) (22)

h(θ;µ, s) , vθ(s)− ρ(s)− γ

∫

S

vθ(s
′) dPπ

µ(s
′ | s). (23)

Now let us sample a statesk ∼ χ from the state distribution,
an MDP µk ∼ ξ from the belief and a next states′k ∼
P
π
µk
(s′ | sk) from the transition kernel of the sampled MDP

given the sampled current state. Using the euclidean norm
for ‖ · ‖ and taking the gradient with respect toθ we obtain:

Dk = 2h(θk;µk, sk) (∇θvθk(sk)− γ∇θvθk(s
′
k)) (24)

θk+1 = θk − ηkDk. (25)

By choosing an appropriate approximation architecture, e.g.
a linear approximation with bounded bases, the following
corollary holds:

Corollary 1 If ‖∇θvθ‖ ≤ c and ‖∇2
θvθ‖ ≤ c′ with c, c′ <

∞, thenf(θk) converges, withlimt→∞ ∇θf(θk) = 0.

Proof: This results follows from Proposition 4.1
in [24], since the the sequence satisfies the four con-
ditions in Assumption 4.2. (a)f ≥ 0. (b) f is twice
differentiable and its second derivative is bounded, as
∥

∥

∫

S
∇2

θvθ(s
′) dPπ

µ(s
′ | s)

∥

∥ ≤
∫

S
‖∇2

θvθ(s
′)‖ dPπ

µ(s
′ | s) ≤

c. (c) By taking expectations over the sample, it is easy to
see thatEDk = ∇θf(θk). (d) follows from the boundedness
of the first derivative.

E. Bellman error minimisation

An alternative formulation is Bellman error minimisation
([24], Sec. 6.10), where instead of minimising the error with
respect to the current policy, we minimise the error over
the Bellman operator applied to the current value function.
This is simplest to do when we are working withQ-value
functions. Then the problem can be written as:

min
θ∈Θ

f(θ), f(θ) ,
∑

a∈A

∫

S

g(θ; s, a) dχ(s), (26)

g(θ; s, a) ,

∫

M

‖h(θ;µ, s, a)‖ dξ(µ) (27)

h(θ;µ, s, a) , qθ(s, a)− ρ(s)− γ

∫

S

qθ(s
′, a∗(s′)) dPπ

µ(s
′ | s)

(28)

a∗(s′) , argmax
a′∈A

qθ(s
′, a′). (29)

Using the same reasoning as in Sec. II-D, we samplesk ∼ χ,
µk ∼ ξ from the belief and a next states′k ∼ P

π
µk
(s′ | sk)

from the transition kernel of the sampled MDP given the
sampled current state. Using the euclidean norm for‖ ·‖ and
taking the gradient with respect toθ we obtain the algorithm:

Dk = 2h(θk;µk, sk, ak)[∇θkqθ(sk, ak) (30)

− γ∇θqθk(s
′
k, a

∗(s′k))]

θk+1 = θk − ηkDk. (31)

It easy to see that Corollary 1 is also applicable to this
update sequence. When the state sequence is generated from
a particular policy, rather than being drawn from some
distributionχ, we obtain Alg.3.

Algorithm 3 BGBRL: Bellman gradient Bayesian RL
Input prior ξ0, parametersθ0, initial states0
for t = 0, . . . do
µt ∼ ξt // Sample an MDP
s′t ∼ P

π
µt
(st+1 | st) // Sample a next state

θt+1 = θt − ηtDt // Update parameters using (30)
at = argmaxa∈A qθt(s, a). // Act in the real MDP
st+1, rt+1 ∼ µ // Observe next state, reward
ξt+1(·) = ξt(· | st+1, rt+1, st, at) // Update posterior

end for

III. E XPERIMENTS

We present experiments illustrating the performance of
U-MCBRL and BGRL and compare them with other al-
gorithms. In particular we also examine the lower-bound
algorithm presented in [6], the well known UCRL [25]
algorithm,4 andQ(λ), for completeness.

