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UWE KÜCHLER1 and MICHAEL SØRENSEN2

1Institut für Mathematik, Humboldt-Universität zu Berlin, Unter den Linden 6, D-10099 Berlin,

Germany. E-mail: kuechler@mathematik.hu-berlin.de
2Department of Mathematical Sciences, University of Copenhagen, Universitetsparken 5,

DK-2100 Copenhagen Ø, Denmark. E-mail: michael@math.ku.dk

Statistical inference for discrete time observations of an affine stochastic delay differential equa-
tion is considered. The main focus is on maximum pseudo-likelihood estimators, which are easy
to calculate in practice. A more general class of prediction-based estimating functions is investi-

gated as well. In particular, the optimal prediction-based estimating function and the asymptotic
properties of the estimators are derived. The maximum pseudo-likelihood estimator is a partic-
ular case, and an expression is found for the efficiency loss when using the maximum pseudo-

likelihood estimator, rather than the computationally more involved optimal prediction-based
estimator. The distribution of the pseudo-likelihood estimator is investigated in a simulation
study. Two examples of affine stochastic delay equation are considered in detail.

Keywords: asymptotic normality; composite likelihood; consistency; discrete time observation
of continuous-time models; prediction-based estimating functions; pseudo-likelihood; stochastic
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1. Introduction

In the last decade, statistical inference for stochastic delay differential equations (SDDEs)
has been studied from various viewpoints. Early work on maximum likelihood estimation
was done by Küchler and Mensch [15]. Gushchin and Küchler [8] and Küchler and Kutoy-
ants [14] determined the non-standard asymptotic properties of the maximum likelihood
estimator for SDDEs, and Küchler and Vasil’jev [20] constructed sequential procedures
with a given accuracy in the L2 sense. Nonparametric estimators for affine SDDEs were
investigated by Reiß [22] and Reiß [23]. All these studies were concerned with continuous
observation of the solution process.
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As opposed to the situation for ordinary stochastic differential equations, observations
at discrete time points have been little studied for SDDEs. Reiß [21] studied nonparamet-
ric estimation. Küchler and Sørensen [19] proposed a simple estimator for the parameters
αk in the particular type of SDDE given by (2) below. This estimator is biased, however,
and can only be expected to work well for high-frequency observations. In this paper
we report a first attempt at investigating parametric inference for affine stochastic de-
lay equations of the general type (1) observed at discrete time points. We propose a
pseudo-likelihood function and study it in the framework of prediction-based estimating
functions. Applying the methods proposed here in practice often requires the ability to
simulate solutions of SDDEs. This problem has been studied by, among other, Küchler
and Platen [16] and Buckwar [2]. A practical application of one of the simplest SDDEs,
discussed in Example 2.1 below, was provided by Küchler and Platen [17].
We consider the model given by the stochastic differential equation

dX(t) =

(∫ 0

−r

X(t+ s)aα(ds)

)

dt+ σ dW (t), (1)

where aα is a measure on [−r,0] (0 ≤ r < ∞) such that (1) has a unique stationary
solution (for a suitable given initial condition). Conditions under which (1) has a unique
stationary solution were given by Gushchin and Küchler [9]. By Theorem 3.1 in this
paper, the stationary solution is a Gaussian process. We assume that the measure aα
depends on a parameter α. The parameter about which inference is to be drawn is (α,σ)
or (α,σ, r), (σ, r > 0). As usual, we denote the parameter space by Θ⊆ R

p. The process
W is a Wiener process. The initial condition is that the distribution of {X(s) | s ∈ [−r,0]}
is the stationary distribution, which always has expectation 0. The data are observations
at discrete time points: X(∆),X(2∆), . . . ,X(n∆).
An interesting particular case of (1) is

dX(t) =

N
∑

k=1

αkX(t− rk) dt+ σ dW (t). (2)

Here the measure aα is concentrated in the discrete points −r1, . . . ,−rN , (ri ≥ 0). The
vector (r1, . . . , rN ) may be among the parameters to be estimated. The particular case
where N = 2 and r1 = 0 is considered in detail in Example 2.1.
In Section 2 we discuss how to calculate the likelihood function for discrete time ob-

servations, and propose a pseudo-likelihood function that closely approximates the likeli-
hood function and is considerably easier to calculate. We consider two examples in detail.
In Section 3 we present prediction-based estimating functions for affine stochastic delay
equations, find the optimal estimating function in this class, and show that the pseudo-
likelihood estimator is a particular case of a prediction-based estimator. The prediction-
based estimating functions provide a good framework for discussing the asymptotics of
the pseudo-likelihood estimator and in particular the efficiency loss compared with the
optimal prediction-based estimating function. We do this in Section 4, specifying condi-
tions ensuring consistency and asymptotic normality. Finally, in Section 5 we present a
simulation study of properties of the pseudo-likelihood estimator.
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2. The likelihood and the pseudo-likelihood function

Because the stationary solution to (1) is a zero-mean Gaussian process, Gushchin and
Küchler [9], the data are in fact a Gaussian time series with expectation 0. Therefore, in
principle the likelihood function can be calculated if we can determine, analytically or
numerically, the autocovariances

Kθ(t) =Eθ(X(0)X(t)), t≥ 0. (3)

The autocovariance function, Kθ(t), satisfies the differential equation

∂tKθ(t) =

∫ 0

−r

Kθ(t+ s)aθ(ds), t≥ 0, (4)

with ∂tKθ(0+) =− 1
2σ

2, provided that we define Kθ(−t) =Kθ(t) for t≥ 0 (see Gushchin
and Küchler [10]). The condition ∂tKθ(0+) =− 1

2σ
2 also can be written in the form

2

∫ 0

−r

Kθ(s)aθ(ds) =−σ2.

