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Abstract

The Kalman filter is extensively used for state estimation for lin-

ear systems under Gaussian noise. When non-Gaussian Lévy noise is

present, the conventional Kalman filter may fail to be effective due to

the fact that the non-Gaussian Lévy noise may have infinite variance.

A modified Kalman filter for linear systems with non-Gaussian Lévy

noise is devised. It works effectively with reasonable computational

cost. Simulation results are presented to illustrate this non-Gaussian

filtering method.
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1 Introduction and statement of the problem

The Kalman filter, or the Kalman filtering method, provides an efficient

way to estimate the state of a linear dynamical system subject to Gaussian

white noise [5, 6, 7]. It has been widely used in applications such as target

tracking, parameter estimation, control theory, signal processing, and other

data assimilation tasks.

The Kalman filter requires the noise be either Gaussian or with finite

variance [5, 6], and thus it is not applicable to linear systems with non-

Gaussian noise of infinite variance. As non-Gaussian Lévy noise with infinite

variance exists ubiquitously [10, 9], it is desirable to study the Kalman

filtering problems under Lévy noise. Very little work has been done for this

issue. Breton and Musiela [4] presented a scheme for Kalman filtering with

noise of infinite variance, while assuming the contribution of the jumps are

exactly known. The filter in [4] is nonlinear and recursive, and thus may

greatly limit its application in practice. Ahn and Feldman [1] proposed to

minimize the difference between the true state and the filtered observation

in the Lµ-norm. However, as pointed in [9], this method does not really

address the Kalman filtering problem which consists of combining forecasts

and observations. The method in [9] focuses on large errors and has a robust

performance but high computational cost due to the matrix diagonalization

and the operation of the fractional power in each step. This may also be an

obstacle for real-time implementation in practical applications. Note that

in practice, each iteration step must be completed during every sampling

period, and it is greatly desirable to make the algorithm as fast as possible.

In this paper, we will present an algorithm, which has the similar com-

putational cost as that of the Kalman filter, but can be applied to linear
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systems with non-Gaussian Lévy noise of infinite variance.

We consider the following discrete time model with the state equation

xk+1 = Fkxk +wk, (1)

and the observation equation

zk = Hkxk + vk, (2)

where xk, an n-by-1 vector, is the state variable, and zk, an m-by-1 vector,

is the measurement (or observation) variable, wk represents the modeling

error noise, vk the measurement error noise, and Fk and Hk are n-by-n and

m-by-n matrices, respectively. We only consider the cases where wk is a

Gaussian noise, and vk is a non-Gaussian Lévy noise.

This paper is arranged as follows. In section 2, the usual Kalman filter

is briefly reviewed. The proposed modified Kalman filter is presented in

section 3. A simulation example is provided in Section 4 to illustrate the

effectiveness of the modified Kalman filter.

2 Review of the conventional Kalman filter

A derivation of the Kalman filter is briefly reviewed in this section. Some

equations and ideas presented in this section will be used to present our

proposed modified Kalman filter in the next section. Derivations of the

Kalman filter can be found in many references [5, 6, 7].

Consider the model as given in (1) and (2). The Kalman filtering assumes

that both the modeling error noise wk and the measurement disturbance vk

are Gaussian with the following covariance matrix,

E
[

wiw
T
k

]

=











Qk, for i = k,

0, for i 6= k.

(3)
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E
[

viv
T
k

]

=











Rk, for i = k,

0, for i 6= k.

(4)

Let x̄k be the priori estimate, which is the estimate of xk given z0, z1,

· · · , zk−1, and let x̂k be the posterior estimate, which is the estimate of xk

given z0, z1, · · · , zk. It is known that

E{x̄k} = E{xk} (5)

and

x̄k+1 = Fkx̂k, (6)

where E{·} represents expectation and Fk is from (1).

