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Linear NDCG and Pair-wise Loss
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Abstract

Linear NDCG is used for measuring the performance of the Web content
quality assessment in ECML/PKDD Discovery Challenge 2010. In this pa-
per, we will prove that the DCG error equals a new pair-wise loss.
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1. Linear NDCG

In ECML Discovery Challenge 2010, the evaluation measure is a variant
of the NDCG (NDCGβ). Given the sorted ranking sequence g and all ratings

{ri}
|S|
i=1, the discount function and NDCG are defined as (ri ∈ {0, 1, . . . , L−

1}):

DCGβ
g =

|S|∑

i=1

ri(|S| − i) , NDCGβ =
1

DCG
β
π

DCGβ
g , (1)

whereDCGβ
π is the normalization factor that is DCG in the ideal permutation

π (DCGβ
g ≤ DCGβ

π). We call ∆DCGβ = DCGβ
π−DCGβ

g as the DCG error.

Specially, DCGβ
π = mn + m(m−1)

2
for the bipartite ranking. It is worth

noticing that the above NDCG is different from the classical NDCG for the
query-dependent ranking, where the DCG function is (for the single query):

DCGα
g =

|S|∑

i=1

2ri − 1

log2(i+ 1)
, NDCGα =

1

DCGα
π

DCGα
g . (2)

Consider the case of the query-dependent ranking with L ratings. For
the given query, the dataset S can be divided into {Si}

L−1
i=0 according to the
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ratings of the instances. Generally, we can define the empirical error for the
multi-partite case:

R̂(f) =
1

Z

∑

0≤a<b<L

|Sa|∑

i=1

|Sb|∑

j=1

(b− a)I[f(xb
i) < f(xa

j )], (3)

where Z =
∑

0≤a<b<L |Sa||Sb|. Specially, we also define the following unnor-
malized empirical error:

R(f) =
∑

0≤a<b<L

|Sa|∑

i=1

|Sb|∑

j=1

(b− a)I[f(xb
i) < f(xa

j )]. (4)

2. NDCG
β
and Pair-wise Loss

In this section, we will prove the following conclusion:

∆DCGβ = R(f). (5)

Theorem 1. For L-partite ranking problem, the unnormalized empirical er-
ror can be divided into the following form:

R(f) =
∑

0≤a<b<L

|Sa|∑

i=1

|Sb|∑

j=1

(b− a)I[f(xb
i) < f(xa

j )] =
L−2∑

k=0

Rk(f), (6)

where

Rk(f) =

k∑

a=0

L−1∑

b=k+1

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xb
i) < f(xa

j )]. (7)

Proof. For the convenience of the description, we represent the conclusion
as follows:

GL(f) =
L−2∑

k=0

Rk(f)

=
L−2∑

k=0

k∑

a=0

L−1∑

b=k+1

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xb
i) < f(xa

j )]

= RL(f) (8)
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Now we prove the conclusion Gn(f) = Rn(f) with the mathematical
induction on the variable n. If n = 2, the conclusion trivially holds. Assume
that the equation is true for n, then we will prove the conclusion for n + 1.
We have

Gn+1(f) = Gn(f) +

n−2∑

k=0

k∑

a=0

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xn
j ) < f(xa

i )]

+
n−1∑

a=0

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xn
j ) < f(xa

i )]

= Gn(f) +

n−1∑

k=0

k∑

a=0

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xn
j ) < f(xa

i )]

(9)

and

Rn+1(f) = Rn(f) +

n−1∑

a=0

(n− a)

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xn
j ) < f(xa

i )]. (10)

Finally, we can prove by the mathematical induction that the second item
of the right side in (9) equals to the corresponding item in (10). We can see
that for n = 1 it is trivially hold.

It follows that GL(f) = RL(f) for all natural number with L > 1.

Lemma 1. For the bipartite ranking problems, any sorted ranking sequence
from S = {S+, S−} can be obtained by exchanging at most k = min{|S+|, |S−|}
times from the ideal ranking sequence.

Proof. Given that there are r(r ≤ m) negative instances in the first m

positions and s(s ≤ n) positive instances in the remain n positions.
Now we prove s = r indirectly through the apagoge. If s 6= r, without

loss of generality, we assume r > s. It is known that there are r− s negative
instances in the first m positions after s exchanges. The exchanges occur
among s negative instances in the first m positions and s positive instances
in the remain n positions. Then the fact that we will get r − s+ n negative
instances is in contradiction to n negative instances. Finally, we can conclude
that r = s ≤ min{|S+|, |S−|}.

