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Abstract

This paper revisits the classical inference results for profile quasi maxi-

mum likelihood estimators (profile MLE) in the semiparametric estima-

tion problem. We mainly focus on two prominent theorems: the Wilks

phenomenon and Fisher expansion for the profile MLE are stated in

a new fashion allowing finite samples and model misspecification. The

method of study is also essentially different from the usual analysis of the

semiparametric problem based on the notion of the hardest parametric

submodel. Instead we apply the local bracketing and the upper function

devices from Spokoiny (2012). This novel approach particularly allows

to address the important issue of the effective target and nuisance dimen-

sion and it does not involve any pilot estimator of the target parameter.

The obtained nonasymptotic results are surprisingly sharp and yield the

classical asymptotic statements including the asymptotic normality and

efficiency of the profile MLE. The general results are specified to the

important special cases of an i.i.d. sample.
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2 Critical dimension in semiparametric estimation

1 Introduction

Many statistical tasks can be viewed as problems of semiparametric estimation when the

unknown data distribution is described by a high or infinite dimensional parameter while

the target is of low dimension. Typical examples are provided by functional estimation,

estimation of a function at a point, or simply by estimating a given subvector of the

parameter vector. The classical statistical theory provides a general solution to this

problem: estimate the full parameter vector by the maximum likelihood method and

project the obtained estimate onto the target subspace. This approach is known as

profile maximum likelihood and it appears to be semiparametrically efficient under some

mild regularity conditions. We refer to the papers Murphy and Van der Vaart (2000,

1999) and the book Kosorok (2005) for a detailed presentation of the modern state of the

theory and further references. The famous Wilks result claims that the likelihood ratio

test statistic in the semiparametric test problem is nearly chi-square with p degrees of

freedom corresponding to the dimension of the target parameter. Various extensions of

this result can be found e.g. in Fan et al. (2001); Fan and Huang (2005); Boucheron and

Massart (2011); see also the references therein.

This study revisits the problem of profile semiparametric estimation and addresses

some new issues. The most important difference between our approach and the classical

theory is a nonasymptotic character of our study. A finite sample analysis is particu-

larly challenging because most of notions, methods and tools in the classical theory are

formulated in the asymptotic setup with growing sample size. Only few finite sample

general results are available; see e.g. the recent paper Boucheron and Massart (2011).

The results of this paper explicitly describes all “small” terms in the expansion of the

log-likelihood. This helps to carefully treat the question of applicability of the approach

in different situations. A particularly important question is about the critical dimension

of the target p and the full parameter dimension p∗ for which the main results are still

accurate. Another issue addressed in this paper is the model misspecification. In many

practical problems, it is unrealistic to expect that the model assumptions are exactly

fulfilled, even if some rich nonparametric models are used. This means that the true

data distribution IP does not belong to the considered parametric family. Applicability

of the general semiparametric theory in such cases is questionable. An important feature

of the new approach of Spokoiny (2012) is that it equally applies under a possible model

misspecification.

The mentioned issues, especially the non-asymptotic character of study dictate to

change entirely the tools and methods of analysis. We apply the recent bracketing ap-

proach of Spokoiny (2012) and demonstrate its power on the considered case of semi-
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parametric estimation. Let Y denote the observed random data, and IP denote the

data distribution. The parametric statistical model assumes that the unknown data

distribution IP belongs to a given parametric family (IPυ) :

Y ∼ IP = IPυ∗ ∈ (IPυ, υ ∈ Υ ),

where Υ is some high dimensional or even infinite dimensional parameter space. This

paper concentrates on a finite dimensional setting, however, an extension to a functional

space is feasible and to be considered elsewhere. The maximum likelihood approach in the

parametric estimation suggests to estimate the whole parameter vector υ by maximizing

the corresponding log-likelihood L(υ) = log dIPυ

dµ0

(Y ) for some dominating measure µ0 :

υ̃
def
= argmax

υ∈Υ
L(υ).

Our study admits a model misspecification IP /∈ (IPυ ,υ ∈ Υ ) . Equivalently, one can

say that L(υ) is the quasi log-likelihood function on Υ . The “target” value υ∗ of the

parameter υ can defined by

υ∗ = argmax
υ∈Υ

IEL(υ).

Under model misspecification, υ∗ defines the best parametric fit to IP by the considered

family.

In the semiparametric framework, the target of analysis is only a low dimensional

component θ of the whole parameter υ . This means that the target of estimation is

θ∗ = Π0υ
∗,

for some mapping Π0 : Υ → IRp , and p ∈ N stands for the dimension of the target.

The profile maximum likelihood approach defines the estimator of θ∗ by projecting

the obtained MLE υ̃ on the target space:

θ̃ = Π0υ̃.

The Gauss-Markov Theorem claims the efficiency of such procedures for linear Gaussian

models and linear mapping Π0 , and the famous Fisher result extends it in the asymptotic

sense to the general situation under some regularity conditions. The Wilks phenomenon

describes the limiting distribution of the likelihood ratio test statistic T :

T
def
= sup

υ∈Υ
L(υ)− sup

υ∈Υ
Π0υ=θ∗

L(υ). (1.1)



4 Critical dimension in semiparametric estimation

It appears that the distribution of this test statistic is nearly chi-square χ2
p as the samples

size grows, Wilks (1938). In particular, this limiting behavior does not depend on the

particular model structure and on the full dimension of the parameter υ , only the

dimension of the target matters. The full parameter dimension can be even infinite

under some upper bounds on its total entropy.

Below we consider a slightly different presentation of this estimator based on the

partial optimization of the objective function L(υ) for a fixed θ . Namely, define

L̆(θ)
def
= max

υ∈Υ
Π0υ=θ

L(υ). (1.2)

Then the profile MLE can be defined as the point of maximum of L̆(θ) :

θ̃ = argmax
θ∈Θ

L̆(θ) = argmax
θ∈Θ

max
υ∈Υ

Π0υ=θ

L(υ).

The test statistic T from (1.1) is also called the semiparametric excess and it can be

defined as

L̆(θ̃)− L̆(θ∗) = max
υ∈Υ

L(υ)− max
υ∈Υ

Π0υ=θ∗

L(υ).

The Wilks result can be rewritten as

2
{
L̆(θ̃)− L̆(θ∗)

} w−→ χ2
p.

The local asymptotic normality (LAN) approach by Le Cam leads to the most general

setup in which the Wilks type results can be established. However, the classical theory of

semiparametric estimation faces serious difficulties when the dimension of the nuisance

parameter becomes large of infinite. The LAN property yields a local approximation of

the log-likelihood of the full model by the log-likelihood of a linear Gaussian model, and

this property is only validated in a root-n neighborhood of the true point. The non- and

semiparametric cases require to consider larger neighborhoods where the LAN approach

is not applicable any more. A proper extension of the Wilks result to the case of a growing

or infinite nuisance dimension is quite challenging and involves special constructions like

a pilot consistent estimator of the target, a hardest parametric submodel as well as some

power tools of the empirical process theory; see Murphy and Van der Vaart (2000) or

Kosorok (2005) for a comprehensive presentation.

The recent paper Spokoiny (2012) offers a new look at the classical LAN theory. The

basic idea is to replace the local approximation by local bracketing. Instead of one ap-

proximating Gaussian log-likelihood, one builds two different quadratic processes such
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that the original log-likelihood can be sandwiched between them up to a small error.

