Linear NDCG and Pair-wise Loss

Xiao-Bo Jin and Guang-Gang Geng^{*1} xbjin9801@qmail.com; gengguangqang@cnnic.cn

Abstract

Linear NDCG is used for measuring the performance of the Web content quality assessment in ECML/PKDD Discovery Challenge 2010. In this paper, we will prove that the DCG error equals a new pair-wise loss.

Keywords: NDCG, Learning to rank, Web content quality assessment

1. Linear NDCG

In ECML Discovery Challenge 2010, the evaluation measure is a variant of the NDCG $(NDCG^{\beta})$. Given the sorted ranking sequence g and all ratings $\{r_i\}_{i=1}^{|S|}$, the discount function and NDCG are defined as $(r_i \in \{0, 1, \ldots, L-1\})$:

$$DCG_{g}^{\beta} = \sum_{i=1}^{|S|} r_{i}(|S| - i) , NDCG^{\beta} = \frac{1}{DCG_{\pi}^{\beta}}DCG_{g}^{\beta},$$
(1)

where DCG_{π}^{β} is the normalization factor that is DCG in the ideal permutation $\pi (DCG_{g}^{\beta} \leq DCG_{\pi}^{\beta})$. We call $\Delta DCG^{\beta} = DCG_{\pi}^{\beta} - DCG_{g}^{\beta}$ as the DCG error. Specially, $DCG_{\pi}^{\beta} = mn + \frac{m(m-1)}{2}$ for the bipartite ranking. It is worth noticing that the above NDCG is different from the classical NDCG for the query-dependent ranking, where the DCG function is (for the single query):

$$DCG_{g}^{\alpha} = \sum_{i=1}^{|S|} \frac{2^{r_{i}} - 1}{\log_{2}(i+1)} , NDCG^{\alpha} = \frac{1}{DCG_{\pi}^{\alpha}} DCG_{g}^{\alpha}.$$
(2)

Consider the case of the query-dependent ranking with L ratings. For the given query, the dataset S can be divided into $\{S_i\}_{i=0}^{L-1}$ according to the

¹Guang-Gang Geng is the corresponding author.

ratings of the instances. Generally, we can define the empirical error for the multi-partite case:

$$\hat{R}(f) = \frac{1}{Z} \sum_{0 \le a < b < L} \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} (b-a) I[f(\boldsymbol{x}_i^b) < f(\boldsymbol{x}_j^a)],$$
(3)

where $Z = \sum_{0 \le a < b < L} |S_a| |S_b|$. Specially, we also define the following unnormalized empirical error:

$$R(f) = \sum_{0 \le a < b < L} \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} (b-a) I[f(\boldsymbol{x}_i^b) < f(\boldsymbol{x}_j^a)].$$
(4)

2. $NDCG^{\beta}$ and Pair-wise Loss

In this section, we will prove the following conclusion:

$$\Delta DCG^{\beta} = R(f). \tag{5}$$

Theorem 1. For *L*-partite ranking problem, the unnormalized empirical error can be divided into the following form:

$$R(f) = \sum_{0 \le a < b < L} \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} (b-a) I[f(\boldsymbol{x}_i^b) < f(\boldsymbol{x}_j^a)] = \sum_{k=0}^{L-2} R_k(f), \quad (6)$$

where

$$R_k(f) = \sum_{a=0}^k \sum_{b=k+1}^{L-1} \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} I[f(\boldsymbol{x}_i^b) < f(\boldsymbol{x}_j^a)].$$
(7)

PROOF. For the convenience of the description, we represent the conclusion as follows:

$$G^{L}(f) = \sum_{k=0}^{L-2} R_{k}(f)$$

=
$$\sum_{k=0}^{L-2} \sum_{a=0}^{k} \sum_{b=k+1}^{L-1} \sum_{i=1}^{|S_{a}|} \sum_{j=1}^{|S_{b}|} I[f(\boldsymbol{x}_{i}^{b}) < f(\boldsymbol{x}_{j}^{a})]$$

=
$$R^{L}(f)$$
 (8)

Now we prove the conclusion $G^n(f) = R^n(f)$ with the mathematical induction on the variable n. If n = 2, the conclusion trivially holds. Assume that the equation is true for n, then we will prove the conclusion for n + 1. We have

$$G^{n+1}(f) = G^{n}(f) + \sum_{k=0}^{n-2} \sum_{a=0}^{k} \sum_{i=1}^{|S_{a}|} \sum_{j=1}^{|S_{b}|} I[f(\boldsymbol{x}_{j}^{n}) < f(\boldsymbol{x}_{i}^{a})] + \sum_{a=0}^{n-1} \sum_{i=1}^{|S_{a}|} \sum_{j=1}^{|S_{b}|} I[f(\boldsymbol{x}_{j}^{n}) < f(\boldsymbol{x}_{i}^{a})] = G^{n}(f) + \sum_{k=0}^{n-1} \sum_{a=0}^{k} \sum_{i=1}^{|S_{a}|} \sum_{j=1}^{|S_{b}|} I[f(\boldsymbol{x}_{j}^{n}) < f(\boldsymbol{x}_{i}^{a})]$$
(9)

and

$$R^{n+1}(f) = R^n(f) + \sum_{a=0}^{n-1} (n-a) \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} I[f(\boldsymbol{x}_j^n) < f(\boldsymbol{x}_i^a)].$$
(10)

Finally, we can prove by the mathematical induction that the second item of the right side in (9) equals to the corresponding item in (10). We can see that for n = 1 it is trivially hold.