Next, we will prove
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Theorem 2. For the bipartite ranking problem, DCG errors with 1 equals
the unnormalized expected losss R(f):

∆DCGβ = R(f) =
m∑

i=1

n∑

j=1

I[f(x+
i ) < f(x−

j )]. (11)

Proof. We know that any ranking sequence can be obtained by the ex-
change operations from the ideal ranking sequence according to Prop. 1. Let
{i1, i2, · · · , ik}(1 ≤ i1 < i2 < · · · < ik ≤ m) and {j1, j2, · · · , jk}(1 ≤ j1 <

j2 < · · · < jk ≤ n) be the exchanged positions in the first m positions and
the remain n positions, respectively. As depicted in Fig. 1, without loss of
generality, we exchange ir and jr for the r-th time. First, we will compute
the decrement relative to the ideal ranking sequence for the r-th time

∆rDCG = (m+ n− ir)− (m+ n− (m+ jr))

= m+ jr − ir >= 1. (12)

Now, we give a detailed explanation about the increment of the unnormalize
expected loss which is related to the position ir and jr. The increment due
to the variation in the position ir will be m− ir + r because there are m− ir
positive instances in the first m positions and r positive instances in the
remain n instances. As for the position jr, the increment should be jr − r

since there are jr − 1− (r − 1) negative instances in the remain n instances
before jr. In summary, we obtain the increment ∆rR(f) = m + jr − ir. As
a result, we conclude that

∆DCGβ =
k∑

r=1

∆rDCG =
k∑

r=1

∆rR(f) = ∆R(f). (13)

Notice that the initial value of R(f) (the ideal ranking sequence) is zero, this
proves the theorem.

Fig. 2 gives an example to verify the conclusion ∆DCGβ = R(f) = 4.
The following theorem shows that the conclusion ∆DCGβ = R(f) still holds
when extending to the multi-partite ranking problem.

Theorem 3. For L-partite ranking problem, the DCG errors with Eqn. (1)
equals R(f):

∆DCGβ =
∑

0≤a<b<L

|Sa|∑

i=1

|Sb|∑

j=1

(b− a)I[f(xb
i) < f(xa

j )). (14)
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1 +
...

...
i +
...

...
m +

1 −
...

...
j −
...

...
n −

...
...

i1 −
...

...
i2 −
...

...
...

...
j1 +
...

...
j2 +
...

...

Figure 1: The ideal ranking sequence with its transformation. Left: the ideal ranking
sequence, right: the ranking sequence with multiple exchanges

π

i
g

1 2 3 4 5 6
+ + +− − −

+ + + − − −

Figure 2: The example on the bipartite ranking shows ∆DCGβ = R(f) = 4, where
DCGπ = 12 and DCGg = 8.

Proof. From 1, we know that

R(f) = G(f) =

L−2∑

k=0

Rk(f). (15)

Then we will show that DCG in L-partite problem can be written as the
sum of the DCG measures of L − 1 bipartite problems. We divide DCGβ

into

DCGβ =

|S|∑

i=1

ri(|S| − i)

=

|S|∑

i=1

L−2∑

k=0

I[k < ri](|S| − i)

=

L−2∑

k=0

DCGk, (16)

where DCGk =
∑|S|

i=1 I[k < ri](|S| − i). For given k, we can assign the
instances with ri (k < ri) to the ranking 1 and the others to the ranking 0 to
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obtain a bipartite ranking problem with the unnormalized empirical error

Rk(f) =
k∑

a=0

L−1∑

b=k+1

|Sa|∑

i=1

|Sb|∑

j=1

I[f(xb
i) < f(xa

j )]. (17)

From 2, ∆DCGk = Rk(f) holds. We have ∆DCG =
∑L−2

k=0 ∆DCGk =∑L−2
k=0 Rk(f) = R(f).

π

i
g

1 2 3 4 5 6
2 0 2 1 0 0

2 2 1 0 0 0

Figure 3: The example on the multipartite ranking shows ∆DCGβ = R(f) = 3, where
DCGβ

π = 21 and DCGβ
g = 18.

The example in 3 supports our conclusion about the DCG error and the
unnormalized expected loss in the multipartite ranking problem.
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