It appears that the bracketing device can be applied for much larger neighborhoods

than in the LAN approach. In this paper we show that the local bracketing approach of

Spokoiny (2012) can be used for obtaining a version of the Wilks Theorem in a quite gen-

eral semiparametric setup avoiding any special construction like “the hardest parametric

submodel”.

Another important issue is that the new approach does not rely on any pilot estimator

of the target. The usual assumption that a consistent pilot estimator is available can be

even misleading in our setup because it separates local and global considerations. This

paper attempts to figure out a list of condition ensuring global concentration and local

expansion at the same time. This particularly allows to address the crucial question of the

largest dimensionality or the nuisance parameter for which the Wilks result still holds.

It appears that the profile semiparametric approach is validated under the constraint

p∗3 ≪ n , where p∗ is the full parameter dimension. It applies even if the dimension p

of the target grows with the sample size under the mentioned constraint. The important

identifiability issue is also addressed in a more careful way for the considered finite sample

case.

For the further presentation we have to briefly outline the basic results from Spokoiny

(2012). Introduce the log-likelihood ratio process

L(υ,υ∗) = L(υ)− L(υ∗).

The key bracketing result of Spokoiny (2012) claims that L(υ,υ∗) can be sandwiched

on a local elliptic set Υ◦(r) around υ∗ by two quadratic in υ processes Lǫ(υ,υ
∗) and

Lǫ(υ,υ
∗) :

Lǫ(υ,υ
∗)−♦ǫ(r) ≤ L(υ,υ∗) ≤ Lǫ(υ,υ

∗) +♦ǫ(r), υ ∈ Υ◦(r), (1.3)

where ♦ǫ(r) > 0 and ♦ǫ(r) > 0 are small terms. The value r here can be viewed

as the radius of the set Υ◦(r) in the intrinsic semimetric corresponding to the process

L(θ) . See Section B for a precise formulation. This local result is accompanied with the

deviation bound of the form

IP (υ̃ ∈ Υ◦(r)) ≥ 1− e−x,

where x grows almost linearly with r . The bracketing result (1.3) yields a number of

important and informative corollaries. One of them shows that the excess L(υ̃,υ∗) can

be approximated by a quadratic form ‖ξ‖2/2 , where ξ
def
= D

−1
0 ∇L(υ∗) is the normalized

score while D2
0 approximates the total Fisher information matrix. Another important
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corollary of (1.3) is an expansion of the quasi MLE υ̃ . The mentioned results can be

written in the form

∣∣2L(υ̃,υ∗)− ‖ξ‖2
∣∣ ≤ 2∆ǫ, (1.4)

∥∥D0

(
υ̃ − υ∗

)
− ξ
∥∥2 ≤ 2∆ǫ,

where ∆ǫ is a random term called the spread which is small with a large probability. In a

typical situation with a correctly specified model, ξ is nearly standard normal and hence,

2L(υ̃,υ∗) is nearly χ2
p∗ , where p∗ is the full parameter dimension, while the MLE υ̃

is asymptotically normal and efficient. The expansion (1.4) helps to build likelihood-

based confidence sets for the true parameter υ∗ . Let χα be the (1−α) -quantile of the

chi-square distribution with p∗ degrees of freedom. Set

E(α)
def
= {υ ∈ Υ : 2L(υ̃,υ) ≤ χα}.

Then (1.4) ensures that the coverage probability IP
(
υ∗ /∈ E(α)

)
is close to α provided

that ∆ǫ is sufficiently small.

This paper aims at establishing a similar statements for the process L̆(θ) from (1.2).

In particular, the Wilks result can be written as

L̆(θ̃)− L̆(θ∗) ∼= ‖ξ̆‖2/2,

where the random p -vector ξ̆ satisfies IEξ̆ = 0 and IE‖ξ̆‖2 ∼= p . The deviation proper-

ties of ‖ξ̆‖2 resemble the ones of a chi-square random variable with p degrees of freedom

just as in the Wilks phenomenon. The expansion of the profile MLE θ̃ reads as

D̆0

(
θ̃ − θ∗

) ∼= ξ̆.

The symmetric matrix D̆2
0 ∈ IRp×p is usually called the influence matrix and it is the

covariance of the efficient influence function; see Kosorok (2005).

Usually in the classical semiparametric setup, the vector υ is represented as υ =

(θ,η) , where θ is the target of analysis while η is the nuisance parameter. We refer to

this situation as (θ,η) -setup and our presentation follows this setting. An extension to

the υ -setup with θ = Π0υ is straightforward. Also for simplicity we only develop our

results for the case that the full parameter space Υ is a subset of the Euclidean space of

dimensionality p∗ . An extension to an infinite dimensional parameter space is possible

but involves a range of technical issues that have to be done elsewhere.

Section 2 introduces the objects and tools of the analysis and collects the main results

including an extension of the Wilks Theorem, concentration properties of the profile

estimator and the construction of confidence sets for the “true“ parameter θ∗ . The
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concentration properties of the profile MLE are discussed in Section D.1. The appendix

collects the conditions and the proofs of the main results.

2 Main results

This section presents our main results on the semiparametric profile estimator which

include the Wilks expansion of the profile maximum likelihood and the Fisher expansion

of the profile MLE θ̃ . All the results are stated under the same list of conditions that

can be found in Section A of the appendix. As already mentioned, our setup follows

Spokoiny (2012). However, at one point there is an essential difference. The results of

Spokoiny (2012) are stated for just one fixed finite sample. The same continues to hold

for the results below. But we are also interested in understanding what happens if the

full dimension p∗ becomes large. For this we consider below an asymptotic setup with

p∗ = pn , where n denotes the asymptotic parameter. It can be viewed as the sample

size with n → ∞ . We assume that all considered objects depend on n including the

likelihood function, the full parameter set Υ and its dimension p∗ , as well as all the

constants in our conditions. The primary goal of our study is to fix the necessary and

sufficient conditions on growth of pn with n which ensures the Wilks and Fisher results.

Our result apply even if the target parameter θ is of growing dimension. The dimen-

sion p can be of order p∗ . The case with a full dimensional target and low dimensional

nuisance is also included.

2.1 The Wilks and Fisher expansion

This section states the key results in the semiparametric framework which heavily use

the local bracketing idea of Spokoiny (2012). First we introduce the main elements of the

bracketing device. This includes two p∗ × p∗ matrices V2
0 and D2

0 and two constants

ǫ = (δ, ̺) . The matrix V2
0 describes the variability of the process L(υ) around the true

point υ∗ :

V
2
0

def
= Var

{
∇L(υ∗)

}
. (2.1)

The matrix D2
0 is defined similarly to the Fisher information matrix:

D
2
0

def
= −∇2IEL(υ∗). (2.2)

Here and in what follows we implicitly assume that the log-likelihood function L(υ) is

sufficiently smooth in υ , ∇L(υ) stands for the gradient and ∇2IEL(υ) for the Hessian

of the expectation IEL at υ . It is worth mentioning that the matrices D2
0 and V2

0
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coincide if the model Y ∼ IPυ∗ ∈ (IPυ) is correctly specified and sufficiently regular; see

e.g. Ibragimov and Khas’minskij (1981).

Now we switch to the (θ,η) -setup. Consider the block representation of the vector

∇ def
= ∇L(υ∗) and of the matrices V2

0 from (2.1) and D2
0 from (2.2):

∇ =

(
∇θ

∇η

)
, D

2
0 =

(
D2

0 A0

A⊤
0 H2

0

)
, V

2
0 =

(
V 2
0 B0

B⊤
0 Q2

0

)
.