The Kalman filter assumes that the posterior estimate is expressed as

the prior estimate corrected by the measurement data,

x̂k = x̄k +Kk (zk −Hkx̄k) , (7)

for some n-by-m matrix Kk (so called Kalman gain). Note that Hk is from

(2). The Kalman gain Kk is solved by minimizing E
[

(x̂k − xk)
2
]

. Note

that

E
[

(x̂k − xk)
T (x̂k − xk)

]

= Tr{Pk}, (8)

where Tr{·} represents the trace operator, and the n-by-n covariance matrix

Pk is defined as follows

Pk = E
[

(xk − x̂k)(xk − x̂k)
T
]

. (9)

Define

P̄k = E
[

(xk − x̄k)(xk − x̄k)
T
]

. (10)

It follows from (3), (4), (9) and (10) that

P̄k+1 = FkPkF
T
k +Qk. (11)
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Substituting (7) into (9), we get

Pk = (I−KkHk)P̄k(I −KkHk)
T +KkRkK

T
k . (12)

It follows from (12) that

d

dKk

Tr{Pk} = −2(H−KP̄k)
T + 2Kk(HkP̄kH

T
k +Rk). (13)

Solve Kk by letting d
dKk

Tr{Pk} = 0, we get

Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)

−1 (14)

By (12) and (14), Pk can be rewritten as

Pk = (I −KkHk)P̄k. (15)

Combining (6), (14) and (15), we thus have the conventional Kalman filter.

This algorithm is shown in Figure 1.

3 A modified Kalman filter

It is known that the discrete time Gaussian white noise can be approximated

by the increments of Brownian motion per time step, and the non-Gaussian

Lévy noise can be approximated by the increments of the corresponding

Lévy process per time step. By Lévy-Ito theorem [2], a Lévy process can be

decomposed into the sum of a Gaussian process and a pure jump process. It

is shown in [3] that the small jumps of a Lévy process can be approximated

by a Gaussian process. Therefore, we can approximately regard a Lévy

process as combination of a Gaussian process and a process with big jumps.

For more information about decomposition of a Lévy processes, see [3, 2].

These results enable us to decompose a non-Gaussian Lévy noise into a

Gaussian white noise plus some extremely large values.

In our proposed filtering method, we convert the original Lévy noise into

a Gaussian white noise by clipping off its extremely large values.
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Let ṽk represent the clipped version of the Lévy measurement distur-

bance vk, and let z̃k represent the corresponding clipped observation. Thus

z̃k = Hkxk + ṽk. (16)

In practice, since the measurement noise, vk, is unknown, we propose to clip

the observation zk instead of vk in a component-wise way by the following

operation:

z̃ik =











∑

j H
i,j
k x̄

j
k + C · sign

(

zik −
∑

j H
i,j
k x̄

j
k

)

if |zik −
∑

j H
i,j
k x̄

j
k| ≥ C,

zik if |zik −
∑

j H
i,j
k x̄

j
k| < C,

(17)

where C is some positive threshold value, zik and x̄i
k represent the i-th com-

ponents of the vectors zk and x̄k, respectively, and
∑

j H
i,j
k x̄

j
k is the i-th

component of the vector Hkx̄k. Note that C is determined by the statistical

properties of the measurement noise vk. Replacing the observation value zk

in (7) with its clipped value, we get

x̂k = x̄k +Kk (z̃k −Hkx̄k) . (18)

Repeating the same procedure in Section 2 to solve the Kalman gain Kk by

minimizing E{(xk − x̂k)
2}, we get

Kk = P̄kH
T
k (HkP̄kH

T
k + R̃k)

−1, (19)

where R̃k is the covariance matrix of ṽk defined as

R̃k = E
{

ṽkṽ
T
k

}

. (20)

In the conventional Kalman filter, Qk and Rk are assumed to be known,

and as noted in [6], it is often a difficult task to estimate the covariance

matrices Qk and Rk.
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In the modified Kalman filter here, we only assume Qk is known and

suggest R̃k be estimated as follows. It follows from (16) and (17) that

R̃k =E
{

ṽkṽ
T
k

}

=E
{

[(z̃k −Hkx̄k)−Hk(xk − x̄k)] [(z̃k −Hkx̄k)−Hk(xk − x̄k)]
T
}

=(z̃k −Hkx̄k)(z̃k −Hkx̄k)
T +HkP̄kH

T
k . (21)

In deriving the last identity of (21), we have used the fact that z̃k and x̄k

are known values and

E
{

(z̃k −Hkx̄k)(xk − x̄k)
THT

k

}

= (z̃k −Hkx̄k)E{(xk − x̄k)
T }HT

k = 0.