Equation (4) is a continuous-time analogue of the Yule–Walker equation known from
time-series analysis, and hereinafter we refer to (4) as the delay Yule–Walker equation of
(3). In general, this equation must be solved numerically, but we consider two particular
examples where it can be solved explicitly.
To calculate the likelihood function, define for every ℓ= 1, . . . , n the ℓ-dimensional vec-

tor κℓ(θ) = (Kθ(∆), . . . ,Kθ(ℓ∆))T , and the ℓ× ℓ-matrix Kℓ(θ) = {Kθ((i− j)∆)}i,j=1,...,ℓ.
Here and later T denotes transposition of vectors and matrices. The matrix Kℓ(θ) is the
covariance matrix of the vector of the first ℓ observations X(∆), . . . ,X(ℓ∆).
The conditional distribution of the observation X((i+1)∆) given the previous obser-

vations X(∆), . . . ,X(i∆) is the Gaussian distribution with expectation φi(θ)
TXi:1 and

variance vi(θ), where φi(θ) is the i-dimensional vector given by φi(θ) = Ki(θ)
−1κi(θ),

vi(θ) = Kθ(0) − κi(θ)
TKi(θ)

−1κi(θ), and Xi:j = (X(i∆), . . . ,X(j∆))T , i > j ≥ 1. The
vector φi(θ) = (φi,1(θ), . . . , φi,i(θ))

T and the conditional variance vi(θ) can be found us-
ing the Durbin–Levinson algorithm (see, e.g., page 169 in Brockwell and Davis [1]).
Specifically, φ1,1(θ) =Kθ(∆)/Kθ(0) and v0(θ) =Kθ(0), whereas

φi,i(θ) =

(

Kθ(i∆)−
i−1
∑

j=1

φ(i−1),j(θ)Kθ((i− j)∆)

)

vi−1(θ)
−1,







φi,1(θ)
...

φi,i−1(θ)






=







φi−1,1(θ)
...

φi−1,i−1(θ)






− φi,i(θ)







φi−1,i−1(θ)
...

φi−1,1(θ)







and

vi(θ) = vi−1(θ)(1− φi,i(θ)
2).
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The likelihood function based on the data X(∆), . . . ,X(n∆) is

Ln(θ) =
1

√

2πv0(θ)
exp

(

− 1

2v0(θ)
X(∆)2

)

(5)

×
n−1
∏

i=1

[

1
√

2πvi(θ)
exp

(

− 1

2vi(θ)
(X((i+1)∆)− φi(θ)

TXi:1)
2

)]

.

Calculation of this function quickly becomes very time-consuming as the sample size n
increases. In particular, φi(θ) and vi(θ) must be calculated for every observation time
point. However, the autocovariances Kθ(i∆) decrease exponentially with i (see Diek-
mann et al. [3], page 34). Using the Durbin–Levinson algorithm, it is readily apparent
that this implies that the quantities φi,j(θ) decrease exponentially with j. Thus the con-
ditional distribution of X((i+ 1)∆) given X(∆), . . . ,X(i∆) depends only very little on
observations in the distant past.
Therefore, we propose using instead a pseudo-likelihood function obtained by replacing

in the likelihood function the conditional density of X((i+1)∆) given X(∆), . . . ,X(i∆)
with the conditional density of X((i + 1)∆) given X((i + 1 − k)∆), . . . ,X(i∆), where
k typically is relatively small. This pseudo-likelihood function was proposed by H.
Sørensen [24] in connection with stochastic volatility models, but the idea is widely
applicable. The pseudo-likelihood is given by

L̃n(θ) =

n−1
∏

i=k

[

1
√

2πvk(θ)
exp

(

− 1

2vk(θ)
(X((i+1)∆)− φk(θ)

TXi:i+1−k)
2

)]

. (6)

We have not included the density of Xk:1. Note that the computational gain is large
because we calculate (6) using the same values of φk(θ) and vk(θ) for all observation time
points. Thus, these quantities must be calculated only once for every value of L̃n(θ). We
call the number k the depth of the pseudo-likelihood function. We consider the influence
of k on the quality of the estimators in the simulation study reported in Section 5. As
would be expected, the quality increases with increasing depth. For the model considered
in Section 5, the present study indicates that the bias and the variance of the estimators
do not depend much on the depth when k is larger than 3–5 times r.

Example 2.1. Consider the equation

dX(t) = [aX(t) + bX(t− r)] dt+ σ dW (t), (7)

where r > 0, σ > 0. This is a particular case of the model (2). The real parameters a and
b are chosen such that a stationary solution of (7) exists. This is the case exactly when
a < r−1 and −a/ cos(ξ(ar)) < b < −a if a 6= 0, and when −π/2 < br < 0 if a = 0. Here
the function ξ(u) ∈ (0,π) is the root of ξ(u) = u tan(ξ(u)) if u 6= 0, and ξ(0) = π/2. The
stationary solution is unique if it exists. Details of this have been provided by Küchler
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and Mensch [15], who explicitly found the covariance function of the stationary solution
by solving the Yule–Walker delay differential equation (4),

∂tKθ(t) = aKθ(t) + bKθ(t− r), t≥ 0.