Define also the p× p matrix D̆2
0 and p -vectors ∇̆θ and ξ̆ as

D̆2
0 = D2

0 −A0H
−2
0 A⊤

0 ,

∇̆θ = ∇θ −A0H
−2
0 ∇η,

ξ̆ = D̆−1
0 ∇̆θ.

In what follows, by C we denote a generic fixed constant. For all results presented

below we assume a sufficiently large value x to be fixed. It determines our level of

overwhelming probability: a generic random set Ω(x) is of dominating probability if

IP
(
Ω(x)

)
≥ 1− Ce−x.

In the asymptotic setup with a growing sample size n the value x grows as well, x =

xn → ∞ . We also suppose that a sufficiently large constant x is fixed which specifies

random events Ω(x) of dominating probability. Similarly to p∗ , the value x may depend

on the asymptotic parameter n and grows to infinity with n . A particularly relevant

choice is x = xn = C log n for a fixed C > 0 . We only require that xn is not too large,

more precisely, x ≤ xc ; see (C.2) from Section C. In the i.i.d. setup xc is of order n1/2 .

The other important value to be fixed is r0 . This value determines the frontier

between local and global consideration. In the local vicinity Υ◦(r0) of radius r0 we apply

a very accurate local quadratic approximation of the log-likelihood process while outside

of this vicinity a much more rough upper function device can be used; see Section B

for more details. The general rule for the choice of r0 is given by the condition r20 ≥
C0(p

∗ + x) for some specific constant C0 . The quality of local quadratic approximation

is measured by two functions δ(r) and ω(r) shown in local conditions (ED1) , (L0) of

Section A. More exactly, it can be described by the quantities τǫ defined as

τǫ
def
= δ(r0) + 3ν0a

2ω(r0), (2.3)

where the constants ν0 and a are from conditions (ED1) and (I) in Section A. The

sub-index ǫ stands for the pair δ(r0), ω(r0) . Our results implicitly assume that τǫ is

small. We comment on typical behavior of τǫ is Section 2.2 in context of i.i.d. models.
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The first result can be viewed as an extension of the Wilks Theorem.

Theorem 2.1. Assume (ED0) , (ED1) , (L0) , (I) , (Er) and (Lr) with b(r) ≡ b ; see

Section A. Let also τǫ from (2.3) fulfill τǫ ≤ 1/2 . Then it holds on a random set Ω(x)

of dominating probability

∣∣2L̆(θ̃,θ∗)− ‖ξ̆‖2
∣∣ ≤ C τǫ (p

∗ + x), (2.4)

Remark 2.1. In the case of the correct model specification with D2
0 = V2

0 , the deviation

properties of the quadratic form ‖ξ̆‖2 = ‖D̆−1
0 ∇̆θ‖2 are essentially the same as of a chi-

square random variable with p degrees of freedom; see Theorem C.1 in the appendix. In

the case of a possible model misspecification with D2
0 6= V2

0 , the behavior of the quadratic

form ‖ξ̆‖2 will depend on the characteristics of the matrix IB
def
= D

−1
0 V2

0D
−1
0 ; see again

Theorem C.1. Moreover, in the asymptotic setup the vector ξ̆ is asymptotically standard

normal; see Section 2.2 for the i.i.d. case.

Remark 2.2. The partial maximum likelihood process L̆(θ) can be used for defining

the likelihood-based confidence sets of the form

E(z) = {θ : L̆(θ̃,θ) ≤ z}

for some z > 0 . The bound (2.4) helps to evaluate the coverage probability IP
(
θ∗ /∈ E(z)

)

in terms of deviation probability for the quadratic form ‖ξ̆‖2 ; cf. Corollary 3.2 in

Spokoiny (2012).

The next result presents an expansion of the profile MLE θ̃ .

Theorem 2.2. Under the conditions of Theorem 2.1, it holds on a random set Ω(x) of

dominating probability

∥∥D̆0

(
θ̃ − θ∗

)
− ξ̆
∥∥2 ≤ C τǫ (p

∗ + x). (2.5)

Remark 2.3. One can use the expansion (2.5) for describing the concentration proba-

bility for elliptic sets

A(z) =
{
θ : ‖D̆0(θ − θ∗)‖ ≤ z

}
;

cf. Corollary 3.5 in Spokoiny (2012).

In the next section the result (2.5) is used to show asymptotic normality and efficiency

of the profile estimator in the i.i.d. setting and under the correct model specification.
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2.2 The i.i.d. case and asymptotic efficiency

Here we briefly discuss the implications of our general results to the case with Y =

(Y1, . . . , Yn)
⊤ where observations Yi are i.i.d. from a measure P . The parametric

assumption means P = Pυ∗ ∈ (Pυ ,υ ∈ Υ ) for a given parametric family (Pυ) , where

Υ is a subset of the Euclidean space IRp∗ . We assume that (Pυ) obeys the regularity

conditions listed in Section 5.1 of Spokoiny (2012). By ℓ(y,υ) we denote the log-density

of Pυ w.r.t. some dominating measure µ0 . For simplicity of comparison with the

classical results we do not discuss the model misspecification issue, i.e. the parametric

assumption is correct. However, an extension to the case of a misspecified model is

straightforward. We utilize that V2
0 = D2

0 = nF , ω(r) = ω∗r/n1/2 , δ(r) = δ∗r/n1/2 ,

and g = g1
√
n ; see Lemma 5.1 in Spokoiny (2012). Here F is the Fisher information

matrix of the family (Pυ) at the point υ∗ , and ω∗ , δ∗ , and g1 are some positive

constants.

It is shown in Spokoiny (2012) that the full parameter υ∗ can be well estimated

provided that p∗/n is sufficiently small. More precisely, the concentration property for

the set Υ◦(r) requires r2 ≥ Cp∗ for a fixed C , while the local bracketing device is

validated up to the spread ∆ǫ(r) which is of order p∗δ(r) ≍ p∗r/n1/2 ≍ p∗3/2/n1/2 .

The range of applicability for the proposed approach can be informally defined by the

rule “the spread is smaller than the value of the problem”, where the value of the problem

is understood as the expected excess. If the full parameter υ is estimated, the value

of the problem is of order p∗ leading to the constraint “ p∗/n is small”. If the target

parameter is of dimension p , then the value of the problem is also of order p leading to

the constraint “ p∗3/2/(n1/2p) is small”.

Now we specify the results in the (θ,η) semiparametric setup. To state the result we

only need a version of the identifiability condition (I) on the marginal distribution. Let

F be the Fisher information matrix of the family (Pυ) at the true point υ∗ . Consider

its block representation

F =

(
Fθθ Fθη

F⊤
θη Fηη

)
.

The required identifiability condition reads as follows:

(ι) There is a constant ρ < 1 such that

‖F−1/2
θθ FθηF

−1
ηηF

⊤
θηF

−1/2
θθ ‖∞ ≤ ρ. (2.6)

Also define

F̆
def
= Fθθ − FθηF

−1
ηηF

⊤
θη.
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The presented result admits that the full dimension p∗ grows with the sample size but

slower than n1/3 . The result is applicable even in the case when the target dimension

also depends on the sample size.

Theorem 2.3. Let Y1, . . . , Yn be i.i.d. IPυ∗ and let (ed0) , (ed1) , (ℓ0) , (eu) , and (ℓu)

with b(u) ≡ b of Spokoiny (2012) hold. In addition, assume (ι) ; see (2.6). Define for

x = xn ≤ n1/3

βn
def
= (p∗ + xn)

3/2/n1/2.

