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Abstract

The original k-means clustering method works only if the exact vectors repre-
senting the data points are known. Therefore calculating the distances from the
centroids needs vector operations, since the average of abstract data points is un-
defined. Existing algorithms can be extended for those cases when the sole input
is the distance matrix, and the exact representing vectors are unknown. This ex-
tension may be named relational k-means after a notation for a similar algorithm
invented for fuzzy clustering. A method is then proposed for generalizing k-means
for scenarios when the data points have absolutely no connection with a Euclidean
space.

1 Introduction

The standard k-means method [4] takes a set of data points py,...p, € R? and a number
of clusters N. Its aim is to produce an arrangement of the data points into N clusters
(that is, a labeling function ¢ : {p;}!~; — {1,...N}) so that the following objective is
minimized:
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where z; = ‘%' > jes, Pi» and S; = {p; : L(p;) = €(p:) }-

The main difficulty of this method is that it requires the data points to be the elements
of a Euclidean space, since we need to average the data points somehow. In practice we
often have data points (e.g., protein sequences) and a distance function which is not
derived from some Euclidean representation. Even worse, the distance function may not
be a metric at all. Clustering schemes like k-means are not applicable for these cases, as
k-means requires vectors as input.

Various generalizations and extensions of k-means have been developed [1] [2], but none
yet seems to have addressed the above problem. However, the fuzzy c-means clustering
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method is reported to have been successfully generalized [3]. The generalized method is
known as Non-Euclidean Relational Fuzzy C-means (NERF c-means). A similar extension
of k-means, which can be viewed as a vast simplification of NERF c-means, is described
in the next sections.

2 Relational k-means

Suppose first that we have a Euclidean distance matrix between the data points, but
the exact location of the vectors representing them is unknown for us. Let A € R"*"
be the squared distance matrix, namely, A;; = ||p; — p;||*. Our objective is to calculate
the squared norms ||p; — z||%>. The p; — z; distance vectors are a special case of those
linear combinations of the p; points where the sum of the coefficients is zero. That is,

D — 2 = 22;1 A;p; for some suitable X € R, which satisfies the condition 22;1 A = 0.

In fact, it can be easily verified that the squared length of >~ | \;p; can be calculated
by knowing only the matrix A:

n n n

I Z)\iszQ = Z Z)\i)\j (pisp;) = —% Z ZAiAiji —pj|I* = —%)\TA)\,
=1

i=1 j=1 i=1 j=1

In the above transformation we made use of the fact that > A\, = 0.

Calculating a centroid distance is thus possible by computing a quadratic form. This
means that, even if the only thing we know is the squared distance matrix A, we can run
practically any k-means heuristic without substantial modifications. Of course, the time
complexity will be impaired, as computing a quadratic form is an expensive operation.

3 The non-Euclidean case

Let e; denote the ith standard basis vector, and, for an index set S C {1,...n} let x(S5) :=
Y icg €i- Now let zg 1= ﬁ > ;esDj denote a centroid. The formula d?(p;, zg) := —5AT A
(where A := |—é‘ X(S) — e;) still makes sense even if A has not been derived from Euclidean
distances. Therefore, the above formula yields a generalization of the centroid distances.

This means that now we can speak of the weighted arithmetic mean of abstract data
points in a sense that there is a possible interpretation of distance between two objects
of that kind.

The above generalization shows that any k-means algorithm can be adapted to abstract
distances. It is questionable though whether this generalized clustering method yields
interesting and useful clusters. A completely arbitrary matrix A can produce strange
results. That is, if —%)\TAA takes a negative value for some vector A (the sum of whose
coordinates is zero), then the distance defined by A will be negative. Of course, this is
not possible in the case of a Euclidean squared distance matrix.



Negative distances can be eliminated by ensuring that A; is negative definite, where
Ay is the restriction of the quadratic form A to the linear hyperplane perpendicular to
1. (1 is the vector whose coordinates are all 1.) This may require a modification to the
original squared distance matrix, a modification that should be as small as possible in
some sense.

A method proposed in [3] called S-spread transformation may be applicable here as
well. That is, all the pairwise distances are gradually increased by the same amount until
we have a matrix of the desired kind. This approach was reported to work well with fuzzy
c-means for real-world data. The real-world suitability of an analogous matrix correction
method for generalized k-means is yet to be evaluated.
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