A. Experiment design

Since all algorithms have hyperparameters, we followed
a principled experiment design methodology. Firstly, we
selected a set of possible hyperparameter values for each
algorithm. For each evaluation domain, we performed10
runs for each hyperparameter choice and chose the one
with the highest total reward over these runs. We then
measured the performance of the algorithms over103 runs.
This ensures an unbiased evaluation.

Methods parameter function
Q(λ) ε0 exploration
UCRL δ confidence interval

MCBRL, U-MCBRL N number of samples
BGBRL, Q(λ) η0 step size

TABLE I: Automatically tuned hyperparameters

The set of hyper-parameters that were automatically tuned
for each method are listed in Table I. ForQ(λ), we fixed
λ = 0.9 and used anε-greedy strategy with a decaying rate
and tuned initial valueǫ0. For UCRL, we tune the inter-
val error probabilityδ. Gradient algorithms require tuning
the initial step-size parameterη0. Monte-Carlo algorithms
require tuning the number of samplesN . UCRL, MCBRL
and U-MCBRL all used the same policy-switching heuristic.

B. Domains

We employed standard domains from discrete-state
problems in exploration in reinforcement learning. Thus,
Bayesian inference is closed-form, as we can use a Dirichlet-
product prior for the transitions and a Normal-Gamma prior

4Although UCRL is defined for undiscounted problems, it is trivial to
apply to discounted problems by adding replacing average value iteration
with discounted value iteration.

for the reward. Value function parametrisation is tabular,
i.e. there is one parameter per state-action pair. These do-
mains are the Chain problem [1], River-Swim [26], Double-
Loop [1]. In addition, we consider the mountain car domain
of [27], using a uniform5× 5 grid as features. All domains
employed a discount factorγ = 0.99.

Chain
Q(λ) 1993.9 1999.7 2005.4 3
UCRL 3543.5 3547.5 3551.3 1613

MCBRL 3610.5 3616.1 3621.7 464
U-MCBRL 3617.8 3623.4 3629.1 1560

BGBRL 3593.6 3598.3 3602.7 48
Double Loop

Q(λ) 2053.7 2058.1 2062.1 5
UCRL 3841.0 3841.0 3841.0 369

MCBRL 3949.5 3950.2 3951.0 2343
U-MCBRL 3946.7 3947.5 3948.3 5135

BGBRL 3925.3 3926.2 3927.0 96
River Swim

Q(λ) 5.0 5.0 5.0 5
UCRL 312.4 313.8 315.3 240

MCBRL 624.0 625.4 626.8 1187
U-MCBRL 626.3 627.6 629.0 2329

BGBRL 600.3 601.7 603.2 69
Mountain Car5× 5

Q(λ) -9957.6 -9957.0 -9956.3 15
UCRL -9952.9 -9951.6 -9950.3 1908

MCBRL -9829.1 -9827.2 -9825.5 35733
U-MCBRL -9811.8 -9810.2 -9808.6 66252

BGBRL -9883.2 -9881.9 -9880.6 886
Method 95% lower mean 95% upper CPU (s)

TABLE II: Total reward and CPU time

C. Results

From the online performance results shown in Fig 1, it
is clear that apart fromQ(λ), all algorithms are performing
relatively similarly in the simpler environments. However,
UCRL converges somewhat more slowly and is particularly
unstable in the Mountain Car domain.5

A clearer view of the performance of each algorithm
is can be seen in Table II, in terms of the average total
reward obtained. It additionally shows the95% lower and
upper confidence bound calculated on the mean (shown
in the middle column) via104 bootstrap samples. The
best-performing methods in each environment (taking into
account the bootstrap intervals) are shown in bold. One
immediately notices that MCBRL and U-MCBRL are usually
tied for best. This is perhaps not surprising, as they have
the same structure: in fact, forN = 1, they are equivalent
to Thompson sampling [1], as mentioned in [6]. However,
MCBRL uses alower boundon the value function, while U-
MCBRL an upper bound, which makes it more optimistic.6

The most significant finding, however is that BGBRL
is a relatively close second most of the time, performing
better than all the remaining algorithms. This is despite its
computational simplicity.