It holds on the a set Ω(xn) of dominating probability:

∥∥(nF̆)1/2
(
θ̃ − θ∗

)
− ξ̆
∥∥2 ≤ Cβn,

∣∣2L̆(θ̃,θ∗)− ‖ξ̆‖2
∣∣ ≤ Cβn.

Moreover, the p -vector ξ̆
def
= F̆−1/2

(
∇θ −FθηF

−1
ηη∇η

)
is asymptotically standard normal

as n → ∞ . This yields the asymptotic efficiency of the profile MLE θ̃ .

2.3 Critical dimension

This section discusses the issue of a critical dimension. Namely we assume that the full

dimension p∗ grows with the sample size n and write p∗ = pn . Theorem 2.3 requires

that pn = o(n1/3) . Here we show that this condition is critical for the class of models

satisfying the conditions of Section A. Namely, we present an example in which the

behavior of the profile MLE θ̃ heavily depends on the value βn =
√

p3n/n ≥ β > 0 . If

βn → 0 , then the conditions of Section A are satisfied yielding asymptotic efficiency of

θ̃ . At the same time, if βn ≥ β > 0 , then the MLE θ̃ is not anymore root-n consistent.

Assume that pn/
√
n → 0 . Let a random vector X ∈ IRpn follow X ∼ N(υ∗, n−1IIpn) .

Take for simplicity υ∗ = 0 and let IP = IP0 mean the distribution of X . Introduce a

special set S ⊂ IRpn with

S
def
=
{
υ = (υ1, . . . , υpn) : υ1 =

z

2

√
βn/n, z ∈ Z

}

∩Υ◦

(√
2pn/n+

1

2

√
βn/n

)
. (2.7)

We denote by Sδ its δ -vicinity:

Sδ
def
= {υ : d(υ, S) < δ},

where d(υ, S) is the Euclidean distance from the point υ to the set S . Also Scδ stands

for the complement of Sδ . Below we fix δ = 1/n . Consider a special parametric quasi
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log-likelihood ratio L(υ, 0) defined as

L(υ, 0) = nX⊤υ − n‖υ‖2/2 + nf(υ)‖υ‖3.

Here f : IR 7→ IR is a smooth function with

f(υ) =




1 υ ∈ S,

0 υ ∈ Scδ.

Below we consider the problem of estimating the first component θ
def
= υ1 ∈ IR . Since

by assumption pn/
√
n → 0 it holds for n large enough and for any υ with ‖υ‖2 ≤

4pn/n + βn/n that n‖υ‖2/2 ≥ nf(υ)‖υ‖3 and thus

argmax
υ

IEL(υ) = argmin
υ

{
n‖υ‖2/2− nf(υ)‖υ‖3

}
= 0.

It is easy to see that all conditions from Section A are satisfied with τǫpn ∼= β
1/2
n and

D
2
0 = V

2
0 = nIIpn .

Therefore, the results from Section 2.1 yield efficiency of the profile MLE θ̃ if p3n/n → 0 .

Moreover, it is straightforward to see that

D̆0 =
√
n, ∇̆(L− IEL) = ∇θ(L− IEL) = nX1, and ξ̆ =

√
nX1.

It follows similarly to Theorem 2.1 that if β2
n = p3n/n → 0 then

‖D̆0(θ̃ − θ∗)− ξ̆‖ =
√
n|υ̃1 −X1| → 0.

The next result shows that in the case when βn =
√
p3n/n is not small, the profile MLE

θ̃ is not root-n consistent.

Theorem 2.4. Suppose that βn → (6c)2 for some c > 0 . Let also n be large enough

to ensure

21/3 − 1

21/6

√
pn/n ≥ 1

2
(pn/n)

3/4 .

There exists a positive α > 0 such that it holds with a probability exceeding α

‖D̆0(θ̃ − θ∗)− ξ̆‖ ≥ 1

6
β1/2
n − 1√

n
≥ c− on(1).

If βn → ∞ , then

‖D̆0(θ̃ − θ∗)− ξ̆‖ IP−→ +∞,

where
IP−→ means convergence in probability.
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A Appendix

The appendix collects our conditions and proofs of the main results.

We adopt the conditions from Section 2 of Spokoiny (2012) with the obvious change

of notations. The local conditions only describe the properties of the process L(υ) for

υ ∈ Υ◦(r0) with some fixed value r0 . The global conditions have to be fulfilled on the

whole Υ . We start with the local conditions.

(ED0) There exists a constant ν0 > 0 , a positive symmetric p∗ × p∗ matrix V2
0 satis-

fying Var{∇ζ(υ∗)} ≤ V2
0 , and a constant g > 0 such that for all |µ| ≤ g

sup
γ∈IRp

log IE exp

{
µ
〈∇ζ(υ∗),γ〉

‖V0γ‖

}
≤ ν20µ

2

2
.

(ED1) For all 0 < r < r0 , there exists a constant ω(r) ≤ 1/2 such that for all

υ ∈ Υ◦(r) and |µ| ≤ g

sup
γ∈IRp

log IE exp

{
µ
〈γ,∇ζ(υ)−∇ζ(υ∗)〉

ω(r)‖V0γ‖

}
≤ ν20µ

2

2
.

(L0) There exists a symmetric p∗ × p∗ -matrix D2
0 such that such that it holds on the

set Υ◦(r0) for all r ≤ r0

∣∣∣∣
∇IEL(υ,υ∗)−D2

0(υ − υ∗)

‖D0(υ − υ∗)‖

∣∣∣∣ ≤ δ(r).

This condition together with the identity ∇IEL(υ∗) = 0 implies

∣∣∣∣
−2IEL(υ,υ∗)

‖D0(υ − υ∗)‖2 − 1

∣∣∣∣ ≤ δ(r).

The global conditions are:

(Lr) For any r > r0 there exists a value b(r) > 0 , such that

−IEL(υ,υ∗)

‖V0(υ − υ∗)‖2 ≥ b(r).

(Er) For any r ≥ r0 there exists a constant ν0 > 0 and a constant g(r) > 0 such that

sup
υ∈Υ◦(r)

sup
µ≤g(r)

sup
γ∈IRp

log IE exp

{
µ
〈∇ζ(υ),γ〉
‖V0γ‖

}
≤ ν20µ

2

2
.

Our results are stated for g(r) ≡ g > 0 , however, an extension to the case g(r) → 0

can be made similarly to Spokoiny (2012).
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Finally we specify the regularity conditions. We begin by representing the information

and the covariance matrices in block form:

D
2
0 =

(
D2

0 A0

A⊤
0 H2

0

)
, V

2
0 =

(
V 2
0 B0

B⊤
0 Q2

0

)
.

The identifiability conditions in Spokoiny (2012) ensure that the matrix D0 is positive

and satisfies a
2D2

0 ≥ V2
0 for some a > 0 . Here we restate these conditions in the special

block form which is specific for the (θ,η) -setup.

(I) There are constants a > 0 and ρ < 1 such that

a
2D2

0 ≥ V 2
0 , a

2H2
0 ≥ Q2

0, a
2
D

2
0 ≥ V

2
0. (A.1)

and

‖D−1
0 A0H

−2
0 A⊤

0 D
−1
0 ‖∞ ≤ ρ. (A.2)

The quantity ρ bounds the angle between the target and nuisance subspaces in the

tangent space. The regularity condition (I) ensures that this angle is not too small and

hence, the target and nuisance parameters are identifiable. In particular, the matrix D̆2
0

is well posed under I .