They found that

Kθ(0) =



























σ2(b sinh(λ(a, b)r)− λ(a, b))

2λ(a, b)[a+ b cosh(λ(a, b)r)]
when |b|<−a,

σ2(br− 1)/(4b) when b= a,

σ2(b sin(λ(a, b)r)− λ(a, b))

2λ(a, b)[a+ b cos(λ(a, b)r)]
when b <−|a|,

(8)

where λ(a, b) =
√

|a2 − b2|, and that for t ∈ [0, r] the covariance function is

Kθ(t) =







Kθ(0) cosh(λ(a, b)t)− σ2(2λ(a, b))−1 sinh(λ(a, b)t) when |b|<−a,

Kθ(0)− 1
2 tσ

2 when b= a,

Kθ(0) cos(λ(a, b)t)− σ2(2λ(a, b))−1 sin(λ(a, b)t) when b <−|a|.
(9)

Because Kθ(t) is known in [0, r], the Yule–Walker equation becomes an ordinary differ-
ential equation for Kθ(t) in [r,2r], which can be easily solved. Similarly, for t > r, the
autocovariance function Kθ(t) is given by

Kθ(t) = b

∫ t

nr

ea(t−s)Kθ(s− r) ds+ ea(t−nr)Kθ(nr), t ∈ [nr, (n+ 1)r], n ∈N. (10)

Thus Kθ(t) can be determined iteratively in each of the intervals t ∈ [nr, (n+1)r], n ∈N.
Note that the covariance function depends on σ and r in a simple and smooth way,
so that these parameters also can be estimated by maximizing the pseudo-likelihood
function (6).
For b = 0, the model (7) is the Ornstein–Uhlenbeck process, for which (8) and (9)

simplifies to the well-known result Kθ(t) = −(σ2/(2a))eat (t≥ 0) in the stationary case
a < 0. For a= 0, we obtain the model

dX(t) = bX(t− r) dt+ σ dW (t). (11)

This process is stationary if and only if br ∈ (−π/2,0), and in this case, by (8) and (9),
the autocovariance function is given by

Kθ(t) =−σ2

2b

(

1− sin(br)

cos(br)
cos(bt) + sin(bt)

)

(12)

when t ∈ [0, r]. By (10), we find that

Kθ(t) =−σ2

2b
[2 + cos(bt){(tan(bt)− tan(br))(1− 2 sin(br))− 1/ cos(br)}] (13)

for t ∈ [r,2r].
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Example 2.2. Consider the equation

dX(t) =−b

(∫ 0

−r

X(t+ s)eas ds

)

dt+ σ dW (t), (14)

where r > 0, σ > 0. The set of values of the parameters a and b for which a unique sta-
tionary solution of (14) exists was studied by Reiß [21]. This set is rather complicated and
irregular; for instance, it is not convex. However, it contains the region {(a, b) | a≥ 0, b >
0, b(1 + e−ar) < max(π2/r2, a2(ear − 1)2)}. For a = 0, corresponding to a uniform de-
lay measure, a stationary solution exists exactly when 0< b < 1

2π
2/r2. When r =∞, the

situation is much simpler. In that case, a stationary solution exists for all a > 0 and b > 0.
When a= 0 (and r is finite),

Kθ(t) =
σ2 sin(r

√
2b(1/2− t))

2r
√
2b cos(r

√

b/2)
+

σ2

2br2
, 0≤ t≤ r.

For a > 0, an explicit expression for Kθ(t) involving trigonometric functions exists as
well (see Reiß [21], page 41), but it is somewhat complicated, and thus we omit it here.

3. Prediction-based estimating functions

In this section, we discuss the pseudo-likelihood estimator in the framework of prediction-
based estimating functions. This class of estimating functions was introduced by
Sørensen [25] as a generalization of the martingale estimating functions that is also
applicable to non-Markovian processes such as solutions to stochastic delay differential
equations. Applications of the methodology to observations of integrated diffusion pro-
cesses and sums of diffusions have been described by Ditlevsen and Sørensen [4] and
Forman and Sørensen [6]. An up-to-date review of the theory of prediction-based esti-
mating functions has been provided by Sørensen [26].
We show that the pseudo-likelihood estimator is a prediction-based estimator, and find

the optimal prediction-based estimating function, which turns out to be different from
the pseudo-score function. Optimality is in the sense of Godambe and Heyde [7] (see
Heyde [11]). We impose the following condition that is satisfied for the models considered
in Examples 2.1 and 2.2.

Condition 3.1. The function Kθ(t) is continuously differentiable with respect to θ.

Under this assumption, we find the following expression for the pseudo-score function:

∂θ ℓ̃n(θ) := ∂θ log(L̃n(θ))

=
n−1
∑

i=k

∂θφk(θ)
TXi:i+1−k

vk(θ)
(X((i+ 1)∆)− φk(θ)

TXi:i+1−k) (15)

+
∂θvk(θ)

2vk(θ)2

n−1
∑

i=k

[(X((i+ 1)∆)− φk(θ)
TXi:i+1−k)

2 − vk(θ)].
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The derivatives ∂θφk(θ) and ∂θvk(θ) exist when Kθ(t) is differentiable and can be found
by the following algorithm, which is obtained by differentiating the Durbin–Levinson
algorithm:

∂θφi,i(θ) =

[(

∂θKθ(i∆)−
i−1
∑

j=1

(∂θφ(i−1),j(θ)Kθ((i− j)∆)

+ φ(i−1),j(θ)∂θKθ((i− j)∆))

)

vi−1(θ)

+

(

Kθ(i∆)−
i−1
∑

j=1

φ(i−1),j(θ)Kθ((i− j)∆)

)

∂θvi−1(θ)

]

vi−1(θ)
−2,







∂θjφi,1(θ)
...