(22)

With (21), (19) can be rewritten as

Kk = P̄kH
T
k (2 ·HkP̄kH

T
k + ˜̃

Rk)
−1, (23)

where

˜̃
Rk = (z̃k −Hkx̄k)(z̃k −Hkx̄k)

T . (24)

Combining equations (17), (18), (23), and (24), we obtain the modified

Kalman filter, as shown graphically in Figure 2.

Comparing with the conventional Kalman filter, the proposed filter has

an moderately increased computational cost due to the following two opera-

tions: i) the clipping operation for zk; ii) the computation of ˜̃
Rk. The former

operation is implemented by IF-ElSE sentence, and the latter is simply a

vector-vector outer product.

4 Simulation results

Consider a particle moving in the plane at some velocity subject to random

perturbations in its trajectory. The new position at time k + 1 is equal to
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the old position at time k plus the velocity and noise. The model can be

expressed in form of (1) and (2) as

















x1k+1

x2k+1

u1k+1

u2k+1

















=

















1 0 1 0

0 1 0 1

0 0 1 0

0 0 0 1

































x1k

x2k

u1k

u2k

















+

















w1
k

w2
k

w3
k

w4
k

















, (25)

and

zk =





1 0 0 0

0 1 0 0



xk +





v1k

v2k



 , (26)

where (x1k, x
2
k) is the position at time k, u1k, u

2
k the velocity, w1

k, w
2
k, w

3
k,

and w4
k are all Gaussian white noises with zero mean and unit variance, and

v1k and v2k are independent and identically distributed noises consist of two

components: i) a symmetric α-stable Lévy noises with the index of stability

α = 1.3 and the scale parameter σ = 10 (see [8]); ii) a Gaussian white noise

with variance of 5. Since the measurement noises, v1k and v2k, have infinite

variances, the conventional Kalman filter can not be applied to estimate the

position x1k and x2k. So we apply the modified Kalman filter proposed in the

previous section.

Take x10 = 10, x20 = 10, u10 = 1, u20 = 0, and we apply the modified

Kalman filtering method to estimate x1k and x2k. In the simulation, the

initial a priori estimate of the state, (x̄10, x̄20), is set to be equal to the

observation at time 0, its error covariance, P̄0, is set to be unit matrix, and

the threshold value C is set to be 40. The simulation results are shown in

Figure 3, where the estimate position error, ER, defined by

ERk =
√

(z1k − x1k)
2 + (z2k − x2k)

2, (27)

is compared with the observed position error, OR, defined by

ORk =
√

(x̄1k − x1k)
2 + (x̄2k − x2k)

2. (28)
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The results in Figure 3 are calculated by averaging 10, 000 times of sim-

ulations. It is seen from this figure that the position estimation error is

significantly improved by using our modified Kalman filter.

In the simulation, we select C by the method of trial and error, and it is

found that the threshold value C is not very picky and C can vary from 30 to

100 without significant effects on the performance of the modified Kalman

filter. Determining the optimal C, which is crucial for the modified Kalman

filter, deserves further research and will be left for our future work.
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Compute Kalman gain
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updated estimate
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measurement 

Project ahead

Enter Priori estimate 

 and its error covariance 

Figure 1: The usual Kalman filtering algorithm
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Compute Kalman gain

Compute error covariance for 

updated estimate

Update estimate with measurement 

Project ahead

Enter Priori estimate 

 and its error covariance 

Figure 2: The modified Kalman filtering algorithm
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