The bounds in (A.1) are given with the same constant a only for simplifying the

notation. One can show that the last bound on D2
0 follows from the first two and (A.2)

with another constant a
′ depending on a and ρ only.

B Bracketing and upper function devices

This section briefly overviews the main constructions of Spokoiny (2012) including the

bracketing bound and the upper function results. The bracketing bound describes the

quality of quadratic approximation of the log-likelihood process L(υ) in a local vicinity

of the point υ∗ , while the upper function method is used to show that the full MLE υ̃

belongs to this vicinity with a dominating probability. Given r > 0 , define the local set

Υ◦(r)
def
=
{
υ : (υ − υ∗)⊤V2

0(υ − υ∗) ≤ r2
}
.

For ǫ = (δ, ̺) , define the bracketing quadratic processes Lǫ(υ,υ
∗) and Lǫ(υ,υ

∗) :

Lǫ(υ,υ
∗)

def
= (υ − υ∗)⊤∇L(υ∗)− ‖Dǫ(υ − υ∗)‖2/2,

D
2
ǫ

def
= D

2
0(1− δ) − ̺V2

0, (B.1)
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and accordingly for ǫ = −ǫ = (−δ,−̺) . The next result restates the local bracketing

bound of Spokoiny (2012) in the semiparametric framework. The imposed conditions and

the involved constants ν0 , δ(r) , and ω(r) are explained in Section A. The presented

results implicitly assume that p∗ is large, x is large as well to ensure that e−x is

negligible. A proper choice is x = Cp∗ for a fixed C .

Theorem B.1 (Spokoiny (2012), Theorem 3.1). Assume (ED1) and (L0) . Let for some

r , the values ̺ ≥ 3ν0 ω(r) and δ ≥ δ(r) be such that D2(1− δ)− ̺V2
0 ≥ 0 . Then

Lǫ(υ,υ
∗)−♦ǫ(r) ≤ L(υ,υ∗) ≤ Lǫ(υ,υ

∗) +♦ǫ(r), υ ∈ Υ◦(r),

where the random variables ♦ǫ(r),♦ǫ(r) fulfill on a random set Ω(x) of dominating

probability

♦ǫ(r) ≤ C ̺ (p∗ + x), ♦ǫ(r) ≤ C ̺ (p∗ + x). (B.2)

In fact, Theorem 3.1 of Spokoiny (2012) states the following bound:

IP
{
̺−1♦ǫ(r) ≥ z(Q, x)

}
≤ exp

(
−x
)
.

with Q = 2.4p∗ and

z(Q, x) =

{ (
1 +

√
x+Q

)2
if 1 +

√
x+Q < g

ν0{
1 + ν0

g
(x+Q) + g

2ν0

}2
otherwise.

Under the assumption that g is sufficiently large, that is, g/ν0 ≫ p∗ , we can apply

z(Q, x) ≈ x+Q ≤ C(p∗ + x) , and the result of Theorem B.1 follows.

The bracketing result of Theorem B.1 is local in the sense that it only applies for

υ ∈ Υ◦(r) . Following to the general approach of Spokoiny (2012) we accompany it with

the large deviation bound on the concentration probability IP
(
υ̃ ∈ Υ◦(r)

)
when the local

radius r exceeds some level r0 which has to be sufficiently large, namely r20 ≥ Cp∗ . We

adopt the upper function approach from Spokoiny (2012); cf. Corollary 4.4 therein.

Again the constants g(r) and b(r) are introduced in Section A.

Theorem B.2 (Spokoiny (2012), Theorem 4.1). Suppose (Er) and (Lr) with b(r) ≡ b .

If for r ≥ r0 , the following conditions are fulfilled:

1 +
√
x+Q ≤ 3ν20g(r)/b,

6ν0
√
x+Q ≤ rb, (B.3)
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then υ̃ ∈ Υ◦(r0) on a random set Ω(x) of dominating probability. The same bound holds

for the probability υ̃θ∗ ∈ Υ◦(r0) where υ̃θ∗ maximizes L(υ,υ∗) subject to Π0υ = θ∗ :

υ̃θ∗
def
= argmax

υ∈Υ
Π0υ=θ∗

L(υ,υ∗).

Remark B.1. The condition (B.3) helps to understand which r0 ensures prescribed

concentration properties of υ̃ and υ̃θ∗ . Namely, if g(r) is large enough, then (B.3)

follows from the bound

r0 ≥ 6b−1ν0
√
x+Q.

C Deviation bounds for quadratic forms

The following general result from Spokoiny (2013) helps to control the deviation for

quadratic forms of type ‖IBξ‖2 for a given positive matrix IB and a random vector ξ .

It will be used several times in our proofs. Suppose that

log IE exp
(
γ⊤ξ

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g. (C.1)

For a symmetric matrix IB , define

p = tr(IB2), v2 = 2 tr(IB4), λ∗ def
= ‖IB2‖∞ def

= λmax(IB
2).

We suppose that λ∗ ≤ 1 , otherwise we should replace everywhere IB with IB/λ∗ .

Let g be shown in (C.1). Define ωc by the equation

ωc(1 + ωc)

(1 + ω2
c )

1/2
= gp−1/2.

Define also µc = ω2
c/(1+ω2

c )∧ 2/3 . Note that ω2
c ≥ 2 implies µc = 2/3 . Further define

y2c = (1 + ω2
c )p, 2xc = µcy

2
c + log det{IIp − µcIB

2}. (C.2)

Theorem C.1 (Spokoiny (2013)). Let ξ fulfill (C.1) with g2 ≥ 2p . Then we have for

x ≤ xc with xc from (C.2):

IP
(
‖IBξ‖2 ≥ z(x, IB)

)
≤ 2e−x + 8.4e−xc ,

z(x, IB)
def
=




p+ 2vx1/2, x ≤ v/18,

p+ 6x v/18 < x ≤ xc.

For x > xc

IP
(
‖IBξ‖2 ≥ zc(x, IB)

)
≤ 8.4e−x, zc(x, IB)

def
=
∣∣yc + 2(x − xc)/gc

∣∣2.
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It appears that the bound is slightly different in two zones separated by some specific

value xc from (C.2). It is large in typical situations as xc
∼= g (it is of order

√
n in the

i.i.d. case). For x ≤ xc , we obtain the same type of bounds as in the Gaussian case, for

x > xc they are a bit worse.

D Proofs

This section collects the proofs of the results in chronological order.

D.1 Proof of Theorem 2.1

Define the m×m matrices H2
ǫ and H2

ǫ by

H2
ǫ = H2

0 (1− δ)− ̺Q2
0, H2

ǫ = H2
0 (1 + δ) + ̺Q2

0;

cf. (B.1). Below we fix some constant r which is assumed to be large enough for ensuring

the dominating probability for the concentration event Cǫ(r) defined as

Cǫ(r)
def
=
{
‖V0(υ̃ − υ∗)‖ ≤ r, ‖V0(υ̃θ∗ − υ∗)‖ ≤ r,

‖V0D
−2
ǫ ∇‖ ≤ r, ‖Q0H

−2
ǫ ∇η‖ ≤ r

}
.