∂θjφi,i−1(θ)






=







∂θjφi−1,1(θ)
...

∂θjφi−1,i−1(θ)






− ∂θjφi,i(θ)







φi−1,i−1(θ)
...

φi−1,1(θ)







− φi,i(θ)







∂θjφi−1,i−1(θ)
...

∂θjφi−1,1(θ)







for j = 1, . . . , p, and

∂θvi(θ) = ∂θvi−1(θ)(1− φi,i(θ)
2)− 2vi−1(θ)φi,i(θ)∂θφi,i(θ).

The minimum mean squared error linear predictors of X((i+1)∆) and (X((i+1)∆)−
φk(θ)

TXi:i+1−k)
2 given Xi:i+1−k are φk(θ)

TXi:i+1−k and vk(θ), respectively. This is be-
cause for the Gaussian processes considered in this paper, the two conditional expecta-
tions are linear in Xi:i+1−k. Thus the pseudo-score function is a prediction-based esti-
mating function as defined in Sørensen [26], where estimating functions of a slightly more
general type than in the original paper (Sørensen [25]) are treated. The generalization
allows the predicted function to depend both on the parameter and on the previous ob-
servations. Exploring the relation of the pseudo-score function to the optimal estimating
function based on these predictors is of interest.
We start by defining a class of prediction-based estimating functions. Define the (k+

1)× 2-matrices

Z(i) =

(

XT
i:i+1−k 0

0 · · ·0 1

)T

, i= k, . . . , n− 1,

and the (k+ 1)-dimensional vectors

Hi(θ) = Z(i)

(

X((i+ 1)∆)− φk(θ)
TXi:i+1−k

(X((i+ 1)∆)− φk(θ)
TXi:i+1−k)

2 − vk(θ)

)

, i= k, . . . , n− 1.
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Then the class of prediction-based estimating functions to which (15) belongs is given by

Gn(θ) =A(θ)
n−1
∑

i=k

Hi(θ), (16)

where A(θ) is a p× (k + 1) matrix of weights that can depend on the parameter, but
not on the data. The pseudo-score function (15) is obtained if the weight matrix A(θ) is
chosen as

Ã(θ) =

(

∂θφk(θ)
T

vk(θ)

∂θvk(θ)

2vk(θ)2

)

.

Within the class of estimators obtained by solving the estimating equation Gn(θ) = 0 for
some choice of A(θ), the estimator with the smallest asymptotic variance is obtained by
choosing the optimal weight matrix A∗(θ). The optimal estimating function is the one
closest to the true score function in an L2-sense (for details, see Heyde [11]).
We now can find the optimal weight matrix A∗(θ). The covariance matrix of the

(k+ 1)-dimensional random vector
∑n−1

i=k H(i)(θ)/
√
n− k is

M̄n(θ) =M (1)(θ) +M (2)
n (θ), (17)

where

M (2)
n (θ) =

n−k−1
∑

j=1

(n− k− j)

(n− k)
[Eθ(Hk(θ)Hk+j(θ)

T ) +Eθ(Hk+j(θ)Hk(θ)
T ]

and

M (1)(θ) =Eθ(Hk(θ)Hk(θ)
T ) =

(

vk(θ)Kk(θ) Ok,1

O1,k 2vk(θ)
2

)

,

with Oj1,j2 denoting here and later the j1× j2-matrix of 0s, and with Kk(θ) denoting the
covariance matrix of (X(k∆), . . . ,X(∆)) defined in Section 2. We have used Eθ(Hi(θ)) =
0, which is a general property of prediction-based estimating functions (see Sørensen [26]).
In this particular case, this is easily seen by finding the conditional expectation of Hi(θ)
given Xi:i+1−k, which is 0.
To find the optimal estimating function, we also need the p× (k+1) sensitivity-matrix

S(θ), given by

S(θ)T =Eθ(∂θTHi(θ)) =−
(

Kk(θ)∂θT φk(θ)
∂θT vk(θ)

)

. (18)

For the derivation of M (1)(θ) and S(θ), we use that the model is Gaussian and, in
particular, we use that φk(θ)

TXi:i+1−k is the conditional expectation of X((i + 1)∆)
and not just the minimum mean squared linear predictor as in the general theory of
prediction-based estimating functions. The optimal weight matrix is given by

A∗

n(θ) =−S(θ)M̄n(θ)
−1, (19)

see Sørensen [26].
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The class of estimating functions considered above is not the full class of prediction-
based estimating functions to which (15) belongs, as defined by Sørensen [25] and
Sørensen [26]. The full class is obtained by replacing in (16) A(θ) with a p× 2(k + 1)
matrix and Hi(θ) with the 2(k + 1)-dimensional vectors H̆i(θ) obtained when Z(i) is
replaced by the 2(k+ 1)× 2 matrix,