5Due to the discretisation, this domain is no longer fully observable.
6Although we did not explicitly consider Thompson sampling,we note

that the hyperparameterN = 1 corresponding to Thompson sampling was
never chosen by the automatic procedure as it always had worse performance
than taking more samples. Nevertheless, its performance over the103 runs
was always significantly worse than those of MCBRL and U-MCBRL.

IV. CONCLUSION

This paper introduced a set of Monte-Carlo algorithms for
Bayesian reinforcement learning. The first, U-MCBRL is a
modification of a lower-bound algorithm to an upper-bound
setting, which has very good performance but has relatively
high computational complexity. The second, DGBRL, is a
type of gradient-based algorithm for approximating either
the lower or the upper bound, but nevertheless does not
necessarily alleviate the problem of complexity. Finally,BG-
BRL defines a novel type of Bellman error minimisation, on
the Bayes-expected value function. By performing gradient
descent to reduce this error through sampling possible MDPs,
we obtain an efficient and highly competitive algorithm.

The algorithms were tested using an unbiased exper-
imental methodology, whereby hyperparameters were au-
tomatically selected from a small number of runs. This
ensures that algorithmic brittleness is not an issue. In all
of those experiments, U-MCBRL and its sibling, MCBRL
outperformed all alternatives. However, BGBRL was a close
runner-up, even though it is computationally much simpler,
as it does not require performing value iteration.

A subject that this paper has not touched upon is the
theoretical performance of U-MCBRL and BGBRL. For the
first, the results for MCBRL [6] should be applicable with
few modifications. The performance analysis of BGBRL-like
algorithms, on the other hand, is a completely open question
at the moment.

REFERENCES

[1] M. Strens, “A Bayesian framework for reinforcement learning,” in
ICML 2000, 2000, pp. 943–950.

[2] N. Vlassis, M. Ghavamzadeh, S. Mannor, and P. Poupart,Reinforce-
ment Learning. Springer, 2012, ch. Bayesian Reinforcement Learning,
pp. 359–386.

[3] M. H. DeGroot,Optimal Statistical Decisions. John Wiley & Sons,
1970.

[4] S. Ross, B. Chaib-draa, and J. Pineau, “Bayes-adaptive POMDPs,”
in Advances in Neural Information Processing Systems 20, J. Platt,
D. Koller, Y. Singer, and S. Roweis, Eds. Cambridge, MA: MIT
Press, 2008.

[5] C. Dimitrakakis, “Complexity of stochastic branch and bound methods
for belief tree search in Bayesian reinforcement learning,” in 2nd
international conference on agents and artificial intelligence (ICAART
2010), ISNTICC. Valencia, Spain: Springer, 2010, pp. 259–264.

[6] ——, “Robust bayesian reinforcement learning through tight lower
bounds,” inEuropean Workshop on Reinforcement Learning (EWRL
2011), ser. LNCS, no. 7188, 2011, pp. 177–188.

[7] L. J. Savage,The Foundations of Statistics. Dover Publications, 1972.
[8] M. O. Duff, “Optimal learning computational proceduresfor Bayes-

adaptive Markov decision processes,” Ph.D. dissertation,University of
Massachusetts at Amherst, 2002.

[9] W. Thompson, “On the Likelihood that One Unknown Probability Ex-
ceeds Another in View of the Evidence of two Samples,”Biometrika,
vol. 25, no. 3-4, pp. 285–294, 1933.

[10] S. Agrawal and N. Goyal, “Analysis of thompson samplingfor the
multi-armed bandit problem,” inCOLT 2012, 2012.

[11] E. Kaufmanna, N. Korda, and R. Munos, “Thompson sampling: An
optimal finite time analysis,” inALT-2012, 2012.