It follows that $G^{L}(f) = R^{L}(f)$ for all natural number with L > 1.

Lemma 1. For the bipartite ranking problems, any sorted ranking sequence from $S = \{S_+, S_-\}$ can be obtained by exchanging at most $k = \min\{|S_+|, |S_-|\}$ times from the ideal ranking sequence.

PROOF. Given that there are $r(r \leq m)$ negative instances in the first m positions and $s(s \leq n)$ positive instances in the remain n positions.

Now we prove s = r indirectly through the apagoge. If $s \neq r$, without loss of generality, we assume r > s. It is known that there are r - s negative instances in the first m positions after s exchanges. The exchanges occur among s negative instances in the first m positions and s positive instances in the remain n positions. Then the fact that we will get r - s + n negative instances is in contradiction to n negative instances. Finally, we can conclude that $r = s \leq \min\{|S_+|, |S_-|\}$.

Next, we will prove

Theorem 2. For the bipartite ranking problem, DCG errors with 1 equals the unnormalized expected losss R(f):

$$\Delta DCG^{\beta} = R(f) = \sum_{i=1}^{m} \sum_{j=1}^{n} I[f(\boldsymbol{x}_{i}^{+}) < f(\boldsymbol{x}_{j}^{-})].$$
(11)

PROOF. We know that any ranking sequence can be obtained by the exchange operations from the ideal ranking sequence according to Prop. 1. Let $\{i_1, i_2, \dots, i_k\}(1 \leq i_1 < i_2 < \dots < i_k \leq m)$ and $\{j_1, j_2, \dots, j_k\}(1 \leq j_1 < j_2 < \dots < j_k \leq n)$ be the exchanged positions in the first *m* positions and the remain *n* positions, respectively. As depicted in Fig. 1, without loss of generality, we exchange i_r and j_r for the r-th time. First, we will compute the decrement relative to the ideal ranking sequence for the r-th time

$$\Delta_r DCG = (m+n-i_r) - (m+n-(m+j_r)) = m+j_r - i_r >= 1.$$
(12)

Now, we give a detailed explanation about the increment of the unnormalize expected loss which is related to the position i_r and j_r . The increment due to the variation in the position i_r will be $m - i_r + r$ because there are $m - i_r$ positive instances in the first m positions and r positive instances in the remain n instances. As for the position j_r , the increment should be $j_r - r$ since there are $j_r - 1 - (r - 1)$ negative instances in the remain n instances before j_r . In summary, we obtain the increment $\Delta_r R(f) = m + j_r - i_r$. As a result, we conclude that

$$\Delta DCG^{\beta} = \sum_{r=1}^{k} \Delta_r DCG = \sum_{r=1}^{k} \Delta_r R(f) = \Delta R(f).$$
(13)

Notice that the initial value of R(f) (the ideal ranking sequence) is zero, this proves the theorem.

Fig. 2 gives an example to verify the conclusion $\Delta DCG^{\beta} = R(f) = 4$. The following theorem shows that the conclusion $\Delta DCG^{\beta} = R(f)$ still holds when extending to the multi-partite ranking problem.

Theorem 3. For L-partite ranking problem, the DCG errors with Eqn. (1) equals R(f):

$$\Delta DCG^{\beta} = \sum_{0 \le a < b < L} \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} (b-a) I[f(\boldsymbol{x}_i^b) < f(\boldsymbol{x}_j^a)).$$
(14)

Figure 1: The ideal ranking sequence with its transformation. Left: the ideal ranking sequence, right: the ranking sequence with multiple exchanges

Figure 2: The example on the bipartite ranking shows $\Delta DCG^{\beta} = R(f) = 4$, where $DCG_{\pi} = 12$ and $DCG_g = 8$.

PROOF. From 1, we know that

$$R(f) = G(f) = \sum_{k=0}^{L-2} R_k(f).$$
 (15)

Then we will show that DCG in L-partite problem can be written as the sum of the DCG measures of L-1 bipartite problems. We divide DCG_{β} into

$$DCG_{\beta} = \sum_{i=1}^{|S|} r_i(|S| - i)$$

=
$$\sum_{i=1}^{|S|} \sum_{k=0}^{L-2} I[k < r_i](|S| - i)$$

=
$$\sum_{k=0}^{L-2} DCG_k,$$
 (16)

where $DCG_k = \sum_{i=1}^{|S|} I[k < r_i](|S| - i)$. For given k, we can assign the instances with r_i $(k < r_i)$ to the ranking 1 and the others to the ranking 0 to

obtain a bipartite ranking problem with the unnormalized empirical error

$$R_k(f) = \sum_{a=0}^k \sum_{b=k+1}^{L-1} \sum_{i=1}^{|S_a|} \sum_{j=1}^{|S_b|} I[f(\mathbf{x}_i^b) < f(\mathbf{x}_j^a)].$$
(17)

From 2, $\Delta DCG_k = R_k(f)$ holds. We have $\Delta DCG = \sum_{k=0}^{L-2} \Delta DCG_k = \sum_{k=0}^{L-2} R_k(f) = R(f)$.

π	2	2	1	0	0	0
i	1	2	3	4	5	6
g	2	0	2	1	0	0

Figure 3: The example on the multipartite ranking shows $\Delta DCG_{\beta} = R(f) = 3$, where $DCG_{\pi}^{\beta} = 21$ and $DCG_{g}^{\beta} = 18$.

The example in 3 supports our conclusion about the DCG error and the unnormalized expected loss in the multipartite ranking problem.