Z̆(i) =

(

XT
i:i+1−k 0 1 O1,k

O1,k 1 0 XT
i:i+1−k

)T

in the definition of Hi(θ). In this way, Hi(θ) is extended by k + 1 extra coordinates.
Because the moments of an odd order of a centered multivariate Gaussian distribution
equal 0, we see that the extra k + 1 coordinates of H̆i(θ) have expectation 0 under the
true probability measure irrespective of the value of the parameter θ; therefore, they
cannot be expected to be a useful addition to Hi(θ). However, the extra coordinates
might be correlated with the coordinates of Hi(θ), and thus might be used to reduce
the variance of the estimating function. To see that this is not the case, the optimal
estimating function based on H̆i(θ) can be calculated. The covariance matrix of the

random vector
∑n−1

i=k H̆(i)(θ)/
√
n− k can be shown to be a block-diagonal matrix with

two (k + 1)× (k+ 1)-blocks, the first of which equals M̄n(θ). This follows from the fact
that moments of an odd order of a centered multivariate Gaussian distribution equal 0.
Moreover, the sensitivity matrix corresponding to H̆i(θ) is

S̆(θ)T =Eθ(∂θT H̆i(θ)) =−





Kk(θ)∂θT φk(θ)
∂θT vk(θ)
Ok+1,p



 .

Therefore, the optimal weight matrix is

Ă∗

n(θ) = (A∗
n(θ) Op,k+1 ) ,

and thus the optimal prediction-based estimating function obtained from H̆i(θ) equals
the optimal estimating function obtained from Hi(θ). It is therefore sufficient to consider
the aforementioned smaller class of prediction-based estimating functions, which we do
in the rest of the paper.
The pseudo-score function, ∂θ ℓ̃n(θ), is not equal to the optimal prediction-based esti-

mating function. In fact,

Ã(θ) =−S(θ)M (1)(θ)−1. (20)

The magnitude of the difference between the two estimating functions depends on how

small the entries of M
(2)
n (θ) are relative to the entries of M (1)(θ). Because correlations

decrease exponentially with the distance in time (see Reiß [21], page 26), the terms in

the sum defining M
(2)
n (θ) can be small compared with the entries of M (1)(θ); however,

under what conditions this occurs and exactly how small the terms are depend on θ, ∆,
and k.
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In the next section we show that the limit

M (2)(θ) = lim
n→∞

M (2)
n (θ) =

∞
∑

j=1

[Eθ(Hk(θ)Hk+j(θ)
T ) +Eθ(Hk+j(θ)Hk(θ)

T )] (21)

exists. Therefore, we can define the following weight matrix, which does not depend on n:

A∗(θ) =−S(θ)M̄(θ)−1, (22)

where

M̄(θ) = lim
n→∞

M̄n(θ) =M (1)(θ) +M (2)(θ). (23)

The estimating function

G∗

n(θ) =A∗(θ)

n−1
∑

i=k

Hi(θ) (24)

is asymptotically optimal and theoretically is easier to handle than A∗
n(θ)

∑n−1
i=k Hi(θ).

In practice, the optimal weight matrices A∗
n(θ) or A∗(θ) usually must be calculated by

simulation. The amount of computation can be reduced by using the approximation to
G∗

n(θ) obtained by replacing A∗(θ) or A∗
n(θ) with the matrix obtained from (22) and (23)

when M (2)(θ) is replaced by a suitably truncated version of the series in (21). This does
not make much difference, because the terms in the sum (21) decrease exponentially fast.

4. Asymptotics of the pseudo-likelihood estimator

In this section, we present the asymptotic properties of estimators obtained by solving the
estimating equation Gn(θ̂n) = 0, where Gn is given by (16). Important particular cases
of this are the maximum pseudo-likelihood estimator obtained by maximizing (6) and

the optimal prediction-based estimator obtained by solving G∗
n(θ̂n) = 0 with G∗

n given
by (24). The depth, k, of Gn is assumed fixed. The asymptotic properties are proven for
a solution to the general equation (1) under the following assumption:

Condition 4.1.

(a) The functions Kθ(t) and A(θ) are twice continuously differentiable with respect
to θ.
(b) The p× (k+ 1) matrix (∂θφ

T
k (θ) ∂θvk(θ)) has rank p (in particular, k+ 1≥ p).

(c) A(θ)K̄(φ̄k(θ0)− φ̄k(θ)) = 0 if and only if θ = θ0.

Here

K̄=

(

Kk(θ0) Ok,1

O1,k 1

)

, (25)
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and

φ̄k(θ) =

(

φk(θ)
vk(θ) + 2φk(θ)

Tκk(θ0)− φk(θ)
TKk(θ0)φk(θ)

)

.

If A equals Ã (corresponding to the pseudo-score function) or A equals A∗ (corre-
sponding to the optimal prediction-based estimating function), then Condition 4.1(a) is
satisfied if Kθ(t) is three times continuously differentiable, which is the case for the mod-
els considered in Examples 2.1 and 2.2. Condition 4.1(a) ensures that the functions φk(θ)
and vk(θ) are continuously differentiable. Condition 4.1(c) is an identifiability condition
that ensures eventual uniqueness of the estimator.