(D.1)

Note that the conditions ‖V0(υ̃−υ∗)‖ ≤ r and ‖V0(υ̃θ∗ −υ∗)‖ ≤ r can be represented

as {υ̃ ∈ Υ◦(r)} and {υ̃θ∗ ∈ Υ◦(r)} . Similar representation holds for

υ̃ǫ
def
= D

−2
ǫ ∇ = argmin

υ
Lǫ(υ,υ

∗),

η̃ǫ
def
= H−2

ǫ ∇η = argmin
υ∈Υ

Π0υ=θ∗

Lǫ(υ,υ
∗).

For instance,
{
‖V0D

−2
ǫ ∇‖ ≤ r

}
=
{
υ̃ǫ ∈ Υ◦(r)

}
. Later we show that a proper choice of

r ensures a dominating probability of the random set Cǫ(r) ; see Section D.1.

We first show that the bound (2.4) is fulfilled on the set Cǫ(r) from (D.1) with

∆+
ǫ (r) = ♦ǫ(r) +♦ǫ(r) +

τǫ
1− τǫ

∥∥D−1
0 ∇

∥∥2 + τǫ
1 + τǫ

∥∥H−1
0 ∇η

∥∥2, (D.2)

∆−
ǫ (r) = ♦ǫ(r) +♦ǫ(r) +

τǫ
1 + τǫ

∥∥D−1
0 ∇

∥∥2 + τǫ
1− τǫ

∥∥H−1
0 ∇η

∥∥2. (D.3)

In analogy with Spokoiny (2012), the quantity ∆ǫ(r) with

∆ǫ(r) = ∆+
ǫ (r) +∆−

ǫ (r)

= 2♦ǫ(r) + 2♦ǫ(r) +
2τǫ

1− τ2ǫ

(∥∥D−1
0 ∇

∥∥2 +
∥∥H−1

0 ∇η

∥∥2
)
, (D.4)
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can be called the semiparametric spread. It can be seen as a payment for the bracketing

device. Below we show that ∆ǫ(r) ≤ C τǫ (p
∗ + x) with a dominating probability.

We start with some technical results about the maximum of the upper and lower

quadratic processes Lǫ(υ,υ
∗) and Lǫ(υ,υ

∗) . Remind the notation ∇ def
= ∇L(υ∗) .

Lemma D.1. It holds

sup
υ

Lǫ(υ,υ
∗) =

1

2

∥∥D−1
ǫ ∇

∥∥2, sup
υ

Lǫ(υ,υ
∗) =

1

2

∥∥D−1
ǫ ∇

∥∥2, (D.5)

where supυ means the maximum over all υ ∈ IRp∗ . Moreover, on the random set
{
‖V0D

−2
0 ∇‖ ≤ r

}
it holds

sup
υ∈Υ◦(r)

Lǫ(υ,υ
∗) = sup

υ
Lǫ(υ,υ

∗) =
1

2

∥∥D−1
ǫ ∇

∥∥2.

Proof. The identity (D.5) directly follows by maximizing the quadratic expression

Lǫ(υ,υ
∗) = (υ − υ∗)⊤∇− ‖Dǫ(υ − υ∗)‖2/2,

with the maximum at υ = υ∗+D−2
ǫ ∇ . Similarly, the maximum of Lǫ(υ,υ

∗) is achieved

at υ = υ∗ +D−2
ǫ ∇ ∈ Cǫ(r) which is within Υ◦(r) under the condition

‖V0D
−2
ǫ ∇‖ ≤ ‖V0D

−2
0 ∇‖ ≤ r.

This yields the claim.

The next lemma states similar results for the constrained maximum of Lǫ and Lǫ

subject to Π0υ = θ∗ . The proof is the same as for Lemma D.1. Remember the notation

∇θ
def
= ∇θL(υ

∗) , ∇η
def
= ∇ηL(υ

∗) . We also use the block representation of D2
0 :

D
2
0 =

(
D2

0 A0

A⊤
0 H2

0

)
.

Lemma D.2. It holds

sup
υ:Π0υ=θ∗

Lǫ(υ,υ
∗) =

1

2

∥∥H−1
ǫ ∇η

∥∥2, (D.7)

Moreover, it holds on the random set
{
‖Q0H

−2
0 ∇η‖ ≤ r

}

sup
υ∈Υ◦(r):Π0υ=θ∗

Lǫ(υ,υ
∗) = sup

υ:Π0υ=θ∗
Lǫ(υ,υ

∗) =
1

2

∥∥H−1
ǫ ∇η

∥∥2.
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Further, define the process

L(υ,υ∗) = (υ − υ∗)⊤∇− ‖D0(υ − υ∗)‖2/2.

Remember the definition of ∇̆θ and D̆2
0 :

∇̆θ
def
= ∇θ −A0H

−2
0 ∇η,

D̆2
0

def
= D2

0 −A0H
−2
0 A⊤

0 .

Lemma D.3. It holds on the random set
{
‖V0D

−2
0 ∇‖ ≤ r, ‖Q0H

−2
0 ∇η‖ ≤ r

}

sup
υ

L(υ,υ∗) = sup
υ∈Υ◦(r)

L(υ,υ∗) =
1

2

∥∥D−1
0 ∇

∥∥2,

sup
υ∈Υ◦(r):Π0υ=θ∗

L(υ,υ∗) = sup
υ:Π0υ=θ∗

L(υ,υ∗) =
1

2

∥∥H−1
0 ∇η

∥∥2,

sup
υ

L(υ,υ∗)− sup
υ:Π0υ=θ∗

L(υ,υ∗) =
1

2

∥∥D̆−1
0 ∇̆θ

∥∥2. (D.8)

Proof. First consider the adaptive cases with A0 = 0 yielding D̆2
0 = D2

0 and ∇̆θ = ∇θ .

Then the process L(υ,υ∗) can be decomposed as

L(υ,υ∗) = (θ − θ∗)⊤∇θ −
1

2
‖D0(θ − θ∗)‖2

+ (η − η∗)⊤∇η − 1

2
‖H0(η − η∗)‖2,

and the partial optimization subject to θ = θ∗ yields the results (D.6) and (D.7). Note

that the constrained maximum is attained at η = η∗ +H−2
0 ∇η .

The general case can be reduced to the adaptive one by the change of variable. With

γ
def
= η − η∗ +H−2

0 A⊤
0 (θ − θ∗) , one can represent L(υ,υ∗) in the form

L(υ,υ∗) = (θ − θ∗)⊤∇̆θ − ‖D̆0(θ − θ∗)‖2/2 + γ⊤∇η − ‖H0γ‖2/2,

which corresponds to the decomposition in the adaptive case.

On the random set {υ̃ ∈ Υ◦(r), υ̃θ∗ ∈ Υ◦(r)} , it holds

L̆(θ̃,θ∗) = L̆(θ̃)− L̆(θ∗) = sup
υ∈Υ◦(r)

L(υ,υ∗)− sup
υ∈Υ◦(r):Π0υ=θ∗

L(υ,υ∗).