[12] P. Poupart and N. Vlassis, “Model-based Bayesian reinforcement
learning in partially observable domains,” inInternational Symposium
on Artificial Intelligence and Mathematics (ISAIM), 2008.

[13] J. Z. Kolter and A. Y. Ng, “Near-Bayesian exploration inpolynomial
time,” in ICML 2009, 2009.

[14] P. S. Castro and D. Precup, “Using linear programming for Bayesian
exploration in Markov decision processes,” inIJCAI, M. M. Veloso,
Ed., 2007, pp. 2437–2442.

Q(λ); UCRL; MCBRL; U-MCBRL; BGBRL

0 2,000 4,000 6,000 8,000 10,000
0.1

0.2

0.3

t

E
r t

(a) Chain

0 2,000 4,000 6,000 8,000 10,000

0.1

0.2

0.3

0.4

t

E
r t

(b) Double Loop

0 2,000 4,000 6,000 8,000 10,000

0

0.02

0.04

0.06

t

E
r t

(c) River Swim

0 2,000 4,000 6,000 8,000 10,000

−1

−0.99

−0.98

−0.97

t

E
r t

(d) Mountain Car5× 5

Fig. 1: Reward per step, smoothed over 100 steps and averagedover 103 runs.

[15] M. Araya, V. Thomas, O. Buffet,et al., “Near-optimal BRL using
optimistic local transitions,” inICML, 2012.

[16] P. Poupart, N. Vlassis, J. Hoey, and K. Regan, “An analytic solution
to discrete Bayesian reinforcement learning,” inICML 2006. ACM
Press New York, NY, USA, 2006, pp. 697–704.

[17] Y. Engel, S. Mannor, and R. Meir, “Bayes meets bellman: The gaussian
process approach to temporal difference learning,” inICML 2003,
2003.

[18] M. Ghavamzadeh and Y. Engel, “Bayesian policy gradientalgorithms,”
in NIPS 2006, 2006.

[19] M. P. Deisenroth and C. E. Rasmussen, “Pilco: A model-based and
data-efficient approach to policy search,” inInternational conference
on Machine Learning (ICML), Bellevue, WA, USA, July 2011.

[20] R. Dearden, N. Friedman, and D. Andre, “Model based Bayesian
exploration,” in Proceedings of the 15th Conference on Uncertainty
in Artificial Intelligence (UAI-99), K. B. Laskey and H. Prade, Eds.
San Francisco, CA: Morgan Kaufmann, San Francisco, CA, July30–
Aug. 1 1999, pp. 150–159.

[21] W. Hoeffding, “Probability inequalities for sums of bounded random
variables,” Journal of the American Statistical Association, vol. 58,
no. 301, pp. 13–30, March 1963.

[22] N. Srinivas, A. Krause, S. Kakade, and M. Seeger, “Gaussian process

optimization in the bandit setting: No regret and experimental design,”
in ICML 2010, 2010.

[23] H. Robbins and S. Monro, “A stochastic approximation method,” The
Annals of Mathematical Statistics, pp. 400–407, 1951.

[24] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Athena Scientific, 1996.

[25] T. Jacksh, R. Ortner, and P. Auer, “Near-optimal regretbounds
for reinforcement learning,”Journal of Machine Learning Research,
vol. 11, pp. 1563–1600, 2010.

[26] A. Strehl and M. Littman, “An analysis of model-based interval
estimation for Markov decision processes,”Journal of Computer and
System Sciences, vol. 74, no. 8, pp. 1309–1331, 2008.

[27] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. MIT Press, 1998.

	I Introduction
	I-A Setting
	I-B Related work and our contribution

	II Gradient Bayesian reinforcement learning
	II-A Value functions
	II-B Direct upper bound estimation
	II-C Direct gradient approximation
	II-D Temporal difference-like error minimisation
	II-E Bellman error minimisation

	III Experiments
	III-A Experiment design
	III-B Domains
	III-C Results

	IV Conclusion
	References