Theorem 4.2. Assume that the true parameter value θ0 belongs to the interior of the
parameter space Θ. Suppose that Condition 4.1 is satisfied, and that the matrix A(θ0) has

full rank p. Then a consistent estimator θ̂n that solves the estimating equation Gn(θ̂n) = 0
exists and is unique in any compact subset of Θ containing θ0 with a probability tending
to 1 as n→∞. Moreover,

√
n(θ̂n − θ0)

D−→Np(0, U(θ0)
−1V (θ0)(U(θ0)

−1)T )

as n→∞, where V (θ0) =A(θ0)M̄(θ0)A(θ0)
T with M̄(θ0) given by (23), and

U(θ0) =Eθ0(∂θGn(θ0)
T )/(n− k) = S(θ0)A(θ0)

T . (26)

Here S(θ) is the sensitivity matrix given by (18).

Note that it follows from (19) and (20) that A∗(θ0) and Ã(θ0) have rank p if S(θ0)
has rank p, because M̄n and M (1) are non-singular covariance matrices. That S(θ0) has
rank p follows from Condition 4.1(b) by (27) below.

Proof of Theorem 4.2. The theorem follows from general asymptotic statistical results
for stochastic processes (see, e.g., Jacod and Sørensen [13]). We need to establish that a
law of large numbers and a central limit theorem hold and to check regularity conditions.
Under our general assumption that X is stationary, Reiß [21] (page 25) showed that

X is exponentially β-mixing. Therefore, a law of large numbers holds for sums of the
form n−1

∑n

i=1 f(Xi+k:i). The process {Hi(θ0)} is exponentially α-mixing, and because
the process X is Gaussian, Hi(θ) has moments of all orders. Therefore, it follows from
Theorem 1 in Section 1.5 of Doukhan [5] that (21) converges, and that

Gn(θ0)√
n

D−→N(0, V (θ0))

as n→∞.
Next, we need to check regularity conditions that ensure the asymptotic results.

The estimating function satisfies that Eθ0(Gn(θ0)) = 0. Furthermore, it is obvious from
the continuous differentiability of the functions φk(θ) and vk(θ) that the derivatives
∂θjA(θ)Hi(θ)+A(θ)∂θjHi(θ) are locally dominated integrable. Finally, the matrix U(θ0)
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is invertible because A(θ0) has full rank and

S(θ0) =− (∂θφ
T
k (θ0) ∂θvk(θ0) ) K̄, (27)

with K̄ given by (25). The first matrix has full rank by Condition 4.1(b), and K̄
is invertible because Kk(θ0) is the covariance matrix of X(∆), . . . ,X(k∆), which is

not degenerate. Now the existence and consistency of θ̂n, as well as the eventual
uniqueness of a consistent estimator on any compact subset of Θ containing θ0, fol-
low (see Jacod and Sørensen [13]). The locally dominated integrability of A(θ)Hi(θ)
(which follows from Condition 4.1(a)) implies that n−1Gn(θ) converges uniformly to
A(θ)Eθ0(Hi(θ)) =A(θ)K̄(φ̄k(θ0)− φ̄k(θ)) for θ in a compact set. The fact that the limit
is a continuous functions of θ and satisfies A(θ)Eθ0 (Hi(θ)) 6= 0 for θ 6= θ0 implies that
any non-consistent solution to the estimating equation will eventually leave any compact
subset of Θ containing θ0. The asymptotic normality follows by standard arguments (see,
e.g., Jacod and Sørensen [13]). �

A simpler estimator with the same asymptotic distribution as in the estimator from
(16) is obtained from the estimating function

G◦

n(θ) =A(θ◦n)

n−1
∑

i=k

Hi(θ),

where θ◦n is some consistent estimator of θ, obtained, for instance, by simply using p
suitably chosen coordinates of Hi(θ). For this estimating function, the identifiability
condition Condition 4.1(c) can be replaced by the following condition:

Condition 4.3.

(a) The function (φk(θ), vk(θ)) is one-to-one.
(b) φ̄k(θ0)− φ̄k(θ) ∈N⊥ for all θ ∈Θ, where N is the null space of the matrix A(θ0)K̄.

This readily follows from the fact that the limit of n−1G◦
n(θ) is A(θ0)K̄(φ̄k(θ0)− φ̄k(θ)).

In the case of the pseudo-likelihood function, we have the simple expression

Ã(θ0)K̄= (vk(θ0)
−1 ∂θφ

T
k (θ0)Kk(θ0)

1
2vk(θ0)

−2 ∂θvk(θ0) ) .

Condition 4.3(a) is a basic assumption without which there is no hope of estimating
θ using the pseudo-score function (15). The condition must be checked for individual
models. Obviously, it is not always satisfied, as demonstrated by the following examples.
Consider the model in Example 2.1 with the restriction that b = a. For this model, the
autocovariance function depends on r and b only through r − b−1 > 0 for t ∈ [0, r]. In
Example 2.2 with the restriction that a= 0, the autocovariance function depends on r
and b only through r

√
b for t ∈ [0, r].

Theorem 4.2 implies that the asymptotic distribution of the optimal prediction-based
estimator, θ̂∗n, is

√
n(θ̂∗n − θ0)

D−→Np(0, (S(θ0)M̄(θ0)
−1S(θ0)

T )−1), (28)
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and the asymptotic distribution of the pseudo-likelihood estimator, θ̃n, is

√
n(θ̃n − θ0)

D−→Np(0,W (θ0)
−1 +W (θ0)

−1B(θ0)W (θ0)
−1), (29)

where

W (θ) = S(θ)M (1)(θ)−1S(θ)T =
∂θφk(θ)

TKk(θ)∂θT φk(θ)

vk(θ)
+

∂θvk(θ)∂θT vk(θ)

2vk(θ)2

and

B(θ) = Ã(θ)M (2)(θ)Ã(θ)T = S(θ)M (1)(θ)−1M (2)(θ)M (1)(θ)−1S(θ)T .