Theorem B.1 implies

sup
υ∈Υ◦(r)

Lǫ(υ,υ
∗)−♦ǫ(r) ≤ sup

υ∈Υ◦(r)
L(υ,υ∗) ≤ sup

υ∈Υ◦(r)
Lǫ(υ,υ

∗) +♦ǫ(r). (D.9)
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The same bound applies to the maximum taken over the subset {υ ∈ Υ◦(r) : Π0υ = θ∗} .
By Lemmas D.1 and D.2, on the random set Cǫ(r) , one can replace the sup of Lǫ(υ,υ

∗)

over Υ◦(r) by the sup over the whole vector space IRp∗ . Putting all the obtained bounds

together yields

L̆(θ̃,θ∗) ≥ sup
υ

Lǫ(υ,υ
∗)− sup

υ:Π0υ=θ∗
Lǫ(υ,υ

∗)−♦ǫ(r)−♦ǫ(r),

L̆(θ̃,θ∗) ≤ sup
υ

Lǫ(υ,υ
∗)− sup

υ:Π0υ=θ∗
Lǫ(υ,υ

∗) +♦ǫ(r) +♦ǫ(r).
(D.10)

Define

�ǫ
def
= sup

υ
Lǫ(υ,υ

∗)− sup
υ

L(υ,υ∗),

�ǫ
def
= sup

υ
L(υ,υ∗)− sup

υ
Lǫ(υ,υ

∗).

Lemmas D.1 implies

2�ǫ =
∥∥D−1

ǫ ∇
∥∥2 −

∥∥D−1
0 ∇

∥∥2,

2�ǫ =
∥∥D−1

0 ∇
∥∥2 −

∥∥D−1
ǫ ∇

∥∥2.

Define now

αǫ
def
=
∥∥D0D

−2
ǫ D0 − IIp∗

∥∥
∞
,

αǫ
def
=
∥∥IIp∗ −D0D

−2
ǫ D0

∥∥
∞
.

The regularity conditions (I) a
2D2

0 ≥ V2
0 implies for D2

ǫ = D2
0(1− δ)− ̺V2

0

D
2
0(1− τǫ) ≤ D

2
ǫ ≤ D

2
0,

D
2
0 ≤ D

2
ǫ ≤ D

2
0(1 + τǫ).

with τǫ = δ + ̺a−2 so that the quantities αǫ and αǫ satisfy

αǫ ≤ 1

1− τǫ
− 1 =

τǫ
1− τǫ

, αǫ ≤ 1− 1

1 + τǫ
=

τǫ
1 + τǫ

.

This yields

2�ǫ ≤ αǫ

∥∥D−1
0 ∇

∥∥2, 2�ǫ ≤ αǫ

∥∥D−1
0 ∇

∥∥2.
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Similarly by using the result of Lemma D.2

�ǫ,1
def
= sup

υ:Π0υ=θ∗
Lǫ(υ,υ

∗)− sup
υ:Π0υ=θ∗

L(υ,υ∗)

=
1

2

(∥∥H−1
ǫ ∇η

∥∥2 −
∥∥H−1

0 ∇η

∥∥2) ≤ αǫ

2

∥∥H−1
0 ∇η

∥∥2,

�ǫ,1
def
= sup

υ:Π0υ=θ∗
L(υ,υ∗)− sup

υ:Π0υ=θ∗
Lǫ(υ,υ

∗)

=
1

2

(∥∥H−1
0 ∇η

∥∥2 −
∥∥H−1

ǫ ∇η

∥∥2) ≤ αǫ

2

∥∥H−1
0 ∇η

∥∥2.

Further, (D.10) and (D.8) yield

L̆(θ̃,θ∗) ≥ 1

2

∥∥D̆−1
0 ∇̆θ

∥∥2 −�ǫ −�ǫ,1 −♦ǫ(r)−♦ǫ(r),

L̆(θ̃,θ∗) ≤ 1

2

∥∥D̆−1
0 ∇̆θ

∥∥2 +�ǫ +�ǫ,1 +♦ǫ(r) +♦ǫ(r).

The proof of (D.2) and (D.3) is completed.

The next step is to bound the spread ∆ǫ(r) from (D.4). The error terms ♦ǫ(r) and

♦ǫ(r) follow the bound (B.2) of Theorem B.1 and they are of order ̺(p∗+x) . Further we

have to show that τǫ‖D−1
0 ∇‖2 is small relative to ‖ξ̆‖2 and similarly for τǫ‖H−1

0 ∇η‖2 .
Theorem C.1 provides a general deviation probability bound for such quadratic forms.

In particular, for IB
def
= D

−1
0 V2

0D
−1
0 and x ≤ xc

IP
(
‖D−1

0 ∇‖2 > z(x, IB)
)
≤ 2e−x + 8.4e−xc ,

where z(x, IB) ≤ tr(IB) + 6x and the constant xc is large; see Section C for a precise

formulation. Under the regularity condition (I) it holds tr(IB) ≤ a
2p∗ . A similar

bound holds for ‖H−1
0 ∇η‖2 . We conclude that the spread ∆ǫ(r) can be bounded with

a probability of order 1− e−x by C τǫ(p
∗ + x) for a fixed constant C .

Further we have to show that the random set Cǫ(r) from (D.1) is of dominating

probability if r2 = C(p∗ + x) for a proper constant C . By definition

Cǫ(r) =
{
υ̃ ∈ Υ◦(r), υ̃θ∗ ∈ Υ◦(r), ‖V0D

−2
ǫ ∇‖ ≤ r, ‖Q0H

−2
ǫ ∇η‖ ≤ r

}
.

Theorem B.2 yields

IP
{
υ̃ 6∈ Υ◦(r)

}
+ IP

{
υ̃θ∗ /∈ Υ◦(r)

}
≤ 2e−x.

To control the probability IP
(
‖V0D

−2
ǫ ∇‖ > r

)
we apply Corollary C.1 with

IB = D
−1
0 V

2
0D

−1
0 , .
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With the definitions from Section C

IP
(
‖V0D

−2
ǫ ∇‖ > r

)
≤ IP

(
‖D−1

ǫ ∇‖× ‖V0D
−1
ǫ ‖∞ > r

)

≤ IP
(
‖D−1

0 ∇‖× ‖V0D
−1
0 ‖∞ ≥ (1− τǫ)r

)

≤ IP
(
‖D−1

0 ∇‖ ≥ (1− τǫ)r/a
)

≤ IP
{
‖D−1

0 ∇‖2 ≥ z(x, IB)
}

< e−x + 8.4e−xc ,

provided that r2 > a
4(1 − τǫ)

−2(p∗ + 6x) and x ≤ xc . By similar arguments with

IBη = H−1
0 Q2

0H
−1
0 in place of IB

IP
(
‖Q0H

−2
ǫ ∇ǫ‖ > r

)
< e−x + 8.4e−x

η

c .

Putting the obtained bounds together shows that for x ≤ xc and r20 ≥ C1(p
∗ + x) , it

holds

1− IP
(
Cǫ(r0)

)
≤ C2e

−x,

for some fixed constants C1 and C2 depending on τǫ and a only. This completes the

proof.

D.2 Proof of Theorem 2.2

We show that

2∆∗
ǫ(r)

def
=

2∆ǫ(r)

1− τǫ
+

τǫ
1− τǫ

∥∥D−1
0 ∇

∥∥. (D.11)

First we derive the expansion for the whole parameter vector υ . On the set Cǫ(r) , the

bracketing bound (D.9) and (D.5) imply

L(υ̃,υ∗) ≥ sup
υ

Lǫ(υ,υ
∗)−♦ǫ(r)

= ‖D−1
ǫ ∇‖2/2 −♦ǫ(r)

≥ ‖D−1
ǫ ∇‖2/2 −♦ǫ(r)−�ǫ −�ǫ .

The bracketing bound (D.9) applied at υ̃ implies

L(υ̃,υ∗) ≤ Lǫ(υ̃,υ
∗) +♦ǫ(r).