The result for θ̂∗n follows because

−S(θ0)A
∗(θ0)

T =A∗(θ0)M̄(θ0)A
∗(θ0)

T = S(θ0)M̄(θ)−1S(θ0)
T ,

and the result for θ̃n follows because

−S(θ0)Ã(θ0)
T = S(θ0)M

(1)(θ0)
−1S(θ0)

T

and

Ã(θ0)M̄(θ0)Ã(θ0)
T = S(θ0)M

(1)(θ0)
−1S(θ0)

T + Ã(θ0)M
(2)(θ0)Ã(θ0)

T .

According to the general theory of estimating functions (see, e.g., Heyde [11]), the
matrix S(θ0)M̄(θ0)

−1S(θ0)
T −(W (θ0)

−1+W (θ0)
−1B(θ0)W (θ0)

−1)−1 is positive definite;

that is, the asymptotic covariance matrix of θ̃n is larger than that of θ̂∗n (in the usual
ordering of positive semi-definite matrices). Thus the asymptotic variance of f(θ̃n) is

larger than that of f(θ̂∗n) for any differentiable function f :Rp 7→R. If B(θ0) is invertible,
then

[W (θ0)
−1 +W (θ0)

−1B(θ0)W (θ0)
−1]−1 =W (θ0)− [B(θ0)

−1 +W (θ0)
−1]−1,

and if M (2)(θ0) is invertible, then

M̄(θ0)
−1 =M (1)(θ0)

−1 −M (1)(θ0)
−1[M (1)(θ0)

−1 +M (2)(θ0)
−1]

−1
M (1)(θ0)

−1,

where we have used twice that (I + A)−1 = I − A(I + A)−1 for a matrix A. Thus the
difference between the two inverse asymptotic covariance matrices can be expressed as

S(θ0)M̄(θ0)
−1S(θ0)

T − [W (θ0)
−1 +W (θ0)

−1B(θ0)W (θ0)
−1]−1

= [B(θ0)
−1 +W (θ0)

−1]−1

− S(θ0)M
(1)(θ0)

−1[M (1)(θ0)
−1 +M (2)(θ0)

−1]
−1

M (1)(θ0)
−1S(θ0)

T (30)

= [(Ã(θ0)M
(1)(θ0)Ã(θ0)

T )
−1

+ (Ã(θ0)M
(2)(θ0)Ã(θ0)

T )
−1

]
−1

− Ã(θ0)[M
(1)(θ0)

−1 +M (2)(θ0)
−1]

−1
Ã(θ0)

T .
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It is considerably easier to calculate the pseudo-likelihood function (6) than the optimal
estimating function (24), because the latter involves derivatives with respect to θ of the
covariance function and higher-order moments of X . In particular, in cases where the
covariance function is not explicitly known and must be determined by simulation, it is
much easier to calculate (6) than (24). Thus the maximum pseudo-likelihood estimator
is preferred in practice. The formula (30) then can be used to assess whether the loss of
efficiency relative to the optimal estimator is acceptable.

Example 4.4. As an example, we calculated the efficiency loss for the model (7) in Ex-
ample 2.1 in a number of cases. When k is sufficiently large, the pseudo-likelihood function
is almost efficient, and thus the information loss (30) is necessarily small. Therefore, it
is most interesting to calculate the efficiency loss when k is small. We calculate the rel-
ative information loss, that is, the information loss (30) relative to the information for
the optimal estimator given by (28). The main problem is to calculate the matrix (21).
However, for k = 1, a simple expression for each term in the sum (21) can be obtained
using the formula of Isserlis [12], and so a suitably truncated version of the sum can
be easily calculated. For k ≥ 2, the matrix (21) can be determined by simulation using
(23). Specifically, we determine the covariance matrix M̄n(θ0), with n suitably large, by
simulation. This is computationally more demanding.
We first considered the efficiency loss for the parameter b in the case k = 1. The

parameters σ2 and r were fixed at a value of 1, and a was chosen equal to −1. For b=
−e−2 =−0.1353 (the value for which the mixing rate is maximal), the relative information
loss was found to be very small, less than 0.1 percent for ∆ = 0.1, ∆= 0.5, and ∆= 1.
Next, we calculated the information loss for a number of values of b with ∆ = 1.

For b=−0.3,−0.06,0.05,0.1,0.2,0.3, and 0.5, the mixing rate is relatively high, and the
information loss is less than 0.1 percent. For b=−0.5,−0.4,0.7, and 0.9, the information
loss is between 0.1 and 1 percent, whereas for b=−0.6,−0.7, and −0.9, it is 1.4 percent,
3.0 percent, and 9.8 percent, respectively.
Finally, we calculated the relative the information loss for k = 3 and k = 5. In this

case, information loss was calculated for both a and b. The parameters a, σ2, and r had
the same value as before, and ∆= 1. For b=−e−2, the relative information loss for both
a and b is less than 0.1 percent for both values of k. For b=−0.5 the information loss is
less than 0.1 percent for b and 0.2 percent for a.
In most cases, the relative information loss is so tiny that in practice it is preferable

to use the maximum pseudo-likelihood estimator. The information loss increases as the
mixing rate decreases. Only for k = 1 and b=−0.9 is the information loss large enough
to justify the use of the more complicated optimal estimator.