These two bounds together yield by the definition of Lǫ(υ,υ
∗)

(υ̃ − υ∗)⊤∇− 1

2

∥∥Dǫ(υ̃ − υ∗)
∥∥2 ≥ 1

2
‖D−1

ǫ ∇‖2 −♦ǫ(r)−♦ǫ(r)−�ǫ −�ǫ,
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and thus

∥∥Dǫ(υ̃ − υ∗)−D
−1
ǫ ∇

∥∥2 ≤ 2
{
�ǫ +�ǫ +♦ǫ(r) +♦ǫ(r)

}
≤ 2∆ǫ . (D.12)

The condition (I) implies the inequality
∥∥D−1

0 D2
ǫD

−1
0

∥∥
∞

≥ 1− τǫ and hence,

∥∥D0D
−2
ǫ D0

∥∥
∞

≤ (1− τǫ)
−1.

This and (D.12) provide

∥∥D0(υ̃ − υ∗)−D0D
−2
ǫ ∇

∥∥2 ≤ 2∆ǫ

1− τǫ
.

Similarly

∥∥D0D
−2
ǫ ∇−D

−1
0 ∇

∥∥ =
∥∥(D0D

−2
ǫ D0 − IIp∗

)
D

−1
0 ∇

∥∥ ≤ τǫ
1− τǫ

∥∥D−1
0 ∇

∥∥.

Putting together the last two bounds yields

∥∥D0(υ̃ − υ∗)−D
−1
0 ∇

∥∥ ≤
√

2∆ǫ

1− τǫ
+

τǫ
1− τǫ

∥∥D−1
0 ∇

∥∥.

It remains to note that for any u ∈ IRp , η ∈ IRm , and w = (u,η) ∈ IRp∗ , it holds with

γ
def
= η +H−2

0 A⊤
0 u ∈ IRm

∥∥D0w‖2 =
∥∥D̆0u

∥∥2 +
∥∥H0γ

∥∥2 ≥
∥∥D̆0u

∥∥2. (D.13)

Also we use Π0D
−2
0 ∇ = D̆−2

0 ∇̆ .This implies for w = υ̃ − υ∗ by (D.13)

∥∥D̆0(θ̃ − θ∗)− D̆−1
0 ∇̆

∥∥ =
∥∥D̆0(θ̃ − θ∗ − D̆−2

0 ∇̆)
∥∥ ≤

∥∥D0(w −D
−2
0 ∇)

∥∥,

and the assertion (D.11) follows.

D.3 Proof of Theorem 2.3

Choose xn → ∞ and xn = o(n1/3) , e.g. xn = C log(n) . Then βn → 0 and IP (Ω(xn)) →
1 . Moreover, in the i.i.d. setting xc

∼= g ∼=
√
n and thus xn ≤ xc . Similarly for n large

enough with r20 = r20(xn) = C(p∗ + xn)

τǫ ∼= r0/
√
n ∼=

√
(p∗ + xn)/n < n−1/3 ≤ 1/2.

Also the i.i.d. structure of the data yields

D̆2
0 = nF̆.
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Now Theorems 2.1 and 2.2 can be applied yielding the first statement of the theorem. It

remains to check asymptotic standard normality of the sum

ξ̆ = (nF̆)−1/2∇̆ = (nF̆)−1/2
n∑

i=1

∇̆i,

with

∇̆i
def
= ∇θℓ(Yi,υ)− FθηF

−1
ηη∇ηℓ(Yi,υ).

The result follows from the central limit theorem because Cov(∇̆i) = F̆ for all i .

D.4 Proof of Theorem 2.4

The first step of the proof shows that for n large enough, the MLE υ̃ ∈ IRpn belongs with

probability close to one to the δ = 1/n vicinity Sδ of the set S from (2.7). The second

step is to show that with a probability exceeding a fixed constant α > 0 , the profile

MLE θ̃ differs significantly from X1 which is the profile MLE in the linear Gaussian

model. The third step focuses on the case βn → ∞ .

1. First we show that for n large enough, the MLE υ̃ ∈ IRpn lies in Sδ with

probability close to one. For this we check that the maximum of L(υ) on Scδ is smaller

than a similar maximum on S for “typical” values of X and n large enough. Indeed,

for any point υ ∈ Scδ

L(υ, 0) ≤ max
υ∈Sc

δ

L(υ, 0) = max
υ∈Sc

δ

{
nX⊤υ − n‖υ‖2/2

}

≤ max
υ∈IRpn

{
nX⊤υ − n‖υ‖2/2

}
=

n

2
‖X‖2.

Further, introduce a random set of “typical” values X :

C1
def
=

{
X :

1

2

(pn
n

)3/2
< ‖X‖3 <

(
2pn
n

)3/2

, and |X1| ≤ 1

}
.

It is straightforward to see that IP
(
X ∈ C1

)
is exponentially close to one for n large.

Below we assume that X ∈ C1 and study the value L(υ, 0) for υ ∈ S . Let also n be

large enough to ensure that

21/3 − 1

21/6

(pn
n

)1/2
≥ 1

2

(pn
n

)3/4
=

1

2

√
βn/n. (D.14)

Introduce XS as the closest point in S to X with |υ1| ≥ |X1| . This point always exists
by the definition of S . Denote

δ(X) = ‖X −XS‖ = |X1 − υ1|.
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By construction of S , it holds δ(X) ≤ 0.5
√

βn/n for X ∈ C1 . For n satisfying (D.14)

this also yields
[
‖X‖ − δ(X)

]3 ≥ 1/2‖X‖3 . Now we have for X ∈ C1

max
υ∈S

L(υ, 0) ≥ L(XS, 0)

≥ n‖X‖2 − n|X1|δ(X)− n

2

{
‖X‖2 − 2|X1|δ(X) + δ2(X)

}

+n
{
‖X‖2 − 2|X1|δ(X) + δ2(X)

}3/2

≥ n

2
‖X‖2 − nδ2(X) + n

{
‖X‖ − δ(X)

}3

>
n

2
‖X‖2 − βn

4
+

n

2
‖X‖3 > n

2
‖X‖2 = max

υ∈Sc
δ

L(υ, 0).

This implies υ̃ ∈ Sδ .

2. Now we discuss the case when β2
n = p3n/n → (6c)4 for some c ≥ 0 and show that

the profile MLE θ̃ deviates significantly from X1 on a random set of positive probability.

Define for each n ∈ N

Cn
def
= C1 ∩

{
‖X −XS‖ ≥ 1

6

√
βn/n

}
= C1 ∩

{
|X1 −XS,1| ≥

1

6

√
βn/n

}
.

It is easy to see that IP (Cn) ≥ α for some fixed α > 0 and all n . It remains to note

that on the set Cn it holds under (D.14)

‖D̆0(θ̃ − θ∗)− ξ̆‖ =
√
n|υ̃1 −X1|

≥
√
n|X1 −XS,1| −

√
n/n

≥ 1

6
β1/2
n − 1√

n
→




∞ p3n/n → ∞,

c p3n/n → (6c)4,

which yields the claim.

3. Finally consider the case when βn → ∞ . Fix any sequence cn such that cn → 0

and cnβn → ∞ , e.g. cn = β
−1/2
n . Consider the random set

Cn
def
= C1 ∩

{
‖X −XS‖ ≥ cn

6

√
βn/n

}
= C1 ∩

{
|X1 −XS,1| ≥

cn
6

√
βn/n

}
.

Then IP (Cn) → 1 and on Cn

‖D̆0(θ̃ − θ∗)− ξ̆‖ ≥ cn
6
β1/2
n − 1√

n
→ ∞,

as required.
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