5. Simulation study

In this section we report the results of a simulation study in which we investigated
some properties of the pseudo-likelihood estimator introduced in Section 2. We restrict
ourselves to the model considered in Example 2.1 and to estimating θ = (a, b). The
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delay time r is chosen equal to 1, and σ2 is fixed at 1. This study was not intended
to serve as a complete simulation study; rather, the intention was to illustrate some
properties of the estimator and give a first impression of how the joint distribution of
the two-dimensional estimator θ̃n = (ãn, b̃n) depends on the time between observations
∆, the depth k of the pseudo-likelihood function, and the true parameter value. We
performed simulations for three values of θ: θ = (−1,0.95) near the upper boundary of
the domain of stationarity, θ= (−1,−1/e2) = (−1,−0.1353) which is the parameter value
with the highest possible mixing rate for the stationary solution X when a = −1, and
θ= (−1,−2.1) near the lower boundary of the domain of stationarity. For each parameter
value, we considered four sampling frequencies with the same number of observation
time points (200); specifically, the observation time points were i∆, i= 1, . . . ,200, with
∆ = 0.05,0.1,0.5,1. The simulations of the SDDE were conducted with a step size of
0.001. In all cases, 1000 data sets were simulated, and thus 1000 estimates were generated.
For each data set, a new trajectory of the driving Wiener process was generated. The
full simulation study is reported in Küchler and Sørensen [18].
Table 1 reports the mean values and standard deviations of the simulated estimates

of a and b for (a, b) = (−1,−0.1353). For (a, b) = (−1,0.95), the estimators are more
biased and have a larger standard deviation for small values of ∆ and k, whereas for
(a, b) = (−1,−2.1), the bias is small and the standard deviations are comparable in all
cases. For (a, b) = (−1,0.95), the estimators of a and b are highly correlated, whereas this
is the case only for small values of ∆ and k for the other parameter values.
The most remarkable observations from our simulation study can be summarized as

follows:

• For a fixed number of observation time points, the bias and standard deviation of
the estimators worsen as the time between observations ∆ decreases, at least when
∆≤ r. For ∆> r, the quality does not change much with ∆, and whether the bias
and variance increase or decrease with ∆ depends on the parameter value.

• The smaller the ∆ value, the more the choice of the depth k of the pseudo-likelihood
functions influences the quality of the estimators when ∆ ≤ r. For ∆ > r, the im-
portance of k increases again for some parameter values.

• It is surprising that a similar pattern is seen when the length of the observation
interval n∆ is fixed so that the sample size decreases as ∆ increases. However, here
there is a clearer tendency for the estimators to deteriorate when ∆ > r, so that
there is an optimal value of ∆, which seems to be around r.

• The absolute value of the correlation between ã and b̃ decreases with increasing
depth k to a limit, which is strongly dependent on the true parameter value. Near
the upper boundary of the stability region, the estimators are highly correlated.
A high absolute value of the correlation indicates that it is difficult to distinguish
between the effects of the lagged term and the nonlagged term in the drift; thus, it
is not surprising that the absolute correlation is large when the depth is small.

• For small values of the depth k, the joint distribution of the estimators of a and b
can deviate from a two-dimensional normal distribution by having crescent-shaped
contours.
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Table 1. Mean and standard deviation of the pseudo-likelihood estimator of a (upper part of the
table) and b (lower part of the table) for various values of depth k, time between observations ∆,
and number of observations n. In all cases n∆, the length of the observation interval, is 200,
and the true parameter values are a=−1 and b=−0.1353

k

∆ n 1 3 5 7 9 13 20

0.05 4000 −1.73 −1.07 −1.04 −1.02 −1.02 −1.01 −1.01
2.32 0.21 0.14 0.11 0.11 0.10 0.09

0.1 2000 −1.27 −1.03 −1.03 −1.01 −1.01 −1.01 −1.01
0.83 0.13 0.10 0.09 0.09 0.09 0.09

0.5 400 −1.04 −1.01 −1.01 −1.01 −1.01 −1.01 −1.01
0.14 0.10 0.09 0.09 0.10 0.09 0.10

1.0 200 −1.02 −1.01 −1.01 −1.02 −1.02 −1.01 −1.02
0.12 0.11 0.11 0.11 0.11 0.11 0.12

2.0 100 −1.10 −1.04 −1.03 −1.03 −1.04 −1.04 −1.04
0.43 0.21 0.19 0.18 0.21 0.19 0.17

0.05 4000 0.42 −0.09 −0.11 −0.15 −0.13 −0.14 −0.14
2.66 0.44 0.31 0.23 0.19 0.14 0.09

0.1 2000 0.08 −0.13 −0.14 −0.14 −0.14 −0.13 −0.13
1.14 0.27 0.18 0.13 0.11 0.09 0.09

0.5 400 −0.12 −0.14 −0.14 −0.13 −0.14 −0.14 −0.14
0.28 0.10 0.11 0.11 0.11 0.11 0.10

1.0 200 −0.14 −0.14 −0.14 −0.13 −0.14 −0.13 −0.13
0.16 0.13 0.13 0.13 0.13 0.13 0.14

2.0 100 −0.26 −0.15 −0.14 −0.13 −0.15 −0.14 −0.14
0.65 0.29 0.27 0.25 0.30 0.27 0.24
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